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ABSTRACT Changes in motor behavior during aging might be induced by complexity fluctuations in the
neuromuscular system. Most previous studies have been performed based on single-scale entropies. In this
paper, multiscale fuzzy entropy (MSFuzzyEn) was applied to characterize the changes in the complexity
of simulated electromyogram (EMG) signals with the increasing motor unit number and signal-to-noise
ratio. Age-related differences in multiscale complexity during handgrip control were also investigated. Ten
young and 10 older adults were instructed to produce constant forces at 25%, 50%, and 75% of their
maximal grip force with their dominant hands. The grip force and EMG signals of four forearmmuscles were
recorded simultaneously and analyzed usingMSFuzzyEn. The simulation tests revealed that, as the time scale
increased, the interference of noise in the EMG signals decreased. At time scale 1, the complexities of the
force and EMG signals exhibited opposite changes with aging. When the time scale increased, we observed
a loss in complexity with aging in both the force and EMG signals. These results confirmed the merits
of MSFuzzyEn in noise abatement, and implied that entropy at relatively larger time scales might better
characterize EMG signals. Further studies should extend the application of multiscale entropy in pathologies.

INDEX TERMS Aging, complexity, EMG, force, multiscale entropy.

I. INTRODUCTION
Advancing age is always accompanied by a reduced abil-
ity to rapidly and accurately execute movements [1], [2].
Many previous studies have investigated the changes inmotor
behavior that occur with aging. Teeken et al. [1] observed
slower movement times with greater age during upper limb
aiming tasks. As Pohl et al. [3] proposed, age-related move-
ment slowing could be associated with slower feedback pro-
cesses, which might indicate a central processing deficit.
Such deficits in human behavior due to aging have also been
found in reaction times and movement smoothness for both
the dominant arm and the non-dominant arm [4]. Bennettet al.
suggested that older adults generated strategic changes in
movement kinematics to maintain a balance between speed
and accuracy [5]. A previous study also observed that older
adults produce weaker muscle strength compared with young
adults [6]. Additionally, an increase in force variability is

observed during aging [2], [7], [8] and might be associated
with the discharge properties of single motor units (MUs)
[9], [10]. To the extent of our knowledge, kinematic and
kinetic indices characterize external motor behavior, while
EMG signals represent intrinsic muscle activity in the neuro-
muscular system and certainly determine the external motor
behavior. Accordingly, Vaillancourt et al. [11] investigated
the effects of age on force variability and EMG activity
and found that aging has a great influence on both force
variability and the relative powers of EMG signals in different
frequency bands, which might indicate a reduced capacity for
older adults to achieve optimal force control. Based on EMG
analyses, different patterns of muscle activation have been
observed in children, adults, and aged people [12].

Previous studies of age-related changes have found losses
of complexity in the cardiovascular system [13], postu-
ral control [14], finger flexion and abduction [15], [16],
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FIGURE 1. (a) Block diagram of the experimental setup; (b) a normal subject under test.

and muscle activity during treadmill walking [17]. Here,
the entropy index was employed to quantify system
complexity, which characterizes the irregular dynamics of
physiological systems well. A loss in system complexity is
associated with a greater regularity of related signals, which
induces a decline in the entropy value [18]. Since the concept
of entropy was first proposed by Shannon [19], different
entropies have progressively been introduced and applied to
the feature extraction from physiological signals [20]–[25].
Pincus introduced approximate entropy (ApEn) for short and
noisy signals to generate reliable assessments of signal com-
plexity [26]. Later, sample entropy (SampEn) was adapted
from ApEn by eliminating self-matches, which improved the
evaluation of signal complexity and resulted in the mainte-
nance of better consistency under different parameter val-
ues [27]. Chen et al. [28] applied the fuzzy function that
has a soft and continuous boundary instead of the Heaviside
function that has a hard and sensitive boundary, to the mea-
surement of the similarity of vectors, which contributed to the
superiority of fuzzy entropy (FuzzyEn) in terms of robustness
and validity with small parameters [29]. Besides, permutation
entropy [30] and its variants (e.g. dispersion entropy [31])
were proposed to characterize the permutation patterns in a
time series and computationally efficient, whereas its relia-
bility of complexity measurement ‘hasn’t been widely recog-
nized. Thus, FuzzyEn has potential for the characterization of
the complexity changes in noisy and shorter signals from the
neuromuscular system.

