
Received June 21, 2018, accepted August 9, 2018, date of publication August 16, 2018, date of current version September 7, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2865627

Fast Approach for Analysis Windows
Computation of Multiwindow
Discrete Gabor Transform
RUI LI 1 AND JIA-BAO LIU 2
1College of Information and Network Engineering, Anhui Science and Technology University, Bengbu 233030, China
2School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China

Corresponding author: Rui Li (lirui4788503@163.com)

This work was supported in part by the National Science Foundation of China under Grant 11601006 and in part by the Doctoral Scientific
Research Foundation of Anhui Science and Technology University under XWYJ201801.

ABSTRACT By using the biorthogonal analysis approach, an effective algorithm based on factorization
for solving the analysis/dual windows in multiwindow discrete Gabor transform (M-DGT) is presented for
arbitrary given synthesis windows. The constraint condition matrix of the M-DGT between analysis/dual
windows and synthesis windows is proved to be equivalent to a fixed number of independent orthogonal
relationship matrixes of discrete Gabor transform (DGT), which can be quickly and efficiently solved by
using sub-equation sets. The analysis and comparison of computational complexity of related algorithms
have indicated that the proposed algorithm provided a faster computational approach for computing analy-
sis/dual windows as compared with that of the existing algorithms, which can save amount of computation
and memory.

INDEX TERMS Bi-orthogonal analysis approach, multiwindow discrete Gabor transform (M-DGT),
analysis windows, discrete Gabor transform (DGT).

I. INTRODUCTION
The M-DGT [1]–[8], which extended from DGT [9]–[15],
has become a valuable time-frequency analysis technology
for diverse areas, such as signal processing [16]–[19], evo-
lutionary spectral analysis [20], image watermarking [21],
ultrasonic echo signal [22], [23], image processing [24], [25],
and so forth. Due to the uncertainty principle [26], the tradi-
tional DGT, a type of canonical linear transform with single
window, suffers a limit of time-frequency resolution [27] in
time-frequency plane, which could not adaptively process the
non-stationary signals with different frequency components.
To overcome this gab, the M-DGT can be able to utilize mul-
tiple analysis/dual windows of different shape and bandwidth
to extract or/and detect the local time-frequency information
of the analyzed signal in an efficient way, in which narrower
time window is in charge of detecting and localizing the fast-
changing/transient features of the analyzed signal and wider
time window is invented to process the slow changes of a
signal.

The analysis windows of M-DGT, called the dual windows
in Gabor frame theory [14], [15], can be obtained directly

by applying a linear operator [11], which involved the bi-
orthogonal relationship between analysis/dual windows and
synthesis windows [13] or frame matrix operator [28], [29].
However, with more windows used, the computation of anal-
ysis/dual windows increases rapidly as the number of win-
dows applying to application, which requires a great deal
of computational time and memory space and would be
possible to result in computational instability. To solve this
problem, a faster method, based on factorization, for calcu-
lating analysis/dual windows of M-DGT, is presented in this
paper. Firstly, the orthogonal relationship of M-DGT can be
proved to equal to a certain number of orthogonal relationship
of DGT, which solving the analysis windows problem of
M-DGT can convert into obtaining the analysis windows of
DGT. Secondly, the orthogonal relationship matrix of DGT,
generated by the orthogonal relationship of M-DGT, can
be simplified and separated it into a set of unrelated sub-
orthogonal relationship matrix between analysis window and
synthesis window. Finally, the analysis windows of M-DGT
can be fast and separably processed by sub-equation sets.
The analysis of computational complexity has been given to
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demonstrate the efficiency and the merits of decreasing the
computation of proposed approach in comparison to existing
algorithms.

The rest of the paper is organized as follows. The back-
ground of traditional M-DGT will be reviewed in section 2.
In section 3, we develop an efficient approach to calculate
the analysis windows of M-DGT. In section 4, the com-
putation complexity analysis and comparison between the
proposed algorithm and existing algorithms are discussed
and some experiments are given to validate the proposed
approach. Finally, the paper is concluded in Section 5.

