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ABSTRACT With the advancement of wireless networking technologies and communication infrastructures,
mobile cloud computing has emerged as a pervasive paradigm to execute computing tasks for capacity-
limited mobile devices. More specifically, at the network edge, the resource-rich and trusted cloudlet system
can provide in-proximity computing services by executing the workloads for nearby devices. Nevertheless,
there are chances for malicious users to generate distributed denial-of-service (DDoS) flooding tasks to
overwhelm cloudlet servers and block computing services from legitimate users. Load balancing is one
of the most effective methods to solve DDoS attacks in distributed networks. However, existing solutions
require overall load information to achieve load balancing in cloudlet networks, making it costly in both
communication and computation. To achievemore efficient and low-cost load balancing, we propose CTOM,
a novel collaborative task offloading scheme to avoid DDoS attacks for secure and sustainable mobile
cloudlet networks. The proposed solution is based on the balls-and-bins theory and it can balance the task
loads with extremely limited information. The CTOM reduces the number of overloaded cloudlets smoothly,
thus handling the potential DDoS attacks in mobile cloudlet networks. Extensive simulations and evaluation
demonstrate that, the proposed CTOM outperforms the conventional random and proportional allocation
schemes in reducing the task gaps between maximum load and minimum load among mobile cloudlets by
65% and 55%, respectively.

INDEX TERMS Load balancing, mobile cloudlet network, task allocation, DDoS attacks.

I. INTRODUCTION
In recent years, with the pervasive proliferation of mobile
devices and the advance in networking technologies, mobile
users are free to enjoy various powerful and functional appli-
cations, such as Augmented Reality, Virtual Reality and
Face Recognition [1]. While these mobile applications are
more and more demanding in computation and resources,
the capacity of smart devices is still constrained. Such that,
most mobile users constantly face with the problems of
resource-exhaustion or energy-drain. To tackle this issue,
cloud computing has been proposed and pervasively used for
processing resource-intensive tasks [2]. However, due to the
long distance between the central servers and mobile users,
there are some inevitable limitations in cloud computing,
such as network latency, signal loss, link noise and transmis-
sion delays [3]. To provide more accessible and distributed

computing services to mobile users, an alternative cloud
computing paradigm has been proposed, i.e., the so called
‘cloudlet’ [4].

A cloudlet is a trusted, resource-rich cluster of servers that
are integratedwithwireless access points (APs), bywhich it is
accessible and connected to nearby mobile users [5]. By pro-
viding seamless access with low-latency and high-bandwidth,
cloudlets can execute computation tasks for mobile users
almost in real time, and thereby significantly improve the
performance of cloud computing [4], [6], [7]. Recent stud-
ies [8]–[11] have focused on mobile cloudlets, which utilize
the multitude of near-user vehicular networks to achieve
more efficient task offloading and processing. There have
been numerous applications including computation offload-
ing [10], [12], path planning [11], energy charging [13] based
on cloudlet infrastructures.
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Despite the rapid development of cloudlets in vehicu-
lar networks [10], [11], [14], the security issues emerge as
mobile cloudlets are generally open and accessible to any
nearby users. Meanwhile, the potential attackers can easily
exploit this vulnerability to launch DDoS attacks against
mobile cloudlets. A typical DDoS attack deploys multi-
ple attacking entities to disrupt normal traffic on targeted
servers, by overwhelming the targets with flooding traffic
flows [15], [16]. Thus, it is essential for service providers
to address the concerns of potential DDoS attacks. However,
in mobile cloudlet networks, it is not practical to apply typical
DDoS detection techniques [17], due to the distributed nature
of networks and dynamic nature of task flows [18]. As mobile
cloudlets travel around variousmetropolitan areas with differ-
ent population density, it is impossible to centrally control the
amount of user task flow to any single cloudlet. Fortunately,
the potential DDoS attacks can be smoothly avoided and
handled through balanced task offloading, as most of tasks
can be concurrently processed by multiple servers among all
the mobile cloudlets. Therefore, the average task response
time is reduced even if there exit DDoS tasks from malicious
users.

Meanwhile, how to achieve load balancing in mobile
cloudlet networks remains a challenge. There are some
studies aiming to address the load balancing issues
in static cloudlet systems, either by strategic cloudlet
placement [5], [19] or by cloudlet-oriented task redistribution
[6], [20]. However, these methods are not applicable in
mobile network scenario, where the cloudlets are enhanced
with random mobility and the network is intermittently
connected. Moreover, some previous studies [12], [21] only
focused on unbalanced offloading problems of cloudlets
without considering any security issues. Indeed, it is quite
daunting to achieve load balancing among mobile cloudlets
as they are purely distributed. Even worse, for each cloudlet,
the load information of its neighbors constantly changes,
making it more costly to collect the overall load information.
Accordingly, two challenges need to be carefully addressed.

First, to address the potential DDoS attacks, the load
balancing should be achieved through collaborative task
offloading. As the mobility of cloudlets can neither be cen-
trally controlled nor predicted, it is hard to constantly redirect
an exact amount of task flow from one cloudlet to another.
Fortunately, it is possible for encountering cloudlets to collab-
oratively offload tasks to each other with shared load informa-
tion, thus handling the possible attack tasks on overwhelmed
cloudlets.

Second, the balanced task allocation in securing cloudlet
networks should be low-cost and light-weight in communica-
tion and computation respectively. It is impractical to query
global load information in mobile cloudlet networks. Even
if it can be achieved, the accumulative communication cost
on the overall network would be extremely high. Moreover,
with transmission delays, the out-sync load information may
lead to wrong task offloading decision to already overloaded
cloudlets.

In this paper, to deal with the aforementioned challenges,
we propose CTOM, a novel Collaborative Task Offloading
scheMe for secure and sustainable mobile cloudlet networks.
CTOM leverages the balls-into-bins theory [22] to fit the
distributed task allocation scenario in mobile cloudlet net-
works. Based on the ‘two-choice’ [23] paradigm, by querying
load information only from two randomly selected neighbors,
cloudlets can process well-balanced task offloading. Accu-
mulatively, every long task queue in a cloudlet network will
be significantly reduced with high probability. In this way,
the potential DDoS attacks that aim at overwhelming targeted
cloudlets can be smoothly handled and even avoided.