To the extent of our knowledge, based on previous entropy
studies, higher entropy values might not result from increased
system complexity, which is associated with the meaning-
ful structural richness of the system [32], but rather from
the interference of uncorrelated noises [33]. Additionally,
previous entropies have been used to quantify the complex-
ity changes at a single time scale, without considering the

factor of time scale [2], [34], [35]. Multiscale entropy (MSE),
adapted from SampEn, extracts more complete features of
physiological signals across multiple time scales through the
coarse-graining procedure [33], and shows that correlated
random signals (e.g. colored noise) are more complex than
uncorrelated random signals (e.g. white noise) [32]. Although
MSE analyses of electroencephalogram (EEG) [36], heart
rate dynamics [13], [37], gait dynamics [17], [38], muscle
fatigue [39] etc. have proved their merits, few studies have
reported age-related changes during handgrip control based
on MSE analysis.

In our study, the effect of multiscale fuzzy entropy
(MSFuzzyEn) on noise abatement was investigated in
simulated EMG signals with different signal-to-noise
ratios (SNRs) and real EMG signals of four forearm muscles.
Moreover, MSFuzzyEn was utilized to detect the age-related
changes in complexity across multiple time scales during
sub-maximal grip force tasks with different force levels. We
hypothesize that MSFuzzyEn has the property of noise abate-
ment and can be utilized to quantify the complexity changes
in force and muscle activities due to aging. This might
contribute to a more comprehensive understanding of the
effect of age on the neuromuscular system.

II. MATERIALS AND METHODS
A. SUBJECTS AND EXPERIMENTAL PROCEDURES
In our study, twenty healthy adults were recruited, and
there were 10 young subjects (5 men, 5 women, mean age:
22±1.26 years) and 10 older subjects (5 men, 5 women; mean
age: 51.7±6.24years). All subjects had written informed con-
sent before participating in the experiment. Ethical approval
of our study was granted by Sun Yat-sen Memorial Hospital.

The experimental setup is displayed in Figure 1. The
subjects were instructed to be seated in a chair besides a
table with their shoulder abducted at 15-20◦ and their elbow
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FIGURE 2. EMG simulation; (a) a 3000-sample simulated surface EMG signal in time domain and frequency domain
(the MU number was 30); (b) the MSFuzzyEns of simulated EMG signals with three different MU numbers; (c) the MSFuzzyEns
of raw simulated EMG signal (the MU number was 30) and simulated EMG signals with different SNRs; (d) the difference in
MSFuzzyEn between the raw simulated EMG signal and the simulated EMG signals with different SNRs. In (b) and (c), the
symbols represent the mean FuzzyEns at each scale for 10 simulated EMG signals, and the error bars represent standard
deviation.

flexed at 90◦. The forearm of each subject was constrained
with a belt to prevent forearm motion. A tele-EMG system
(MyoSystem2400T, Noraxon, USA) was used to capture and
amplify EMG signals with two Ag-AgCl bipolar electrodes
(Noraxon, USA) attached to the belly (center-to-center dis-
tance 2 cm) of each muscle (flexor carpi radialis, FCR;
extensor carpi radialis, ECR; flexor digitorum superficialis,
FDS;extensor digitorum communis, EDC) after the skin was
shaved and cleaned with alcohol. The grip force was cap-
tured with a custom-made grip dynamometer at 1000 Hz and
force transducers (LSZ-F03B, Suzhou Battelle Automation
Equipment Company, Suzhou, China) mounted inside. Then
a data converter (DAQ-6341, National Instruments, Austin,
TX, USA) with a 16-bit resolution was used to sample
the EMG signals and the grip force at 1000 Hz. In front
of each subject, a LabVIEW program (LabVIEW 2012,
National Instruments, Austin, TX, USA) from the computer
screen provided real-time visual feedback. An indicator light
reminded the subjects to start each trial.

After understanding the experimental protocol, the sub-
jects were asked to generate 5-s maximal grip force (MGF)
three times. The largest MGF was used to normalize the

FIGURE 3. A sample of denoised force in three different levels (25%,
50%, and 75% of MGF) from a young subject and an older subject.

grip forces in the sub-maximal force task that included three
different levels (25%, 50%, and 75% ofMGF). Subjects were
asked to achieve the target grip force and maintain that force
for 5 s in each trial. Each subject completed the task three
times at each level and was allowed a 30-s rest after each trial.