II. REVIEW OF M-DGT
Let f (k) represents a discrete-time signal of periodic length
L, the multiple window version of discrete Gabor expansion
(M-DGE) [7] is provided by the follows

f (k) =
R−1∑
r=0

M−1∑
m=0

N−1∑
n=0

c(r)(m, n)h(r)(k − ma) exp
(
j2πnk
N

)
,

(1)

and defining c(r)(m, n) as the multiwindow Gabor coeffi-
cients, they can be calculated according to

c(r)(m, n) =
L−1∑
k=0

f (k)g(r)(k − ma) exp
(
−
j2πnk
N

)
,

(2)

where j =
√
−1 is the imaginary unit. The M-DGT can be

obtained by (2) corresponding to its expansion (or inverse
transform) in (1). Let 0 ≤ r < R denotes an index of windows
that use in M-DGT. In expansion and transform, L = Ma =
Nω, let the positive integersM , N are the sampling points of
time and frequency, and let ω, a denote the modulation/shift
step in frequency domain and shift/translation interval in time
domain. For a numerically stable reconstruction, the con-
strained condition by L ≤ MN (or L ≥ ωa) has to be
satisfied. By selecting proper parametersM andN , the Gabor
oversampling ratio β = MN

L is a positive integer. Since
(1) and (2) constrained by completeness condition, the bi-
orthogonal relationship of h(r) and g(r) should be satisfied as
follows:

L
MN

δ(m̄)δ(n̄) =
R−1∑
r=0

L−1∑
k̄=0

(
h(r)(k̄ + m̄N )g(r)(k̄)

)
· exp

(
−
j2π n̄k̄
a

)
, (3)

where δ(k) is the discrete version of delta function, 0 ≤ m̄ <
ω, and 0 ≤ n̄ < a. The time-frequency representation (TFR)
of M-DGT is defined as

c̄(r)(m, n) =
∣∣∣c(r)(m, n)∣∣∣2 , (4)

and the combined time-frequency spectrum of M-DGT can
be defined as the arithmetic average of c̄(r)(m, n)

S(m, n) =
1
R

R−1∑
r=0

c̄(r)(m, n), (5)

or the geometric average of c̄(r)(m, n)

S(m, n) =

(
R−1∏
r=0

c̄(r)(m, n)

) 1
R

, (6)

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1.

III. FAST ALGORITHM FOR CALCULATING ANALYSIS
WINDOWS OF M-DGT
The bi-orthogonal condition in (3) can be converted into
matrix form

Hg = v, (7)

where

H =
[
H (0),H (1), · · · ,H (R−1)

]
, (8)

g =
[
g(0)

T
, g(1)

T
, · · · , g(R−1)

T
]T
, (9)

g(r) is a real vector with length L − 1

g(r) =
[
g(r)(0), g(r)(1), · · · , g(r)(L − 1)

]T
, (10)

v is a wa-long real vector with the first element being L/MN
and others being zeros

v =
[
L
MN

, 0, · · · , 0
]T
, (11)

and definingH (r) in (8) as the (ωa)×L matrix, it is composed
by

H (r)
=


h0r,0,0 h1r,0,0 · · · hL−1r,0,0
h0r,1,0 h1r,1,0 · · · hL−1r,1,0
...

...
. . .

...

h0r,ω−1,a−1 h1r,ω−1,a−1 · · · hL−1r,ω−1,a−1

,
(12)

where hkr,m,n = h(r) (mN + k) exp
(
−
j2πnk
a

)
, 0 ≤ k ≤ L−1,

0 ≤ m ≤ ω − 1, and 0 ≤ n ≤ a− 1.
Theorem 1: Let h(r) and ḡ(r), which represent the synthe-

sis and analysis/dual window of DGT with single window,
satisfy following bi-orthogonal relationship

H (r)ḡ(r) = v 0 ≤ r ≤ R− 1. (13)

For any choice of αr ∈ (0, 1)

R−1∑
r=0

αr = 1, (14)

and

g(r) = αr ḡ(r), (15)
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FIGURE 1. Flow processing of proposed approach.

FIGURE 2. Three Gaussian synthesis windows (R = 3, L = 256).

then αr ḡ(r) also satisfies the bi-orthogonality condition of (7)
in M-DGT.

Proof: Substituting (15) into (7) leads to

v =
R−1∑
r=0

αrH (r)ḡ(r)

= α0H (0)ḡ(0) + α1H (1)ḡ(1) + · · · + αR−1H (r)ḡ(R−1)

= α0v+ α1v+, · · · ,+αR−1v

= (α0 + α1+, · · · ,+αR−1) v

= v. (16)

Remark 1: In theorem 1, without loss of generality, let
α0 = α1 = · · · = αR−1 = 1/R, one can simplify the original
biorthogonal relationship of M-DGT in (7) and separate it
into R unrelated sub-biorthogonal relationship of DGT.

By using theorem 1, the property of δ(k), and the discrete
poisson-sum theory, (3) can be rewritten as

a
RN

δ(m̄) =
L

RMN

a−1∑
n̄=0

δ(m̄)δ(n̄) exp
(
j2π n̄k ′

a

)

=

a−1∑
n̄=0

L−1∑
k̄=0

h(r)
(
k̄ + m̄N

)
g(r)

(
k̄
)
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FIGURE 3. Analysis windows corresponding to Gaussian synthesis windows under critical
sampling (M = 16, N = 16).

