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ABSTRACT At least 50% of the world’s elderly population, whose range is fast growing, experience
disturbed sleep. Sleep studies have become an extensive approach serving as a diagnostic tool for health-care
professionals. Currently, the gold standard is polysomnography (PSG) recorded in a sleep laboratory.
However, it is obtrusive, requires qualified technicians, and is time and cost expensive. With the introduction
of commercial off-the-shelf technologies in the medical field, alternatives to the conventional methods have
been conceived to ensure sleep stages and sleep quality detection, which may be now used at home on several
nights. Cardio respiratory and physical activities abide the most promising physiological measurements to
detect sleep stages without complete PSG. The statistically proven impacts and budgets related to sleep
disorders are phenomenal, showing that the field needsmore research. This paper aims at providing the reader
with a multidimensional research perspective by presenting a review of research literature on developments
made in unobtrusive sleep assessment. Additionally, a categorization of current approaches is presented
based onmethodological considerations, from data acquisition frameworks and physiological measurements,
to information processing. Subsequently, limitations and challenges facing current solutions are discussed,
and open research areas are highlighted, which we hope would pave the way for future research endeavors
addressing the question: how to assess sleep stages and sleep quality less intrusively, and reliably?

INDEX TERMS Actigraphy, body movements, patient monitoring, polysomnography, pressure sensor
mattress, cardiac activity, unconstrained sleep monitoring, unobtrusive sleep studies, respiration.

NOMENCLATURE
AASM American academy of sleep medicine
ADC analog-to-digital conversion
AR auto-regressive
AUC area under curve
BPM breaths per minute
BR breathing rate
CPAP continuous positive airway pressure
CPM counts per minute
DI digital integration
ECG electrocardiogram
EEG electroencephalogram
EMG electromyogram

EOG electroocculogram
HRV heart rate variability
HF high frequency
IR infrared
ICSD-3 third international classification of sleep

disorders
LF low frequency
MA moving-average
NIR near infrared
NREM non rapid eye movement
OSA nbstructive sleep apnea
OSAS obstructive sleep apnea syndrome
PIM proportional integrating mode
PSG polysomnography
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PLM periodic limb movement
PLMD periodic limb movement disorder
PLMS periodic limb movement during sleep
PSD power spectral density
REM rapid eye movement
RGB red-green-blue
RBD rapid eye movement behavior disorder
R/K Rechtschaffen and Kales
RLS restless legs syndrome
RRV respiratory rate variability
SA sino-atrial node
SBD sleep breathing disorders
SBSM society of Behavioral Sleep Medicine
SD standard deviation
SDB sleep disordered breathing
SDNN standard deviation of N-N intervals
TAT time above threshold
ToF time of flight
TST total sleep time
ZC zero crossing

I. INTRODUCTION
According to sleep research, the numbers related to sleep
disorders propagation worldwide are becoming phenomenal
with at least half of people over the age of 65 experience
disturbed sleep [1]. This number is expected to fast grow until
at least 2050 with a tendency to continue more, leading to a
solid increase in sleep disorders around the world with further
demanding budgets and care [2]. Researchers have shown the
direct socioeconomic impact on the population and the public
health [3]–[5].

Prevalence linked numbers being said, sleep disorders are
a result of physiological disturbances and an inducing fac-
tor to others, making sleep a very important behaviour to
explore to maintain a healthy well-being and physiological
functions [6], [7].

Although the high spreading and impact of sleep disorders,
a considerable reduced people’s willingness to resorting to
the current medical sleep evaluation is on the rise [8]. The
reasons for that reduction are many, including burdensome
physiological signal acquisition protocols and clinical con-
ditions that constrain both comfort and sleep quality of the
subjects, very high costs for sleep evaluation and long waiting
lists before exam [9].