45554 VOLUME 6, 2018



Y. Wu et al.: Age-Related Differences in Complexity During Handgrip Control Using Multiscale Entropy

FIGURE 4. The MSFuzzyEn analyses of grip force in the young group and the old group; (a)-(c): the MSFuzzyEns in three different levels
(25%, 50%, and 75% of MGF), respectively; (d)-(e): the FuzzyEns at scale 1 and large scale (τ = 6-10), respectively. The error bars
represent standard deviation. ∗ Statistically significant difference (p < 0.05).

B. MULTISCALE FUZZY ENTROPY
The MSFuzzyEn, which combines multiscale entropy [28]
with FuzzyEn [33], was applied to estimate the complexity
of the physiological signals across multiple time scales. The
algorithm consisted of two steps: (1) generating signals at
different time scales through the coarse-graining procedure
and (2) computing the FuzzyEn values of the signals at each
time scale.

For a given sequence {u (i) : 1 ≤ i ≤ N }, a coarse-
graining sequence yτj =

1
τ

∑jτ
i=jτ−τ+1 ui(1 ≤ j ≤

N
τ
)at time

scale τ can be derived. The coarse-graining sequence at time
scale 1 is the given sequence. As τ increases, the coarse-
graining sequence (N/τ ) has a shorter length.
To compute the FuzzyEn of a given sequence {s (i) :

1 ≤ i ≤ N }, the sequenceXmi = {s (i) , s (i+ 1) , . . . ,
s (i− m+ 1)} − s0 (i) (i = 1, 2, . . . ,N − m + 1) could
be formed, where s0 (i) = 1

m

∑m−1
j=0 s(i+ j). The distance

between Xmi and Xmj (i, j = 1, 2, . . . ,N − m + 1; i 6= j) can
be calculated as follows:

dmij = maxk∈(0,m−1) |s(i+ k)−s0(j)− s(j+ k)−s0 (i)| (1)

The similarity between Xmi and Xmj was defined

as Dmij (n, r) = exp(−
(
dmij /r

)n
), where r was the

width of the exponential function and n determined
the gradient of the boundary. Then, the similarity from

any vector to another was averaged asϕm (n, r) =
1

N−m+1

∑N−m+1
i=1 ln ( 1

N−m+1

∑N−m+1
j=1,j 6=i D

m
ij ). The FuzzyEn of

the given sequence can be estimated as follows:

FuzzyEn (m, n, r,N ) = lnϕm(n, r)− lnϕm+1(n, r) (2)

In this study, m = 2, n = 2, and r = 0.15∗std (signal) was
set referred to our previous work [40], and the maximum
time scale τmax of MSFuzzyEn was set as 10 for reliable
statistics [41].

C. SIMULATION TEST
A simulated surface EMG signal during isometric contraction
was generated by summing up all motor unit action poten-
tial trains (MUAPTs), which consisted of the MUAPs that
differed in duration and amplitude [42]. The MUAP of a
given MU was the summation of its all single fiber action
potential (SFAP). A SFAP could be expressed as follows:

Vf (y0, z0, z)

= K ′K ′′
{
∂(ei)
∂z
·
1
r

∣∣∣∣
s1

+

∫
+∞

−∞

∂2(ei)
∂z2
·
1
r
dz−

∂(ei)
∂z
·
1
r

∣∣∣∣
s2

}
(3)

where the two coefficients K ′ = 2/4πδy and K ′′ =

πd2δi/4; r =
√
(z− z0)2 + δz/δy(y− y0)2 was the dis-

tance between the observation point (y0, z0) and surface
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FIGURE 5. The MSFuzzyEn analyses of the FCR in the young group and the old group; (a)-(c): the MSFuzzyEns in three different levels
(25%, 50%, and 75% of MGF), respectively; (d)-(e): the FuzzyEns at scale 1 and large scale (τ = 6-10), respectively. The error bars
represent standard deviation. ∗ Statistically significant difference (p < 0.05).

element ds; z and y were the axial and radial direction;
δz and δy were the muscle axial and radial conductivity,
ei (z) =

{
768

(
αz3

)
e−2αz − 90

}
/α2was the intracellular

potential, with α = vm/vf ; and s1and s2 were the fiber
sections at the fiber ends. The parameters in this EMGmodel
can be found in previous studies [42]–[44].