We summarize the contributions of this paper as follows.

1) We propose a novel collaborative task offloading
scheme for secure and sustainable mobile cloudlet net-
works, where the cloudlets are enhanced with mobility
and intermittently connected. To the best of our knowl-
edge, this is the first work focusing on collaborations
amongmobile cloudlets for secure and sustainable load
balancing.

2) Inspired by the balls-and-bins probability theory,
we propose a novel solution for secure and sustainable
task allocation in distributed mobile cloudlet networks.
By comparing the task load of only two neighbors,
a mobile cloudlet can process balanced task offloading
at low communication cost.

3) In order to validate and demonstrate the effectiveness
of our idea, extensive simulation and trace-based eval-
uation have been conducted. The simulation results
show that, the proposed CTOM algorithm can achieve
exceedingly balanced results in mobile cloudlet task
allocation and perform closely to the optimal allo-
cation. The potential DDoS attacks on overwhelmed
cloudlets are processed and filtered out through the
collaboration of mobile cloudlets.

The rest of this paper is organized as follows.We review the
brief background and related work in Section II. In Section III
and Section IV, we introduce the system model of mobile
cloudlet networks and load balancing problem respectively.
Then, we present CTOM algorithm in details in Section V
and we analyze it theoretically in Section VI.We further eval-
uate the CTOM’s performance with extensive simulation and
trace-driven evaluation in Section VII. At last, we conclude
this work in Section VIII.

II. RELATED WORK
In this section, we first present the background of cloudlet
networks. Then we review the recent literatures of DDoS
attacks and load balancing in mobile cloudlet networks.

A. CLOUDLET NETWORKS
In recent years, as a centralized computing paradigm,
cloud computing systems have been widely implemented
to process tasks and backup data for mobile users [24].
More recently, Satyanarayanan [4] proposed ‘cloudlet’, an
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ubiquitous facility that acts as ‘‘data center in a box’’ to
provide distributed computing services. The cloudlet is in
the middle of a three tiered hierarchy, i.e., mobile devices,
cloudlets and the central cloud. With cloudlets, rather than
requesting services to distant central cloud, mobile users
can leverage in-proximity servers in cloudlets for executing
resource-intensive and energy-consuming tasks. As the com-
munication from the local cloudlet to surrounding users is
usually within one hop access, cloudlets are capable of pro-
viding low latency and high bandwidth network connectivity.
Tasks such as real-time face recognition, object recognition
and high-resolution augmented reality [1] can executed with
fast response time in cloudlet networks [25]. Furthermore,
mobility-enhanced cloudlet systems are also proposed with
the emergence of mobile edge computing, where cloudlet-
integrated vehicles travelling in metropolitan areas to collect
and process tasks from mobile users [7], [14], [26].

B. DDoS IN CLOUD NETWORKS
DDoS attacks in cloud networks are becoming one of the
major security concerns of service providers. The mali-
cious DDoS attacks can destroy the availability of cloud
computing and prevent the legitimate use of computing
services [15]. Researches in cyber security community have
designed various defense mechanisms and solutions against
DDoS attacks [18], which can be categorized as attack pre-
vention, attack detection and attach mitigation and recov-
ery [17]. The attack prevention methods filtered or dropped
the suspected attacker’s requests, through techniques such as
challenge response [27], hidden servers or hidden ports [28]
and restrictive access [29]. In attack detection, the possible
attack signs on the servers are detected and monitored in
terms of performance metrics for further prevention actions.
The attack detection methods can be classified into anomaly
detection [30], source and spoof trace [31], filter-based selec-
tion [32] and strategic resource allocation [33], [34]. In this
paper, we leverage strategic resource allocation method to
balance the task load between overloaded and underloaded
cloudlets. In this way, the attacking DDoS tasks are quickly
processed and filtered out from the cloudlet networks while
overall performance stays sustainable and reliable.

C. LOAD BALANCING IN MOBILE CLOUDLET NETWORKS
Researchers have proposed a variety of game-theoretic
approaches to solve the load balancing problem for dis-
tributed systems, including static load balancing [35],
dynamic load balancing [36], cooperative load balanc-
ing [37], noncooperative load balancing [38], selfish load
balancing [39] and randomized load balancing [23]. Inmobile
cloudlet networks, each cloudlet randomly travels in dif-
ferent areas and their locations are not fixed. Considering
the different population density in each area, the amount of
incoming task flow on each cloudlet usually fluctuate heavily.
Such that, the load balancing problem emerges, where the
cloudlets that frequently appear in high user-density areas are
overloaded with tasks, while the rest of cloudlets at sparsely

populated areas are at underloaded and even idle states. As the
computing resources are not fully utilized in above networks,
the average task response time is dragged down.

Several existing studies proposed different methods to
solve the load balancing problem for statistic cloudlets. The
first approach is strategic cloudlet placement. Xu et al. [5]
proposed a placement strategy for capacitated cloudlets in a
wireless metropolitan area network. Their solution is to min-
imize the cloudlet accessing delay and average task response
time for device users. Jia et al. [6] further formulated an
optimal task redirection problem in static cloudlet systems.
They devised a load balancing algorithm to minimize the
task response time. However, in our scenario, the cloudlets
are enhanced with mobility, so the network connectivity is
intermittent. With task flows from edge devices to cloudlet
continuously changing, the above solutions become incom-
petent. Moreover, Zhang et al. [7] developed an optimal
offloading algorithm for mobile users considering both user
mobility pattern and cloudlet admission control. Jia et al. [19]
further associated the cloudlet placement problem with task
assignment. They proposed a heaviest-AP first algorithm
and a density-based clustering algorithm to balance the
workload among cloudlets. Different from the above works,
in this paper, we explore the opportunity of collaborative
task offloading for load balancing, with the concerns of
DDoS attacks in mobile cloudlet networks. As load balancing
approach does not require any additional security frame-
works, it can reduce the overall cost in addressing DDoS tasks
in mobile cloudlet networks.