FIGURE 4. Analysis windows corresponding to Gaussian synthesis windows under oversampling
(M = 32, N = 32).

· exp
(
−
j2π n̄k̄
a

)
exp

(
j2π n̄k ′

a

)
=

L−1∑
k̄=0

h(r)
(
k̄ + m̄N

)
g(r)

(
k̄
)

· a
M−1∑
q=0

δ
(
k̄ − k ′ − qa

)
, (17)

where 0 ≤ r < R, 0 ≤ m̄ < ω, and 0 ≤ k ′ < L. For the sake
of simplicity, (17) can be explicitly expressed as

δ(m̄)
RN
=

M−1∑
q=0

g(r)(k ′ + qa)h(r)(k ′ + qa+ m̄N )

=

M−1∑
q=0

g(r)(s+ ta+ qa)h(r)(s+ ta+ qa+ m̄N )

=

M−1∑
q̄=0

g(r)(s+ q̄a)h(r)(s+ q̄a+ m̄N ), (18)

where k ′ = s + ta, s = 0, 1, · · · , a − 1, and t = 0, 1, · · · ,
M−1. Equation (18) can be rewritten and expressed in matrix

form, which is obviously constructed by Ra independent
linear equation sets
Hr

0 0 · · · 0
0 Hr

1 · · · 0
...

...
. . .

...

0 0 · · · Hr
a−1




gr0
gr1
...

gra−1

 = 1
RN


e
e
...

e

, (19)

where grs is aM -long vector,Hr
s is a real matrix of sizeω×M ,

s = 0, 1, · · · , a− 1, and e is a ω-long unit vector

e = [1, 0, · · · , 0]T , (20)

grs =
[
g(r)(s), g(r) (s+a), · · · , g(r) (s+(M − 1)a)

]T
, (21)

Hr
s =


hr,s0,0 hr,s0,1 · · · hr,s0,M−1
hr,s1,0 hr,s1,1 · · · hr,s1,M−1
...

...
. . .

...

hr,sw−1,0 hr,sw−1,1 · · · hr,sw−1,M−1

, (22)

where hr,su,v = h(r)(s + uN + va), 0 ≤ u ≤ ω − 1, and 0 ≤
v ≤ M − 1. For r = 0, 1, · · · ,R− 1, (19) can be split into a
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FIGURE 5. Analysis windows corresponding to Gaussian synthesis windows under oversampling
(M = 64, N = 64).

Algorithm 1 Factorization for Calculating Analysis Win-
dows of M-DGT
1: Input: R,L,N , a, h(0),h(1), · · · ,h(R−1).
2: Output: g(0), g(1), · · · , g(R−1).
3: for r = 0 : R− 1 do
4: for s = 0 : a− 1 do
5: (1) Compute inverse matrix Irs =

(
Hr
sH

r
s
T
)−1

.

6: (2) Calculate the matrix Rrs = Hr
s
T
· Irs .

7: (3) Solve the vector grs =
1
RN · R

r
s · e.

8: end for
9: end for

independent sub-matrix sets

Hr
sg
r
s =

1
RN

e. (23)

The least `2 norm solution of (23) can be obtained by [30] in
following

grs =
1
RN

Hr
s
T
(
Hr
sH

r
s
T
)−1

e, (24)

where 0 ≤ 0 ≤ R − 1 and 0 ≤ s ≤ a − 1. In summarize,
the following procedure in Alg. 1 can be concluded from the
basic idea of the above description, which the flow processing
shown in Fig. 1.

Note that: (1) the symbol (a) in Fig. 1 represents the origi-
nal orthogonal relationships of M-DGT with the number of R
analysis windows can prove to be equivalent to R independent
orthogonal relationship of DGT; (2) the symbol (b) in Fig. 1
denotes the each independent orthogonal relationship of DGT
can be decomposed into a certain number of unrelated sub-
orthogonal relationships; (3) the symbol (c) in Fig. 1 indicates
the s-th sub-sequences of r-th sub-analysis window can be
computed by unrelated sub-orthogonal relationships; (4) the
symbol (d) in Fig. 1 shows the r-th analysis window can be
solved by a sub-analysis window sequences; (5) the symbol
(e) in Fig. 1 represents the analysis windows of M-DGT can
be obtained by R independent analysis window of DGT.

TABLE 1. A detailed comparison of computational complexity between
proposed approach and others.