The simulated EMG signals were set as 3 seconds
(3000 samples). The MSFuzzyEns of three different kinds of
simulated signals with different active MU number (10, 30,
and 50) were calculated to estimate the influence of the active
MU number. Meanwhile, simulated EMG signals mixed with
different white noises were analyzed to detect the effect of
random noise on signal complexity. The SNR was defined as
follows:

SNR = 10 · lg
{∑

t
y2(t)/

∑
t
x2(t)

}
(4)

where y and x were the raw simulated EMG signal and the
white noise, respectively. A total of 10 simulated signals were
generated for each kind in order to get reliable statistics.

D. DATA PROCESSING AND STATISTICAL ANALYSIS
A 4th-order bandpass Butterworth filter (10-300 Hz) and a
notch filter (50 Hz) were used to filter the real EMG signals.
A low-pass Butterworth filter (20 Hz) was used to filter the
grip force. The 5-s EMG signals and grip force were cut short

with the first and last 1 second abandoned. The MSFuzzyEns
for each group in the different levels at each time scale were
the average of all subjects, and the FuzzyEns at the large time
scale were the summation of scales 6 to 10 [41]. The effects of
aging and force level on the complexity of the grip force and
the EMG signals were assessed using two-factor analysis of
variance (ANOVA, repeated measure). Statistical differences
in the means of FuzzyEn between the young group and
the old group at each force level were assessed using the
independent-sample t test. SPSS21.0 (SPSS Inc., Chicago,
IL, USA) was used to perform all statistical analyses.

III. RESULTS
A. MULTISCALE FUZZY ENTROPIES
OF SIMULATED SIGNALS
As illustrated in Fig. 2a, the simulated surface EMG signal
had a similar frequency range (20-150 Hz) to the real simu-
lated EMG signal [45]. As illustrated in Fig. 2b and 2c, the
FuzzyEns of the simulated EMG signals initially increased
(τ = 1-4, 1-5) and later decreased (τ = 4-10, 5-10)
when the time scale increased. As the MU number increased
from 10 to 50, the simulated EMG signals exhibited larger
FuzzyEn values at the scales 1 to 10. However, as the SNR
decreased, the simulated EMG signals had larger FuzzyEn
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FIGURE 6. The MSFuzzyEn analyses of the FDS in the young group and the old group; (a)-(c): the MSFuzzyEns in three different levels
(25%, 50%, and 75% of MGF), respectively; (d)-(e): the FuzzyEns at scale 1 and large scale (τ = 6-10), respectively. The error bars
represent standard deviation. ∗ Statistically significant difference (p < 0.05).

values at scales 1 and 2 and had similar FuzzyEn values at
the other scales.

B. MULTISCALE FUZZY ENTROPIES OF
GRIP FORCE AND EMG SIGNALS
Fig. 3 displayed that the actual grip force of the young
subject was larger than the older subject in each force level.
As presented in Fig. 4a, 4b, and 4c, a rise in the FuzzyEn of
the grip force was observed when the time scale increased
from 1 to 10. However, as illustrates in Figs. 5, 6, 7, and 8,
the FuzzyEn of the EMG signals (FCR, FDS, ECR, and EDC)
initially rose (τ = 1-3, 1-4, 1-5) and later fell (τ = 3-10,
4-10, 5-10) when the time scale increased.

Statistical analysis revealed that the factor of the group
significantly influenced the mean FuzzyEn of the grip force,
FCR, and FDS at both of scale 1 (p < 0.05) and the large
scales (p < 0.05), while it had no significant effect on the
ECR (scale 1: p = 0.123, large scale: p = 0.407) or EDC
(scale 1: p = 0.192, large scale: p = 0.495). The factor of
the force level significantly affected the mean FuzzyEn of the
FCR at scale 1 (p = 0.004) but did not significantly affect the
mean FuzzyEns of the other signals at any scales.