III. SYSTEM MODEL
In this section, we introduce the system model in the follow-
ing aspects: network model, cloudlet model, communication
model and task offloading model and attack models.

A. NETWORK MODEL
We start the network model with a set of mobile cloudlets
deployed in a metropolitan area. We assume that K mobile
cloudlets C = {c1,c2,...,cK } are integrated with vehicular
access points(APs), where they communicate with each other
via network connection [6]. It is also assumed that the user’s
applications are dynamically partitioned into offloadable and
executable computing tasks that can be processed by any of
the k cloudlets. As depicted in Fig. 1, while users can offload
computation tasks to any nearby cloudlets, the cloudlets can
locally process incoming tasks or transfer current tasks to
their neighbours in the network.

B. CLOUDLET MODEL
According to [6], for each mobile cloudlet i ∈ {1, 2, ...,K },
we model it aa an M/M/n queue. Each cloudlet i has si
server(s) with the service rate µi. Also, we adopt random
walk to model the mobility of cloudlets, as they randomly
travel in themetropolitan areas. For any cloudlet i, the number
of incoming task offloading from nearby user change con-
stantly. Based on that, Poisson Process is adopted to model
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FIGURE 1. Task offloading scenario in mobile cloudlet networks.

the incoming user tasks [6]. The task arrival rate (frommobile
users) at cloudlet i is λi. Also, to store the arrived tasks
pending for execution, each mobile cloudlet holds a FIFO
task queue Qi = {q1, q2, .., qn}, where the queueing length
is ||Qi||.

C. COMMUNICATION MODEL
Similar to [6], we assume that the mobile cloudlets in this
model are also integrated with wireless access points, which
provides for one-hop, low-latency and high-bandwidth wire-
less access for task offloading. Only when the distance dij
between cloudlets i and j is within the inter-contact range R,
a communication can be established between them [7].
The inter-meeting time of cloudlets ci and cj is denoted
as ti,j. Referring to [40] and [41], ti,j would follow an expo-
nential distribution with a pairwise rate αij, i.e., f (t) =
1
αi,j
e
−

1
αi,j
·t
, t ≥ 0, t ≥ 0. Between any two time interval ta

and tb, the encountering probability of cloudlets ci and cj is
computed as followed:

Pi,j (ta, tb) = e
−

1
αi,j
·ta
− e
−

1
αi,j
·tb (1)

Satyanarayanan et al. [1] conducted several task offloading
experiments in cloudlet networks that connected by WiFi,
where the execution time of offloaded task is approximately
10−4 ∼ 10−2 seconds for applications such as augmented
reality and face recognition. Adding to the round-trip time
(RTT) of wireless transmission (hundreds of milliseconds),
we consider the time interval set in this model is reasonably
long enough for the inter-contact time (including execution
time and RTT). In another word, the task execution results
can be sent back to the corresponding mobile users within
the same time interval [8].

D. TASK OFFLOADING MODEL
In this model, a ‘task’ refers to an application phase that
involves executable codes and offloadable data that can be
processed by any mobile cloudlet [7]. Such that, the total
number of tasks generated from different user’s application
would fluctuate constantly. We address above considerations
by sampling Poisson Process [6] to determine the actual
number of tasks at cloudlet i. We denote λi as arriving task
rate at cloudlet i. We also adopt the percent imbalance metric
η and the statistical moment ϕ from [42] to evaluate the
overall load balancing of task allocation. The above metrics
are calculated as follows:

η =

(
Lmax
L̄
− 1

)
× 100%, ϕ =

1
n

n∑
i=1

(Li − L̄)
3

( 1n
n∑
i=1

(Li − L̄)
2)

3/2

(2)

where Lmax and L̄ are the maximum and average load respec-
tively. The percent imbalance metric measures the severity
of load imbalance, while the skewness provides a detailed
description of load distribution [42].

E. ATTACK MODEL
In the DDoS attack model, the attackers control a group of
compromise mobile devices as a botnet, then they launch
malicious task flooding to nearby cloudlets. The DDoS attack
tasks can exhaust the computing resources and bandwidth
on mobile cloudlets, such that the targeted cloudlets will not
be able to respond to any arrived or incoming legitimate
tasks [17]. In reality, the DDoS attacks could result in service
degradation, bottleneck, system failure and further financial
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loss for cloudlet networks and service providers. In proposed
task offloading model, the incoming user tasks at cloudlet i is
randomly sampled from Poisson process with arrival rate λi.
Base on that, we assume that the potential DDoS attacks can
be revealed by the sampled arrival rates that have extremely
high values. Note that the our main goal is to smoothly
handle and avoid the potential DDoS tasks on the cloudlets
for sustainable network performance, not to detect or trace
any potential DDoS attack.

IV. PROBLEM FORMULATION
The load balancing problem in a mobile cloudlet network can
be formulated as follows.

Given a mobile cloudlet network G with a set of cloudlet
C = {c1,c2,...,cK }, where each cloudlet ci holds a FIFO task
queue in Q = {q1, ...qk} to store the received tasks. Mean-
while, cloudlet i has ni servers with a service rate of µi and
the task arrival rate at the cloudlet ci is λi. Our main objective
is to achieve balanced task offloading and handle potential
DDoS attacks with the following constraints:

1) Due to the mobility of cloudlets, the network is inter-
mittently connected.

2) The differential densities in different areas results in
fluctuant task load at each cloudlet.

3) Because of the distributed network, the task offloading
can only be processed with limited information.

4) For cloudlet ci, the total outgoing tasks should be no
greater than the number of arrived tasks.

5) Every cloudlet aims to minimize its current task load
by offloading its tasks to other cloudlets at each time
interval.

6) The mobile cloudlets in the network will cooperatively
accept tasks from each other.

7) The DDoS attack task are potentially exist, especially
in cloudlets that have extremely heavy task arrival rate.