Therefore the need for less constrained sleep studies
has given rise to a prominent research line through which
researchers have been trying to propose unobtrusive alterna-
tive solutions to the conventional methods. These alternatives
mainly consist of significantly reducing the large number of
sensors attached on the body, and making the signal acqui-
sition process more comfortable by targeting unobtrusively
acquired signals such as breathing, cardiac and movement
activities instead of obtrusive conventional measures such as
electroencephalogram (EEG), electroocculogram (EOG) and
electromyogram (EMG). With the application of unobtrusive
sleep studies, not only comfort, costs and waiting lists are

bound to improve, but also 1) this gives the option to measure
sleep in ecological conditions i.e., at home, with several
nights and 2) being able to reach many more people with
sleep tests which gives an impactful step forward in sleep
research with the collected Big Data. Several algorithms and
hardware have been proposed, implemented, validated, and
some of them have succeeded to reach industrial gates, thus
they can be classified in two groups: industrial and academic.
The concept behind these methods is to monitor a certain
physiological behaviours such as physical activity, heart rate
variability (HRV), breathing rate (BR) or others, and correlate
its evolution with sleep stages occurrence as defined by
polysomnography (PSG), or with general sleep parameters
such as total sleep time (TST), or wake after sleep onset.
However, due to the acquisition process induced challenges
facing signal quality, either one of the proposed unobtrusive
methods has succeeded to join the medico-industrial produc-
tion who’s typical outcome is a validated, widely used, and
class-defined medical device [10], [11].

Advancements in the last decade involved in coming up
with alternative solutions for an unobtrusive sleep assess-
ment have shown that an interdisciplinary collaborative work
is essential. Thus a substantial collaboration abides cru-
cial, combining medicine with engineering to assess medi-
cal and technical constraints arising in hardware integration
and signal acquisition, as well as in various levels of signal
processing and data communication. Previous works have
been focusing on developing unobtrusive sensing devices
and hardware [12]. Thus, several sensing approaches and
sensor types have been conceived and regarded as potential
solutions to specific types of parameters or sleep monitoring
like posture identification applications [13] and sleep/wake
measurement [14]. Although the existing unobtrusive means
for sleep evaluation do not provide the sufficient insight
for rigorous classification of sleep cycling and sleep stage
scoring, yet can give a more general and limited indications
on certain important aspects of sleep such as the physical and
cardiac activities during sleep.

Accordingly, the need is obvious for more advancement in
this field, which requires defining the challenges and oppor-
tunities paving this line of research.

A. RELATED WORKS
The growing interests in monitoring sleep quality and the
large number of emerging devices and technologies related
to unobtrusive data acquisition have inspired researchers for
surveying the in-market devices and their technical character-
istics. For instance Roomkham et al. [16] and Kelly et al. [17]
have classified, based on the measured biological data, some
of the in-market devices and gave a description for each. They
concluded that the majority of existing devices have not been
validated clinically with respect to a golden standard such as
PSG, and hence remain unreliable to some extent. In their
paper, the focus was on what these particular branded devices
can offer, and what their limitations are. Hence, there were
no recommendations, discussions of technical challenges,

45130 VOLUME 6, 2018



G. Matar et al.: Unobtrusive Sleep Monitoring Using Cardiac, Breathing, and Movements Activities

and review of the potential measures and parameters to use
in this line of research, i.e., unobtrusive sleep monitoring.
In other words, the existing devices were reviewed, but
not the theoretical concepts and applied techniques in the
field in general and not limited to some specific devices.
Several works have reviewed the unobtrusive devices for
general patient monitoring including vital signs and physio-
logical parameters surveillance. No emphasis has been given
in particular on sleep monitoring devices or the challenges
faced in acquiring signals during sleep [12], [18], [19].
Werth et al. have reviewed the existing unobtrusive sleep
monitoring techniques that are exclusively used in preterm
infants [20]. The techniques have been classified based on
the hardware acquisition category and reviewed accordingly.
However, due to the physiological differences and specific
characteristics and variables to be monitored, what can
applied to preterm infant sleep can not be generalized or used
for the general population. Hence this survey can serve only
for the preterm infant population.