In Fig. 4d and 4e, the FuzzyEns of grip force in the old
group decreased compared with those in the young group at
scale 1 (25% MGF: p = 0.067, 50% MGF: p = 0.017, 75%

MGF: p= 0.177) and the large scales (25%MGF: p= 0.014,
50% MGF: p = 0.001, 75% MGF: p = 0.205). Regarding to
the EMG signals, there was a rather different result based on
the MSFuzzyEn analysis. Compared with the young group,
the FuzzyEn of the FCR (Fig. 5) in the old group increased at
scale 1 (all levels: p < 0.05) and decreased at the large scales
(25% MGF: p = 0.004, 50% MGF: p = 0.023, 75% MGF:
p = 0.054). Fig. 6d and 6e display similar results which
indicated that compared with the young group, the FuzzyEns
of the FDS in the old group rose at scale 1 (25% MGF:
p = 0.037, 50%MGF: p = 0.127, 75%MGF: p = 0.02) and
fell at the large scales (25% MGF: p = 0.009, 50% MGF:
p = 0.053, 75% MGF: p = 0.395).

IV. DISCUSSION
This study sought to investigate the age-related complexity
changes during sub-maximal force tasks at three different
levels. The MSFuzzyEn was applied to detect the complexity
of the grip force and the surface EMG signals across multiple
time scales.

A. TIME SCALE AND COMPLEXITY
In our previous study, different kinds of physiological
signals, i.e. force and EMG signals, generated rather dif-
ferent MSFuzzyEn values [46]. Compared with the grip
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FIGURE 7. The MSFuzzyEn analyses of the ECR in the young group and the old group; (a)-(c): the MSFuzzyEns in three different levels
(25%, 50%, and 75% of MGF), respectively; (d)-(e): the FuzzyEns at scale 1 and large scale (τ = 6-10), respectively. The error bars
represent standard deviation. ∗ Statistically significant difference (p < 0.05).

force, the EMG signals were weaker, and useful informa-
tion was easily confounded with uncorrelated noises [47].
Costa et al. [32] reported, both uncorrelated random noises
and periodic information could be gradually filtered out of
the original time series with a coarse-graining procedure.
Thus, the decreased complexity of EMG signals with the
increased time scale (τ = 6-10) might have been due to
the noise abatement of the coarse-graining procedure. Similar
downtrend of complexity towards increasing time scale have
been observed in previous studies of EMG signals from leg
muscles [17], spontaneous motor unit discharge patterns [48],
human heartbeat signals [32], and gait dynamics [38]. The
changes in FuzzyEn towards increasing time scales of the
simulated EMG signals were also consistent with those of
real EMG signals. Therefore, the coarse-graining signals
at larger time scales (τ = 6-10) possessed higher SNR
than those at smaller time scales (τ = 1-5), especially for
the electrophysiology signals. As far as we know, 1/f noise
with the property of long-range correlation generated sta-
ble entropy values across multiple time scales [32], [49],
which was rather different from white noise with the prop-
erty of uncorrelation. Thus, noises that could be depressed
after coarse-graining were mainly due to its property of
uncorrelation.

The increase in signal complexity as the time scale
increased (EMG: τ = 1-5, Force: τ = 1-10) could be related
to the decrease in data length. In our previous study, we con-
firmed the superiority of FuzzyEn over other entropies,
whereas we found a minor increase in FuzzyEn with smaller
data samples [40]. As far as we know, the decrease in data
length was an inevitable consequence of successive coarse
graining. Similar phenomena have been found in previous
studies of heart rate signals from healthy adults [33] and EEG
signals from rats [36].

B. AGING AND COMPLEXITY
The age-related decrease in the entropy of the grip force
was associated with the inherent complexity in the human
motor system. In a study of human heartbeat signals, a loss
in multiscale complexity was observed among elderly peo-
ple compared with young people [37]. Previous studies of
postural sway suggested that aging tends to cause a decrease
in the complexity of movement patterns, which, in turn,
would lead to more regular movements [50], [51]. Sosnoff
and Newell [15], and Sosnoff and Voudrie [16] proposed that
the entropy of force output decreases due to aging, which
characterizes the structural changes of force variability during
index finger flexion and abduction . The changes in motor
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FIGURE 8. The MSFuzzyEn analyses of the EDC in the young group and the old group; (a)-(c): the MSFuzzyEns in three
different levels (25%, 50%, and 75% of MGF), respectively; (d)-(e): the FuzzyEns at scale 1 and large scale (τ = 6-10),
respectively. The error bars represent standard deviation. ∗ Statistically significant difference (p < 0.05).