Above all, we investigate the constraints when offload-
ing tasks among mobile cloudlets collaboratively in wireless
metropolitan area networks. The aim is to solve the following
problems with concerns of DDoS attack tasks:

1) BASIC LOAD BALANCING PROBLEM
In particular, we aim to minimize the overall variance of
task queues in mobile cloudlets to achieve balanced task
distribution, which can be defined as:

Minimize
∑
i∈C

‖Qi − E [Q]‖, µi · ni ≥ λi, i ∈ C, (3)

where the incoming task flow is no greater than the total
service rate at each cloudlet ci.

2) GAP MINIMIZATION AND BALANCE METRIC EVALUATION
The task load gap between the maximum queue and the aver-
age queue is also worth evaluating. Note that the maximum
load Lmax and the average load L̄ both count for the imbalance
metric and statistical skewness in Section 2. The evaluation

of load gap can be described as:

Minimizemax
i∈C
‖Qi‖ − Ei∈C [Qi], µi · ni ≥ λi, i ∈ C, (4)

where the incoming task flow is no greater than the total
service rate at each cloudlet ci.

3) REQUIREMENTS FOR THE LOAD BALANCING
ALGORITHM DESIGN
We aim to propose an efficient task offloading algorithm
for mobile cloudlets. Such that, each cloudlet can have a
relatively equal share of the total tasks. Meanwhile, there are
three basic requirements for designing such an algorithm in
order to solve the above load balancing problem, i.e.,

• The algorithm should be designed to achieve dynamic
load balancing among mobile cloudlets, which means
that the balanced offloading is processed at each time
interval.

• The proposed algorithm should be highly efficient in
regard to cloudlet communication. There should be as
few interactions as possible among cloudlets so as to
achieve low communication overhead.

• The algorithm should be computationally smart. Task
allocation should be processed under simple operations
with collected load information.

• The algorithm should achieve dynamic resource pro-
visioning. The under provisioning resources should be
exploited to efficiently process and filter out the attack
tasks.

Next, we illustrate the solution of a collaborative task load
balancing in order to achieve these objectives.

V. PROPOSE SOLUTION AND ALGORITHM DESIGN
In this work, we adopt the balls-and-bins theory and design a
novel collaborative task offloading mechanism, i.e., CTOM,
to improve the sustainability of cloudlet utilization under
potential DDoS attacks. We assume that cloudlets collabora-
tively process tasks by sharing task load information and the
heavily loaded cloudlets can offload tasks to less loaded ones.
Before describing the details of CTOM algorithm, we first
briefly introduce the balls-and-bins theory.

A. THE BALLS-AND-BINS THEORY
The balls-and-bins model is a classic probability model for
randomized allocation process. Suppose that n balls are to be
thrown into n bins, with each ball choosing a bin indepen-
dently and uniformly at random. Then, the maximum load,
i.e., the largest number of balls in any bin, can be approxi-
mated as [23]:

log n
log log n

. (5)

Now assuming that for each ball, it is placed into the fullest
bin, among d ≥ 2 bins chosen independently and uniformly,
which is called d-choice paradigm. In this case, themaximum
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load is
log log n
log d

+2(1). (6)

The extension of the maximum load problem in balls-
and-bins model is further considered, where m balls are
sequentially placed into n bins with m � n log n. In this
case, for random allocation, the number of balls in the fullest
bin is

m
n
+

√
m log n
n

. (7)

While for d-choice, if m � n log n then the maximum
load is

m
n
+2(

√
m log n
n

). (8)

In this work, the d-choice paradigm is applied to mobile
cloudlet network model, where tasks and mobile cloudlets
are considered as balls and bins respectively. We further con-
clude the theoretical maximum load of random allocation and
d-choice allocation in Fig. 2, and we provide the theoretical
analysis in Section VI.

FIGURE 2. Theoretical results of maximum load in balls-and-bins
problem.

B. ALGORITHM DESIGN
We now illustrate the detailed design in the following
subsections.

1) OVERVIEW
In designing the algorithm, we leverages two properties of
d-choice paradigm with theoretical guarantees. The first is
the power of random choices. Indeed, if we simply apply
two random choices (i.e., d = 2), it can still yield a
larger reduction on the maximum load than just having one
choice. Any additional choice beyond two will also decrease
the maximum load by just a constant factor. The second
is the randomness of selecting d possible offloading targets.
The opportunistic encounter of mobile cloudlets leads to
intermittent connectivity of the network. Such that, for each
cloudlet, its neighboring cloudlets change along with the time
interval randomly and independently.

There are some basic assumptions in algorithm design.
First, we mainly focus on the collaboration among mobile
cloudlets in task offloading. For each cloudlet ci, the incom-
ing tasks from users follow Poisson process with a constant

task arrival rate. Second, we assume that the tasks in the
network are of the same size, so that the final allocation
results can be measured precisely. Third, at each cloudlet
ci, the arrived tasks are stored in the task queue Qi. Fourth,
the time interval is long enough for an inter-contact commu-
nication (including execution time and RTT).

2) ALGORITHM DESCRIPTION
The detailed description for CTOM in Algorithm 1 is

elaborated as follows.

Algorithm 1 The CTOM Algorithm
Input:

Mobile Cloudlet C, Time Interval T, Contact Range R
User Task Flow λi, Number of Servers S, Service Rate
µi

Output:
Task Queue Q, Imbalance Metric and Statistical
Moments

1: Minimize min
∑
i∈C
‖Qi − E [Q]‖ using the d-choice

method.
2: Initialize cloudlet’s location (X,Y)
3: for Interval t = [1 : T ] do
4: Mobile cloudlets perform randomwalk in a metropoli-

tan area
5: Update each cloudlet’s location at the current time

interval
6: Update cloudlet’s load information with λi, qi, µi
7: for Each cloudlet i = [1 : k] do
8: Add user’s task offloading into qi
9: Calculate encounters of cloudlets based on Eq. 1
10: Update neighboring list l(i)
11: if ||l(i)|| ≥ d
12: Select d neighbors randomly and indepen-

dently
13: else if ||l(i)|| ≤ d
14: do d ← d/2 until ||l(i)|| ≥ d
15: end if
16: Select d neighbors randomly and indepen-

dently
17: s← the first selected neighbor in d
18: for v = 2 to d do
19: if qs > qv then s← v
20: end if
21: end for
22: if qi > qs then
23: P← 1− qs/qi
24: qs← ls +W (i) ∗ P
25: qi← li −W (i) ∗ P
26: end if
27: end for
28: end for
29: return Q, η, ϕ
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a: BASIC INPUTS AND OUTPUTS
The basic inputs include the main parameters of the system
model. We input a set of cloudletC , time interval T , the inter-
contact range R for cloudlets. For each cloudlet ci, we have
the user’s task offloading rate as λi, the number of servers si
and the service rate µi. For the simplicity of load balancing
evaluation, the final outputs of the algorithm include a set of
task load queuesQ, and the unbalancedmetric of the network,
denoted as η, and the statistical skewness, denoted as ϕ.