B. OBJECTIVE, CONTRIBUTIONS AND
STRUCTURE OF THE PAPER
In previous surveys, only devices existing in the market
have been covered. The main objective of this paper is
to present a comprehensive review on the advancements
made in proposing unobtrusive sleep studies as alternatives
to PSG by measuring unobtrusively autonomous physio-
logical functions, i.e., cardiac activity, breathing and body
movements activity. Technical considerations and challenges
encountered in the acquisition and signal processing steps
are discussed while comparing the proposed methods and
algorithms.

Our main contributions can be resumed as follows:
- Exploring the physiological changes during sleep and
their signification with respect to monitoring sleep qual-
ity in a less obtrusive way.

- Surveying the advancements made in unobtrusive stud-
ies but including the studies and the hypotheses made in
research, i.e., behind the industrial scenes.

- Reviewing and discussing the challenges facing the
application of the theoretical concepts, and the potential
solutions that could be applied and tested.

- Comparing different approaches of the same methods,
showing the impact of specific parameterization on the
overall outcome of the system, such as electrodes posi-
tioning or the algorithm type used.

- Identifying the most recent needs and opportunities in
various lines of research and giving recommendations
and remarks for future work.

The structure of the remaining part of the paper can be
resumed as follows: section II gives a brief introduction
to the important notions and facts related to sleep, sleep
disorders and sleep monitoring. The potential biomark-
ers involved in unobtrusive sleep evaluation are described
in section III. Activity and cardiac based unobtrusive
sleep monitoring technologies are reviewed and discussed

in section IV and V, respectively. Open research areas and
a conclusive observation are presented in section VI.

II. AN OVERVIEW OF SLEEP STAGES, DISORDERS
AND MONITORING TECHNIQUES
A. SLEEP STAGES
Sleep is a physiological state defined by specific character-
istics [21]. Being periodic, naturally-occurring, reversible,
recurring and involving suspension or reduction of alertness
and muscular activity, it has been a subject of interest and a
field that encompasses some controversial theories, even the
question ‘why humans need to sleep?’ has not succeeded yet
to obtain a clear consensus from scientists [22].

The sleep architecture is formed by different sleep stages,
each characterized by specific physiological changes. There
are 4 sleep stages: rapid eye movement (REM) sleep, and
three non rapid eye movement (NREM) stages: NREM1,
NREM2, and NREM3 reflecting the progression from lighter
NREM1 to deep NREM3 sleep. In 1968, Rechtschaffen and
Kales (R/K) proposed the ‘‘Manual of Standardized Termi-
nology, Techniques and Scoring System for Sleep Stages of
Human Subjects’’ to score sleep stages based on pre-defined
range criteria of the physiological parameters measured dur-
ing sleep [23]. The American academy of sleep medicine
(AASM) issued the latest version to date (v.2.5.0) of the
manual of sleep scoring and associated events in 2018 that
is based on the R/K and researchers’ recent findings [15].
The manual is continuously hence upgraded. Moser et al.
compared the effects of both scoring systems on the derived
scoring parameters and the overall scoring outcome [24].
Fig. 1 illustrates a brief description of the physiological
changes with respect to each sleep stage, in addition to the
transition-specific physiological changes that are noted dur-
ing transitions between sleep stages. For instance, cardiac,
breathing and body movement activities that could be mea-
sured unobtrusively are shown separately than the conven-
tional polygraphic EEG, EOG and EMG signals that are the
gold standard to score sleep stages to derive the evolution of
sleep stages over time, i.e., sleep hypnogram.

B. THE BURDENSOME IMPACT OF SLEEP DISORDERS
There exist seven major categories of sleep disorders, accord-
ing to the latest and third international classification of sleep
disorders (ICSD-3) [25] published by Sateia in 2014. They
can be classified as follows: 1) sleep-related breathing disor-
ders, 2) insomnia disorders, 3) circadian rhythm sleep/wake
disorders, 4) central disorders of hyper-somnolence, 5) para-
somnias, 6) sleep-related movement disorders and 7) other
sleep disorders. The physiological dysfunctions standing
behind sleep disorders that have been described in the lit-
erature are many. Common are neurological factors such as
narcolepsy and periodic limbmovement disorder (PLMD), or
sleep breathing disorders (SBD) such as nbstructive sleep
apnea (OSA).