unit synchrony, which refer to the simultaneous discharge of
motor units, might be responsible for the evoked fluctuations
in the structure of force variability [16]. Semmler et al. [52]
demonstrated that elderly people perform worse in adapting
motor unit synchrony to different contraction types, which
could explain the changes in complexity during aging. More-
over, Pincus proposed that the decrease in signal complexity
indicates a reduced coupling between components in the
motor system [53]. Thus, the changes in the complexity of
grip force might indicate a greater independence in single
muscle firing patterns [54].

The multiscale entropy analysis extracted a thorough fea-
ture in the complexity of EMG signals. Similar to our study,
Gu and Dingwell [17] found an increase in neuromuscular
noise during the aging process, which might be the major
factor in the entropy of smaller time scales (τ = 1-5).
Previous studies demonstrated that the entropy of white noise
degrades as the time scale increases [33]. Accordingly, our
simulation tests confirmed that the entropy at smaller time
scales (τ = 1-3) was influenced by random noises, while the
entropy at larger time scales (τ = 4-10) was not. Thus, based
on single-scale entropy analysis, it is difficult to distinguish
the inherent complexity of the neuromuscular system from
uncorrelated noises [33].

Depressing the domination of noise after coarse-graining,
the entropy of EMG signals at large time scales (τ = 6-10)
exhibited a loss in system complexity due to aging, and
similar characteristics have been detected for leg muscles
during treadmill walking [17]. Goldberger et al. [49]

reported, the age-related loss in multiscale complexity might
be associated with the breakdown in the correlation proper-
ties of signals, which indicated a reduction in the adaptive
capacity of individuals. One possible explanation for the loss
in complexity with aging in our study was sarcopenia and
the related loss of motor units [48], [55]. As simulation test
demonstrated, a reduced number of the active motor unit for
the EMG signals evoked a decrease in multiscale entropy.
Based on our previous study, another possible explanation
for the loss of system complexity in the aging process is
the decrease in the firing rate of the active motor unit [40].
The denervation of related peripheral neuromuscular system
might cause the decrease in the number and firing rate of the
active motor unit [56].

C. CLINICAL IMPLICATIONS
The features of intramuscular EMG signals have been
extracted to detect neuromuscular changes due to aging [57],
Parkinson’s Syndrome [58], and other internal factors [59].
As far as we know, the surface EMG signals are simpler
than intramuscular EMG signals, and can be obtained non-
invasively. Previous studies have utilized the EMG amplitude
to uncover the neurological changes that occur during the
aging process [60], but the certainty of the measurements
was highly susceptible to the location of the electrode,
the EMG amplifier, the contact impedance between the skin
surface and the electrode, as well as the uncorrelated noise.
The MSFuzzyEn primarily characterized the internal
irregular changes rather than the amplitude changes, which
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contributed to its superiority [53]. Moreover, at large time
scales, the FuzzyEn could depress the interference of uncor-
related noise. Additionally, the normalization for the EMG
signals was contained in the MSFuzzyEn algorithm; thus,
the experimental procedure and data processing can be sim-
plified. Considering the above points, the MSFuzzyEns of
surface EMG signals is quite promising in the clinical eval-
uation of age-related neurological changes. In future work,
the MSFuzzyEns of surface EMG signals in pathological
conditions deserves to be explored further in its clinical
applications.

V. CONCLUSION
In the current study, the MSFuzzyEn method was applied to
detect the complexity changes in simulated EMG signals with
different MU numbers and SNRs. Age-related differences
during sub-maximal force tasks with three different levels
were also investigated using MSFuzzyEn. As the time scale
increased, the complexity changes of the simulated EMG
signals were consistent with those of real EMG signals, and
the simulation tests confirmed the merits of MSFuzzyEn
in noise abatement. Based on FuzzyEn at large time scales
(τ = 6-10), age-related losses in complexity were observed
in the grip force and EMG signals, which might result from
the modifications of motor unit firing patterns during aging.
Thus, multiscale entropy holds the potential to provide new
insights into neuromuscular changes caused by aging or
disease.
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