b: EXPLORING OPPORTUNISTIC ENCOUNTERS
In the initializing step, CTOM algorithm first randomly gen-
erates each mobile cloudlet’s initial location. As a new time
interval begins, all the cloudlets will perform random walk,
then the algorithm will update cloudlets’ current locations
and task loads. From each cloudlet ci, according to 1, the
algorithm will firstly check whether there are new mobile
cloudlets falling into its communication range. Then, it takes
a record in neighboring cloudlets list l(i) and calculate the
number of neighbors. If the number of neighbors is greater
than d , the algorithm will apply the d-choice paradigm; oth-
erwise, the algorithm will assign d/2 to d until the value of
d is smaller than the number of current neighbors.

c: TASK OFFLOADING PARADIGM
The proposed CTOM will randomly select d neighboring
mobile cloudlets from the current encountering list, and iter-
atively compare their task load to sort for the least task
queue. For greedy algorithm, it will select all neighbors for
comparison, with cost of higher computation complexity.
Also, the algorithm will check whether the selected neighbor
is appropriate for taking over the task held by the current
cloudlet, by comparing their task load. The proportional algo-
rithm [39] continues to compute the offloading probability
based on the proportion of the task load between the current
cloudlet and the selected cloudlet. When the task allocation
process finishes, the current time interval ends and a new time
interval begins. At last, the imbalance metric together with
statistical moment will be calculated.

VI. METHOD VALIDATION
In this section, we present the claims made in the proposed
load balancing algorithm and provide proofs. First, we give
out the definitions and notations as follows.

We consider a finite task offloading process, where there
are m tasks and n mobile cloudlets. Initially, the mobile
cloudlets are all idle and each of the tasks is allowed to be
offloaded into one of d (d ≥ 2) neighbouring cloudlets
chosen independently and uniformly at random. The arrived
tasks at each cloudlet are stored by FIFO. We denote the
above task allocation process as a (m, n, d)-problem. In our
proof, to make the exposition more clear, we first prove the
case when m = n, and then we can shift the proof to m > n
case.

TABLE 1. Notations and definitions.

Our proposed algorithm CTOM assigns a task j from its
current cloudlet to the cloudlet with lowest load among its d
randomly selected neighbors. Next, we prove the upper bound
of tasks in the fullest cloudlet under CTOM algorithm.
Claim 1: Suppose there are n tasks to be allocated to n

cloudlets. For each cloudlet, it allocates the task to the least
loaded neighbor out of d selected neighbors. Then the upper
bound, i.e., the total number of tasks in the fullest cloudlet
is at most ln ln n/ln d with a high probability. We list the
definitions of variables used in our proof in Table 1).

Proof: The basic intuition of the proof is as follows.
Let pi = M≥i

/
n. For each cloudlet, it offloads the current

task independently and N c
≥k ≤ M c

≥k , then we roughly have
pi+1 ≤ pdi (d is the number of offloading choices), which
shows the decrease in pi is doubly exponential, as long as
M≥i < n

/
2. Obviously, M≥i+1 is based on the condition that

M≥i.
We consider the task allocation process is finite and denote

a binomial and distributed random variable by B(n, p). Then
we start with a standard lemma as follows.
Lemma 1: Let X1,X2, ...,Xn be a sequence of ran-

dom variables with arbitrary values. Let Y1,Y2, ...,Yn
be a sequence of binary random variables, with Yi =
Yi(X1, ...,Xi). If

Pr(Yi = 1|X1, ...,Xi−1) ≤ p,

then we have

Pr(
∑

Yi ≥ k) ≤ Pr(B(n, p) ≥ k).

Similarly, if

Pr(Yi = 1|X1, ...,Xi−1) ≥ p,

we have

Pr(
∑

Yi ≤ k) ≤ Pr(B(n, p) ≤ k).
As the d choices are independent for each task, we have

Pr(Ht ≥ i+ 1|N≥i(t − 1)) ≤ (N≥i(t−1))d

nd .
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We use θi to denote the event of N≥i(n) ≤ αi (αi will be
illustrated in the following steps), which implies that N≥i(t) ≤
αi for t = 1, 2, ..., n).
For i ≥ 1, we consider Yt (t = 2, ..., n) as the serial binary

variables, where Yt = 1 ⇐⇒ ht ≥ i+1 and ν≥i(t−1) ≤ βi.
That is to say, Yt = 1 if the height of the task t is greater

than i+ 1, even the number of cloudlets that have more than
i tasks is less than αi.
We use γj to denote the choices available for the jth ball.

Then, we have

Pr(Yt = 1|γ1, ..., γt−1) ≤
αdi

nd
def
== pi.

Now we apply Lemma 1 to conclude that

Pr(
∑

Yt ≥ k) ≤ Pr(B(n, pi) ≥ k).

Also, when conditioned on θi, we have M≥i+1 =
∑
Yt .

Such that,

Pr(
∑

M≥i+1 ≥ k|θi) = Pr(
∑

Yt ≥ k|θi) ≤
Pr(

∑
Yt ≥ k)

Pr(θi)
.

By combining the above two formulas, we can obtain

Pr(
∑

N≥i+1 ≥ k|θi) ≤
Pr(B(n, pi) ≥ k)

Pr(θi)
.

According to [43] (see Appendix A), the large deviations
in the binomial distribution can be bounded as follows

Pr(B(n, pi) ≥ epin) ≤ e−pin.