The negative physiological impacts of sleep disorders
are serious. Accordingly, studies have shown that a one

VOLUME 6, 2018 45131



G. Matar et al.: Unobtrusive Sleep Monitoring Using Cardiac, Breathing, and Movements Activities

FIGURE 1. Physiological changes during sleep stages in accordance with the AASM [15]. α: Alpha activity (8-13 Hz). TM: Twitches movements.
M: movement of the body. R: Respiration. HR: Heart rate. HRA: Heart rate acceleration. HRV: Reart Rate Variability. SWA: Slow wave activity (0.5-2 Hz).
LVMFA: Low-voltage mixed-frequency activity (2-6 Hz).

night of sleep deprivation can cause impairment to insulin
sensitivity at the same extent as six months of a high-fat
diet [26]. Moreover sleep disorders can alter pain toler-
ance in humans [27], can cause heart dysfunctions such us
ischemic heart disease [28], and cause a wide range of health
issues such as metabolism impairment and hormonal distur-
bances leading to severe physiological alterations and bad
consequences [29].

Not only sleep disorders are known to induce health issues
and have bad physiological consequences [30], [31], but
they are a consequence of physiological disturbances under-
lying behind as well [32]; in other sense, sleep disorders
occurrence could be a manifestation, or a symptom display-
ing autonomous physiological function abnormalities that
if not treated, severe health conditions could arise [33].
Beside health related problems, sleep disorders are shown
to have potential sociological, professional [34], and eco-
nomical [35] impacts on the world population. For instance,
around 150 Million people are estimated to have sleep
disorders. In the united states, 48% report snoring, while
more than 40 000 injuries occur annually due to drowsy
driving [3]–[5]. Motivated by this major prob, numerous
studies were put forward addressing various solutions in order
to make the acquisition protocol during sleep studies less
obtrusive, including home-based solutions, wearable textiles
and electronic gadgets. In the next sub section, we give a
brief classification of the devices types based on their relative
clinical significance, and based on theworld-wide established
medical devices classification [36].

C. STATE-OF-THE-ART SLEEP MONITORING TECHNIQUES
In this subsection, we classify in four categories the devices
currently used in sleep studies in both research and clinic.
Sleep studies are medical examinations performed to evaluate
the sleep quality of people based on scoring schemes. The aim
of sleep studies is to explore a person’s abnormal sleeping
state that is a result of some health issues, and a causation of
others; then they serve as a diagnostic tool and an identifier
for several health problems. Depending on the application,
sleep monitoring devices can be divided in four main types
ranging from 1 to 4. In general terms they can be described
as follows:

- Type 1: trust worthiest among others for sleep diagno-
sis. Operate in attended sleep tests that take place in
clinical places, the most known among them is PSG
(Fig. 2) [37].

- Type 2: being able to carry out the full spectrum of
PSG signals in an unattended signal acquisition pro-
tocol, type 2 devices provide the advantage of longer
term PSG recording, which makes them suitable for
use an important range of sleep disorders, with less but
acceptable rigorousness in the results [38], [39].

- Type 3: unattended, physiological parameters specific,
e.g, respiratory monitoring devices such as continuous
positive airway pressure (CPAP) machines.

- Type 4: unattended, portable non-medical devices deliv-
ering highly unobtrusive measurements at the expense
of accuracy and reliability, also referred to as electronic
gadgets.
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FIGURE 2. Typical acquisition protocol and general workflow in a PSG procedure. The minimal number of wires and sensors
attached to the patient’s body is 22.