IV. COMPLEXITY COMPARISON AND EXPERIMENTS
A. COMPUTATIONAL COMPLEXITY ANALYSIS
Because the original orthogonal relationship of M-DGT can
be decomposed into R independent orthogonal relationship of
DGT, the computational complexity of proposed approach for
solving analysis windows inM-DGT is equivalent to the com-
plexity of the total R unrelated orthogonal relationship equa-
tion sets of DGT for computing analysis windows. A detailed
comparison of the proposed algorithm and the existed canon-
ical algorithms [4], [7] has been given in Table 1, which
obviously shows that the computational complexity of the
proposed approach is lower than that of the others under the
critical sampling case and the oversampling case. By using
the formula in Table 1. the total number of multiplication
times between proposed algorithm and existing canonical
algorithms are compared in Table 2.

B. NUMERICAL EXAMPLES
Example 1: To verify the effectiveness of the proposed algo-
rithm for computing analysis windows of M-DGT, three
Gaussian synthesis windows h(r)(k) is given in (25) and
shown in Fig. 2

h(r)(k) =
1

σr 0.25
exp

(
−
[k − 0.5(L − 1)]2

2σr

)
, (25)

where 0 ≤ r ≤ R − 1, 0 ≤ k ≤ L − 1, L = 256, and
σ = [σ0, σ1, σ2] = [16, 64, 512]. The analysis windows
in Fig. 3-5, corresponding to the synthesis windows in Fig. 2,
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FIGURE 6. (a) A speech signal x1(k). (b) The Fourier spectrum X1(ω) of x1(k). (c) The combined
Gabor time-frequency spectrum of x1(k) by using a narrower analysis window and a wider
analysis window.

were computed under the critical sampling case and the over-
sampling case. Fig. 3 shows the analysis windows under the
critical sampling case with M = 16 and N = 16. Fig. 4-5
show the analysis windows under the oversampling case with
the oversampling rate β = 4 (M = 32, N = 32) and β = 16
(M = 64, N = 64).

Example 2: Fig. 6(a) and Fig. 6(b) show a speech sig-
nal x1(k) with L = 2048 samples, 256ms of the word
‘‘yes’’ spoken by a man, and its Fourier spectrum X1(ω).
Because the speech signal x1(k) contains multiple time-
varying frequency including transient and tone components,
the traditional Fourier transform can not process it in an
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FIGURE 7. (a) A transient signal x2(k) composed of four transients. (b) The Fourier spectrum
X2(ω) of x2(k). (c) The combined time-frequency spectrum of x2(k) by using a narrower analysis
window and a wider analysis window.

effective manner as displayed in Fig. 6(b). The com-
bined time-frequency spectrum of M-DGT of x1(k) shown
in Fig. 6(c), computed by M-DGT with the narrower analysis
window and the wider analysis window, permits good time
resolution and high frequency resolution, where the parame-
ters are set as R = 2, M = 128, and N = 256.

Example 3: Fig. 7(a) shows a transient signal x2(k) con-
sisting of four transients with length L = 1024 points
which is sampled at 128Hz and its Fourier spectrum X2(ω)
given in Fig. 7(b). Because the transient signal x2(k) contains
four transients and each of them has a single frequency
and an arrival time, the traditional Fourier transform insuf-
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TABLE 2. A detailed numeric comparison of multiplication times between proposed approach and others.

ficiently analyzes it as shown in Fig. 7(b), which only detects
two frequencies information but fails to extract local time-
varying frequencies. By using a narrower analysis window
and a wider analysis window in M-DGT, the combined time-
frequency spectrum of M-DGT of x2(k), shown in Fig. 7(c),
is displayed with high time and frequency resolutions, where
the parameters are set as R = 2, M = 512, and N = 512.
From the above examples, we can reach the conclusion

that the analysis windows in M-DGT play an important
role in time-frequency analysis, which is essential to study
an efficient method for computing the analysis windows of
M-DGT.

V. CONCLUSION
By converting the original bi-orthogonal relationship matrix
of M-DGT into several independent orthogonal relationship
matrix of DGT, an effective algorithm for computing anal-
ysis/dual windows of M-DGT was presented. The orthogo-
nal relationship matrix of DGT, derived from bi-orthogonal
relationship of M-DGT, can be simplified and expressed as
equivalent form of a group of linear equations, which can
be fast solved by sub-equation sets. The computational com-
plexity analysis and comparison indicate that the proposed
algorithm for computing analysis/dual windows of M-DGT
is more competitive against others. Numerical results show
that the proposed algorithm can provide an efficient and fast
method for calculating analysis/dual windows of M-DGT,
which can save a large amount of computational time and
memory.
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