Therefore, we can set

αi =


n, i = 1, 2, ..., 5;
n
2e
, i = 6;

eαdi−1
nd−1

, i > 6.

As θ≥6 = {N6 ≤ n
/
(2e)} still holds, for i ≥ 6,

Pr(¬θi+1|θi) ≤
1

n2 Pr(θi)
,

with pin ≥ 2 ln n. Since

Pr(¬θi+1) ≤ Pr(¬θi+1|θi) Pr(θi)+ Pr(¬θi),

we have

Pr(¬θi+1) ≤
1
n2
+ Pr(¬θi).

Let i∗ be the smallest i such that αdi∗
/
nd ≤ 2 ln n/n.

While

αi+6 =
ne(d

i
−1)

/
(d−1)

(2e)d
i ≤

n

2d i
,

we have i∗ ≤ ln ln n
/
ln d + O(1).

As above,

Pr(N≥i∗+1 ≥ 6 ln n|θi∗ ) ≤
Pr(B(n, 2 ln n

/
n) ≥ 6 ln n)

Pr(θi∗ )

≤
1

n2 Pr(θi∗ )
. (9)

Thus, we have

Pr(N≥i∗+1 ≥ 6 ln n) ≤
1
n2
+ Pr(¬θi∗ ).

Finally,

Pr(M≥i∗+2|N≥i∗+1 ≤ 6 ln n) ≤
Pr(B(n, 6 ln n/n)d ≥ 1)
Pr(N≥i∗+1 ≤ 6 ln n)

≤
n(6 ln n/n)d

Pr(N≥i∗+1 ≤ 6 ln n)
. (10)

Based on the Markov inequality [44], we can obtain

Pr(M≥i∗+2 ≥ 1) ≤
n(6 ln n)d

nd−1
+ Pr(N≥i∗+1 ≥ 6 ln n).

By combining the above three formulas, we have

Pr(N≥i∗+2 ≥ 1) ≤
n(6 ln n)d

nd−1
+
i∗ + 1
n2
= o(1). (11)

Note that i∗ ≤ ln ln n
/
ln d + O(1). Then the above proof

shows that, the maximum load achieved by the proposed
CTOM is no more than i∗+2 with a high probability, where
i∗+2 = ln ln n

ln d + O(1).
For the case m > n, i.e., (m, n, d)-problem, if we consider

θi be the event that N≥i(m) ≤ αi and also define pi = αdi
/
nd .

Following the proof for m = n case, we can derive that

Pr(
∑

N≥i+1 ≥ k|θi) ≤
Pr(B(m, pi) ≥ k)

Pr(θi)
.

We suppose that αx = n2/(2em) for special values of x while
θx also holds, i.e.,

Pr(Nx ≥
n2

2em
) = o(1).

Then we can have

αi+x =
n

2d i
(
me
n
)(d

i
−1)

/
(d−1)−d i

≤
n

2d i
.

By continuing as the proof of m = n case, we can obtain that

Pr(M ≥ x + ln ln n
/
ln d + 2) = o(1).

Above all, we show that for m.n.d-problem, the maximum task
queue in any cloudlet is no more then

(1+ o(1))ln ln n
/
ln d + O(m/n). (12)

To this end, we have proved the upper bound of task load
under CTOM. �
Claim 2: The communication cost of the proposed CTOM

(applying 2-choice paradigm) is no more than twice the ran-
dom allocation on a ρ-round (infinite) (m, n, d)-problem.

Proof: For a (m, n, d)-problem, we denote the average
communication cost of our CTOM, the random allocation and
the greedy allocation as CC (m, n), CR(m, n) and CG(m, n)
respectively.
Under the scheme of random allocation, a mobile cloudlet

queries the load information from a randomly selected neigh-
bor within the contact range at each interval (round). Thus,
we have

CR(m, n) ≤ ρn.
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For the case of greedy allocation, a mobile cloudlet queries
the global load information from its neighbors, which results
in a high communication cost as

CG(m, n) ≤ ρ(n− 1)2.

In our CTOM, when applying the 2-choice paradigm,
a cloudlet only queries two randomly selected neighbors.
However, there are chances that only one or no cloudlet is
within the communication range of the current cloudlet. Such
that, no query process happens. So, we have

CC (m, n) ≤ ρ · 2n.

Above all, the communication cost under different task
allocation scheme are ranked as

CR(m, n) < CC (m, n) < CG(m, n),

where CR(m, n) ≤ 2CC (m, n). �
Claim 3: The proposed collaborative load balancing

scheme smoothly handle the potential DDoS attacks on
cloudlets.

Proof: Our solution to DDoS attack can be categorized
as a DDoS aware resource allocation strategy, by which
the overloaded cloudlets collaborate with underloaded and
idle cloudlets for computing resource sharing [17]. Based
on balls-and-bins theory, our solution resolves the potential
DDoS attacks that aim at overwhelming cloudlets with the
guaranteed upper bound of task offloading as proved in
Claim 1. �

VII. PERFORMANCE EVALUATION
The performance evaluation of proposed scheme is twofold.
First, we evaluate the proposed CTOM in a simulated net-
work scenario, where cloudlet encounters are generated from
random walk simulations. Second, we apply the proposed
algorithm to a real-world trace for further evaluations.

A. SIMULATION STUDY
1) BASIC SETUPS
We run the simulation in a 10km2 region, which is of the
similar scale of a city’s central area. Here, we set the number
of mobile cloudlets as 100 and the communication range as
20 metres. The total number of time slots is 600. According
to [6], for each cloudlet i, we set the service rate µi by sam-
pling normal distributionN (2, 1) > 0, and we set the number
of its servers by sampling the Poisson distribution with a
mean of 2. For tasks arriving at cloudlet i, we set task arrival
rate λi by sampling the Normal distribution N (4, 2) > 0.
We consider extreme task distribution that overwhelmed any
cloudlet as the potential DDoS attacks.