Several types of conventional sleep quality assessment meth-
ods exist. Each among them is prescribed depending on the
person’s health status and the aim behind the study. Some are
very specific and designed to measure somnolence and spe-
cific sleep characteritics, they include multiple sleep latency
test [40], Maintenance of wakefulness test [41], and others
are are designed to measure sleep quality in general such as
home-based portable monitor [42] and the most widespread
PSG test [37]. In addition, special sleep studies exist with
a relatively narrow and focused application. Such tests are
only used to deal with specific illnesses; the well known
among them are the tests dedicated to analyze obstructive
sleep apnea syndrome (OSAS) such as CPAP or CPAP Titra-
tion [43], Bi-Level Titration [44], and Split Study for severe
OSAS cases [45]. Moreover, there are some modifications to
the nocturnal PSG test [46] such as the expanded EEG sleep
recording test [47] where a recording of a full montage of
EEG is required to analyze not only sleep disorders but also
the existence of nocturnal seizures, and the nocturnal PSG
Test with End Tidal CO2 [48].

Being the most accurate and trust worthy among all other
means to conduct sleep studies for general sleep disorders,
the PSG abides the decisive and far-reaching approach in
many cases [49]. Fig. 2 illustrates the sensors attached to
the body and the general procedure followed in a PSG test.
During a PSG procedure, the movement of the chest and
abdominal wall, blood O2 saturation, brain and heart electri-
cal activities, eyes movement, respiration, limb and chin mus-
cles activities are measured. Data is partitioned in 30 seconds
epochs based on the criteria defined by the manual to
score sleep stages accordingly [15]. Afterwards, the scoring
results are sent to the physician for interpretation. However it
remains a complex, high demanding and obtrusive procedure
especially for some people having a low requirement or pre-
scription for sleep assessment such as a suspicious diagnosis
that need to be ensured or a minor need for sleep assessment
for a healthy person and mostly for adult and elderly people
that for some reason need to be health-monitored during
sleep such as people having unjustified and frequent laziness,

increased sleep propensity along day, or abnormal sleeping
behaviour.

III. UNOBTRUSIVELY MEASURABLE PHYSIOLOGICAL
PATTERNS DURING SLEEP
During sleep monitoring, it is important to take into consid-
eration the normal sleep patterns, or physiological changes
that are supposed to occur during each of sleep stages,
in order to detect anomalities and irregularities. The brain
provides the most useful information about sleep regula-
tion, it’s the measurement target of EEG recording in PSG
procedures.

However, brain’s electrical activity measurements range in
the order of microvolts, making it harder to measure using
unobtrusive apparatus, i.e., sensors requiring the least contact
with the subject and providing comfort during acquisitions.
On the other hand, since the autonomic nervous system
is highly influenced by the activity of the central nervous
one [50], autonomic physiological functions such as blood
pressure, muscular activity, movements, and the electrical
activity of the heart are affected and alternated by the cen-
tral nervous system. In addition, these autonomic functions
are displayed in ample variations (millivolts for electrocar-
diogram (ECG), movements, or breathing) when compared
with the microvolts EEG’s small amplitude variations, which
makes them less sensitive to noise and more suitable for
unobtrusive measurements apparatus, that require less stable
contact with the body. Hence, unobtrusive sleep monitoring
consists of capturing physiological changes that reflect and
are correlated with the brain activity, but without interfering
with the subject’s comfort during sleep. For instance, vagal
activity related features have been showing potential results
that could lead to a reliable estimation of sleep hypnogram
using unobtrusively acquired physiological signals. The dia-
gram depicted in the Fig. 3 shows three categories of sleep
monitoring methods that will be addressed in this paper. The
target physiological behavior, the acquisition method and
hardware, and the obtained physiological parameters are split
accordingly. In this section, each of the three activity patterns
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FIGURE 3. Unobtrusive sleep monitoring methods.

is described and discussed in details in what is related to sleep
cycles and staging.

A. BREATHING ACTIVITY PATTERNS
Respiratory effort has been used to analyze sleep in humans
using several characteristics such as spectral power features
variations in respiratory rate, respiratory effort signal regu-
larity and auto-similarity [51]. Patterns of body movement
are induced by breathing over time, and they depend on the
posture of the body on the mattress [52]. Therefore, it is
possible to continuously monitor the respiratory movement
to calculate the respiration rate, that is, the number of breaths
per minute (BPM) and other characteristics that reflects the
regularity, depth, and auto-similarity of the signal. Several
aspects make breathing activity a tremendous physiological
behaviour to study during sleep: 1) estimating sleep stages:
respiratory patterns have been shown to vary during different
sleep stages which makes it possible to combine respiration
with other parameters to estimate sleep stages and hypno-
gram, 2) sleep disordered breathing (SDB) are one of themost
widespread sleep disorders and they could be detected and
identified through monitoring breathing, and 3) BR is one of
the five vital signs that provide measurements of the body’s
most basic functions, thus an irregular, increased or decreased
BR may be the symptom of other medical conditions such
as fever or other illnesses, which makes it a very interesting
behavior to monitor during sleep.

Researchers have shown that respiratory rate variability
(RRV) analysis during sleep could give potential insights
on sleep stages. This latter is mathematically modelled

in [53] as following:

RRV = (100−
H1

DC
)%, (1)

whereH1 andDC are the amplitude powers of the first and the
zero harmonic peaks, respectively. For instance, as defined
by (1), RRV is proven to have different values at each sleep
stage, with the lowest occurring at NREM3, followed by
NREM2, NREM1, REM, then wake that has a value that is
highest than all other sleep stages, including REM [53].

During wake, breathing becomes irregular if the eyes are
open, and tend to be more regular by closing the eyes, and
during NREM1. In NREM 2 and 3, the breathing becomes
regular with few disturbances or some variations in rate. In the
REM phase, breathing becomes irregular with short breathing
breaks.

As for the respiratory amplitude, the volume of inhaled air
is more irregular with a smaller tidal volume duringREM than
NREM stages [54].

B. BODY MOVEMENT PATTERNS
Body movements occur during sleep in specific periods, pat-
terns, durations and frequencies, indicating the state of the
person and giving insights on further physiological changes.
The movement information can be analyzed and a variety of
parameters can be derived in order to monitor sleep or give a
diagnosis of sleep disorders.

In this paper, the term body’s physical condition during
sleep is used to designate the dynamism of the body and
limbs in what is related to type, presence or absence of
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dynamism. Specific behaviors characterize a normal and
abnormal body’s physical condition during sleep:

- Normal physical conditions during sleep: includes ran-
dom, periodic and absence of dynamism that occur nat-
urally and are not associated with any disorder, among
them:
– Major body movements: in PSG’s terminology, can

be defined as body movements and muscle activity
that are considered as characteristics of arousals
and used to discern wake periods from sleep. For
instance, if they can obscure the EEG signal for
more than 15 seconds and prevent the identification
of the current sleep stage, the epoch is classified as
a wake state.

– Minor body movements: are lighter body or limb
movements that occur during sleep, and do not
induce an identification of the corresponding epoch
as a wake state. After deep sleep at NREM3, a tran-
sition to lighter sleep stages, NREM2 then NREM1,
is accompanied by the occurrence of possible minor
body movements.

– Periodic movements: periodic patterns of minor
chest movements are induced by breathing due
to the change of the diaphragm’s volume during
the recurring periodic inspiratory and expiratory
phases. An increase, then a pause followed by
a decrease of volume are induced by inspiration,
inspiratory hold and expiration, respectively.

– Body paralysis: during REM sleep, the body and
members undergo a muscular atonia with occurring
muscular twitches, also referred to as paralysis,
which can be used as one of the biomarkers of the
REM sleep state in both conventional and unobtru-
sive means of sleep monitoring.