Under our CTOM scheme, during each time interval, a
cloudlet first randomly chooses 2 neighbors in its contact
range. After querying and comparing their load states, the
cloudlet offloads a task to the neighbor with less task load,
where the computing complexity in each time interval isO(1).
Similar to [41], we compare the performance of the proposed

scheme with three benchmarks, i.e., random allocation, pro-
portional allocation [22] and greedy allocation.

In the random allocation, a mobile cloudlet offloads tasks
by randomly selecting another mobile cloudlet in its contact
range. Conversely, the greedy allocation method first queries
all load information from its neighbors, and and compares
their task loads then allocates tasks to the optimal cloudlet
(with a computing complexity of O(n)). As for the propor-
tional allocation, the chance for tasks to be offloaded to a ran-
domly selected cloudlet depends on a probability parameter,
which is calculated with task load information.

The simulation programs are all written in MATLAB
codes. We run the programs in a Dell laptop with Intel Core
i5 processor and 8 GB RAM. In general, each simulation
program is executed for 100 times, and we take the average
results as the final performance.

2) OVERALL PERFORMANCE
Fig. 3 plots the overall task allocation results of mobile
cloudlets obtained with our CTOM scheme and the three
benchmark methods, i.e., random allocation, proportional
allocation and greedy allocation. Since the cloudlet’s servers
keep processing tasks, the overall allocation shows the
remaining tasks at each mobile cloudlet. In random alloca-
tion, an adjacent group of cloudlets (ID 18 to 60) are over-
loaded with potential DDoS tasks, where most of their task
loads are more than 10 and up to 24. Such that, the legitimate
tasks can not be processed normally. Meanwhile, the mobile
cloudlets at edge area are loaded with much fewer tasks (aver-
age less than 5) or even at idle state. Similarly, the task alloca-
tion obtained by the proportional allocation is also extremely
unbalanced, where the distribution of overwhelmed (with
over 25 remaining tasks) cloudlets is more sparse. In contrast,
under CTOM and the greedy allocation, mobile cloudlets
are equally allocated with tasks (around or below 10). The
proposed CTOM outperforms the conventional random and
proportional allocation schemes in reducing the long task
queues by 65% and 55% respectively. In this way, the poten-
tial DDoS attack tasks will be effectively processed and

FIGURE 3. Task allocation result.

VOLUME 6, 2018 44183



N. Yang et al.: Novel Collaborative Task Offloading Scheme for Secure and Sustainable Mobile Cloudlet Networks

filtered out from the cloudlet network. Fig. 4 demonstrates
the task allocation performance of the four methods in cumu-
lative distribution. Under the schemes of random allocation
and proportional allocation, about 30% mobile cloudlets are
allocated with more than 10 tasks, which will affect the
overall task response time. Meanwhile, our CTOM performs
closely to the greedy method in balanced task offloading,
where nearly 90% cloudlets are with task load under 10 and
55% cloudlets are offloaded with 5 to 10 tasks.

FIGURE 4. The distribution of task loads obtained with the four schemes.

We further evaluate the task offloading performance using
the imbalance metric [42], and the imbalance percentage
and statistical skewness are calculated as in 2. The lower
imbalance metric means the better balance performance in
task allocation, i.e., lower ratio of maximum and average
task loads. From Fig. 5, it is obvious that the greedy algo-
rithm achieves the best performance in terms of imbalance
metric, which converges to almost 0. The imbalance met-
rics of our proposed CTOM and the proportional allocation
scheme converge to 0.1 and 0.25 respectively. The random
allocation scheme performs worst with imbalance metric
0.5. Meanwhile, Fig. 6 shows the statistics of the skewness
obtained by the four schemes, where a positive or nega-
tive skewness indicates that the quantities of the mobile
cloudlets having a higher or lower task load than aver-
age respectively. In Fig. 6, we can observe that the greedy
allocation and our CTOM have both achieved the ultimate
skewness values at about 0, which means that there are few
cloudlets with an unbalanced load. As a contrast, the propor-
tional method has a skewness of 2, and the random alloca-
tion’s skewness fluctuates violently in negative range (from
−10 to 0), which means there exist many mobile cloudlets
with much lower task load than the average. For propor-
tional allocation, the skewness varies from about 4 to 1,
revealing that there are also many overloaded mobile
cloudlets.

3) ANALYSIS ON PARAMETERS
We further evaluate the influence of the d in d-choice as well
as the value of the inter-contact range on the load allocation

FIGURE 5. The imbalance metrics obtained with the four schemes.

FIGURE 6. The statistical skewness metrics obtained with the four
schemes.

performance. Firstly, we show the task offloading results with
a contact range from 10 meters to 50 meters in Fig. 7. It
is quite obvious that when the contact range increases, the
tasks in random allocation are more centralized at a few
mobile cloudlets, resulting in an unbalanced task distribution.
Also, the proportional method performs poorly for all contact
ranges, where a great number of cloudlets are overloaded
(with up to 30 tasks) or at idle. The performance of CTOM
and the greedy method are sustainable, where the overall
task allocation is balanced and well distributed (most of
cloudlets are with around 10 tasks). Secondly, we investigate
the number of choice d . In Fig. 8, we plot the CDF of task
allocation results with different values of d . From Figs. 8(a)
to 8(b), the CDF lines of all methods pull back (maximum
load decreases) as d increased. With greater values of d ,
in each time interval, one mobile cloudlet may have more
options to offload its tasks, which results in a sustainable task
allocation. The above simulation results demonstrate that, the
proposed CTOM can achieve balanced task allocation, in this
way, the overall tasks can be processed concurrently. Such
that, CTOM improves the utilization efficiency of mobile
cloudlets and shortens the task response time, thus handling
the potential DDoS attack tasks smoothly.
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FIGURE 7. Load analysis with the inter-contact range r ranging from 10–50. (a) contact range=10. (b) contact range=20.
(c) contact range=30. (d) contact range=50.

FIGURE 8. FIGURE 8: Load analysis with the number of choices d ranging from 4–16. (a) d=4. (b) d=8. (c) d=16.