- Abnormal physical conditions: includes all types of ran-
dom and periodic movements or absence of movements
that are not supposed to occur naturally. These move-
ments are associated with well known disorders and
physiological disturbances, among them REM behavior
disorder where people act their dreams, which could
be potentially dangerous [55]. Another disorder is the
periodic limb movement during sleep (PLMS) that occur
commonly in elder population. Being one of the most
widespread among sleepmovement disorders, it consists
of repetitive movements of the limbs that occur spo-
radically, more often to occur in the legs i.e., periodic
legs movement disorder, than arms i.e., periodic arms
movement disorder, they specially involve extension of
the big toe accompanied by an occasional slight bend
of hip and knee, and dorsiflexion of ankle. They do not
prevent the person from sleeping, however they affect
sleep quality. They can last between 0.5 to 5 seconds
with a period of 20 to 40 seconds that could last between
few minutes to an hour. Although they’re not supposed
to occur naturally, they are not considered as a disorder
unless they affect severely sleep and daily life, then

they are known as PLMD. REM SBD has proven to
have impacts on body movements patterns and muscle
tone [56]. Several other sleep movement disorders exist
such as hypnic jerks, bruxism, rhythmic movement dis-
order and nocturnal leg cramps [57].

C. CARDIAC ACTIVITY PATTERNS
There exists a considerable number of works trying to discuss
and assess the relationship between HRV, or the physio-
logical cardiac changes, and the evolution of sleep stages
[58]–[61]. Authors in [62] and [63] have proven the corre-
lation between EEG power spectrum and HRV, showing that
HRV’s normalized high frequency is linked to EEG’s power
bands, hence sleep stages, and that delta band changes in the
EEG signal is preceded by a parallel changes in the cardiac
vagal activity monitored through HRV frequency domain
analysis. In fact, the aforementioned electro-cardiac changes
are correlated with cycling of sleep stages and could be
measured and evaluated through a HRV analysis, which can
lead to a sleep quality assessment as it will be described in
this section. ECG is currently being used in PSG procedures,
and has been used for decades as a partial measure, and a
part of the combination of signals needed to be acquired and
analyzed. However, for non-diagnosis uses of sleep assess-
ments, i.e., where a general insight on sleep is required, not
detailed diagnosis on cardiac activity, ECG can be used as
a standalone approach along with HRV analysis. Currently
used conductive ECG electrodes requires a direct contact
with the body’s skin that should remain stable all night,
which is a limitation that makes this approach unrealistic for
unobtrusive applications that are often held in non-clinical
conditions. Moreover, tosses involving posture changes are
not allowed during conventional ECG acquisitions. Using
unobtrusive means of acquiring ECG signals can overcome
such weakness and take into account tosses that are a part of
sleep architecture, and can not be avoided, ignored, or even
banned. Moreover, unobtrusive acquisitions allows taking
advantage and exploiting body movements, position changes
and tosses in a way to consider them as an indicator that helps
the sleep assessment not alters it.

1) SLEEP STAGING USING HRV ANALYSIS
HRV analysis consists of assessing how much variability a
time-duration between consecutive heart-beats can undergo
over time [65]. The time interval between two beats is referred
to as R-R interval, or sometimes N-N interval where R is the
peak of the QRS complex, and N is a normal R peak. Several
methods have been employed in the literature to show the
strength of correlation between HRV and autonomic physio-
logical functions [66], [67]. The first to observe beat-to-beat
variability were Hon et al. in 1965 [68]. They noticed that
N-N intervals were the only parametric variation to occur
before a fetal distress. Since then, researchers have been
trying to investigate more in assessing HRV by proposing
hypothesizes to be tested, methods, and algorithms [69].

Different types of HRV analysis methods exist. Time and
frequency methods have been the most widespread among
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FIGURE 4. HRV changes with sleep stages. R-R intervals [ms] plotted over time [min] during: Awake, Light (Including stages 2 or 3),
deep (stages 3), and REM sleep [64].

them, whereas frequency methods have yielded the best
results in sleep staging procedures. Several types of noise
could be found in unobtrusively acquired ECG signals, and
should be taken into account. For instance, applicationswhere
there is no direct contact between the electrodes and the
person’s skin, e.g., capacitive coupling, in which we have to
acquire ECG signals from a subject that is not in a clinical
room, a high input impedance for the system is induced due
to the body-electrode poor contact interface [70].