B. TRACE-DRIVEN EVALUATION
We further explore the balanced task allocation in trace-
driven evaluation. We use a mobility dataset called Roller-
Net [40]. The RollerNet was collected in a 15000 people
participated rollerblading tour in Paris, France. The
rollerblading tour lasted for three hours and travelled
20 miles, covering the major metropolitan area in the city
of Paris.

1) BASIC SETUPS
Our real-world evaluation is based on the real-world trace
dataset for mobility-enhanced cloudlets, named as RollerNet,

which includes the traces of opportunist sightings by wireless
networking nodes called iMotes. The iMotes were distributed
to a group of people to collect any opportunistic sighting
of other mobile devices (including the other iMotes) via
Bluetooth. We drew a sample diagram of iMote deployment
as depicted in Fig. 9(a), where totally 62 skaters are equipped
with iMotes and they were divided into 6 groups at different
regions in the roller crowd. In this evaluation, we consider
each iMote as a mobile cloudlet that can remotely execute
computing tasks for mobile users. For cloudlet iwith a service
rate of µi, we assign the service rate by sampling the normal
distribution N (6, 2) > 0. The number of servers at cloudlet
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FIGURE 9. iMote dataset illustration. (a) Diagram of device deployment in roller tour. (b) The encounter dataset of iMote. (c) The
node-relation graph in iMote trace dataset.

FIGURE 10. Task load results in trace-driven evaluation.

FIGURE 11. Load distribution in trace-driven evaluation.

i is sampled from Poisson distribution with a mean of 3.
The task arrival rate λi follows a normal distribution 0 <

N (18, 6) < si · µi, where si is the number of servers at
mobile cloudlet i. We assume that there are potential DDoS
attackers in this rollerblading tour and the attack tasks are
revealed by the extreme task arrival rate. All the settings are
derived according to [6]. Meanwhile, our evaluation is based
on real-world trace dataset and the cloudlets are enhanced
with mobility.

FIGURE 12. The imbalance metric of different schemes.

FIGURE 13. The statistical skewness of different schemes.

We conduct a twofold pre-processing on the RollerNet
dataset. First, we unify the timing of user encounter records.
By setting a common starting time based on the earliest
record, we convert the duration of all encounters into serial
time slots byminutes. Based on the unified encounter records,
we find that the total inter-contact time is 1567−1417 = 150.
Such that, we set the total time interval for task offloading
as 150. Second, we plot an encounter graph to depict the
frequency of communications among all the iMote skaters
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FIGURE 14. Load analysis in trace-driven with number of choices d ranging from 2–16. (a) d=2. (b) d=4. (c) d=8. (d) d=16.

in Fig. 9(c), and we find that the iMote carriers can be roughly
divided into three groups based on their communication fre-
quency, i.e., active group (with 800-1000 contacts), common
group (with 500-800 contacts) and passive group (with 300-
500 contacts). The above division consist with the formation
of iMote skaters: skater association, staff and a set of friends.

2) EVALUATION PERFORMANCE
Fig. 10 shows the task allocation results in bar graph obtained
on RollerNet. As revealed from this figure, the performance
of our CTOM method is comparable to that of the greedy
allocation, where most of the mobile cloudlets are offloaded
with around 50 tasks.Meanwhile, in random and proportional
allocations, the allocation results are unbalanced with task
loads fluctuating severely among different cloudlets (up to
80 and down to 10). In this case, the extremely overwhelmed
iMotes can be viewed as attacked cloudlets, whose computing
resources have been consumed by DDoS attack tasks.

Fig. 11 illustrates the cumulative distribution of the
task allocation. In random allocation scheme, more than
30% mobile cloudlets have more than 50 tasks and about

30% others are with less than 30 tasks. This unbalance can
result in longer average task response time.Meanwhile, under
CTOM scheme, around 95% of cloudlets are allocated with
30-50 tasks, which means that the cloudlets are collabora-
tively processing tasks and no cloudlets are overwhelmed by
DDoS attack. As the CDF line of greedy algorithm is the most
centralised, it means that the task loads at different cloudlet
only vary within a small range (around 40 to 50).

We further evaluate the percent imbalance metric and
statistical skewness. In Fig. 12, still the greedy algorithm
achieves the best performance with 0.2 imbalance value, fol-
lowed by CTOM with converged results of 0.5. Interestingly,
random and proportional allocation perform similarly with
imbalance metric around 1, showing that both of methods
are not applicable in the trace-driven scenario. In Fig. 13,
the skewness obtained by the random allocation scheme
fluctuates violently between positive and negative values,
which implies that task loads are continuously unbalanced
throughout the whole process of allocation. The greedy allo-
cation scheme achieves the best performance with a skewness
of 0. While the skewness values of CTOM and proportional
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allocation are 2 and 3, respectively, showing that there are
overloaded mobile cloudlets. We also evaluate the influence
of d on trace-driven task allocation. Interestingly, in Fig. 14,
with d increasing from 2 to 16, the proposed CTOMperforms
more and more closely to the results of greedy method, with
most of mobile cloudlets offloaded with 40 to 50 tasks.

The above simulation and evaluation results validate the
effectiveness of proposed CTOM in balancing task loads
among mobile cloudlets. Under CTOM, the total number of
overloaded cloudlets are significantly reduced and the gaps
between the longest and the shortest task queues are also
narrowed. In this way, the DDoS tasks can not overwhelm
any cloudlet to prevent legitimate users from accessing com-
puting resources. In summary, CTOMcan efficiently tame the
potential DDoS attacks to achieve secure and sustainable task
offloading.

VIII. CONCLUSION
In this paper, we have addressed the DDoS attack problem in
mobile cloudlet networks with load balancing. By leveraging
balls-and-bins theory, we have devised CTOM, a novel col-
laborative task offloading scheme for secure and sustainable
mobile cloudlet networks. The proposed solution can effec-
tively reduce every long task queue in task allocation process
and query only limited load information from cloudlets. The
simulation and trace-driven evaluation results have demon-
strated that, CTOM outperforms the conventional and pro-
portional allocation schemes by 65% and 55% on maximum
task gaps respectively. In this way, the potential DDoS attacks
aiming at overwhelming cloudlets are smoothly handled and
the computing services are guaranteed for legitimate users.
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