In an ECG signal, the waves that will be influenced the
most by noise and interferences are the ones having the
least amplitudes. The highest amplitude wave in a normal
ECG pattern is called the R peak. Although these peaks
are modified in shape and amplitude during the process of
unobtrusive signal acquisitions due to the added noise, but
they almost remain detectable and will preserve having the
highest amplitude among other waves in a given pattern.
That explains the fact that HRV computation, or the analysis
of R-R peak intervals, will remain feasible even where the
acquisition protocol is done using the unobtrusive methods
of signal acquisition.

Sleep stages are characterized by a variation of the
cardiac activity. Several studies have explored the feasi-
bility of sleep staging by performing an HRV analysis
e.g., correlating frequency domain parameters with sleep
stages [58], [71].

Moreover reasearchers have reviewed the potential appli-
cation of HRV parameters in clinics by evaluating the clini-
cal validation studies that have been performed to date. For
instance, Stein and Pu [71], have presented a detailed review
of these methods, as well as Smith et al. [72] with respect
to several application including sleep. Even though a number
of validation has already been performed, a research agenda
giving rise to more works and research collaborations with
regard to clinical validation is in the horizon.

Table 1 shows the mean and standard deviation of LF and
HF, that fall in the range of 0.04-0.15.Hz and 0.15 - 0.40.Hz,
respectively [71]. For instance, the wake and REM stages
are characterized by dominance of LF

HF and LF
Total , where total

is the area under the entire power spectral curve (usually
âĽď0.40 Hz) [58]. Hence the frequency domain parameters
changes are due to R-R time interval variations in each of the
sleep stages, as illustrated in Fig. 4.

TABLE 1. Mean (Standard deviation) [s2/Hz] of high frequency (HF) and
low frequency (LF) components power measured during sleep stages [58].

IV. ACTIVITY BASED UNOBTRUSIVE SLEEP
MONITORING TECHNOLOGIES
Acitivity based sleep monitoring methods have been existing
since 1922 [73], among them systems that use slow motion
cinematography [74], motion induced ultrasonic interrup-
tion [75] and many others. In this paper, only the widespread
systems that are still used in modern research and sleep stud-
ies are covered and discussed, i.e., actigraphs, cameras and
infrared (IR). Previous works have tried to compare between
several acquisition methods such as video monitoring and
actigraphy [76] and [77].

A. SLEEP ACTIGRAPHY
Sleep actigraphy consists in recording the body’s movements
during sleep. Depending on the application, the recorded data
can be used to predict some insights on the neurobehavioral
state, infer sleep or discern wake periods. By counting the
number of body movements and assessing their amplitude,
sleep parameters could be estimated using actigraphy such
as quality, latency, duration, efficiency, and fragmentation,
circadian rhythms, sleep and wake periods, and activity lev-
els [78]. The convenience of using actigraphy in sleep studies
is being a low-cost unobtrusive method that could be used
in both clinics and subject’s home. Hence, actigraphy can be
used for acquiring sleep related data in situations where PSG
is logistically impractical, or for long acquisition periods in
the patients home.

When the idea of unobtrusive sleep monitoring using
actigraphy has came out in the early seventies, researchers
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have started using telemetric actigraphy, before switching to
accelerometer-based systems in 1978, as it is the case in cur-
rent systems [79]. Before accelerometer-based, the telemetric
systems consisted of three main units: transmitter, receiver
and the readout unit. The measurement’s target was the iden-
tification of the presence of activity, and the output mainly
consisted of a graph showing the number of activity per
minute, i.e., counts per minute (CPM). In a first study of its
kind, Foster et al. have proposed awrist worn telemetry-based
actigraphic system for measuring sleep quality and biological
rhythms [80]. They derived parameters including sleep onset
and movement’s CPM using the actigraphic system in order
to calculate the correlation between wrist activity and the
subject’s wakefulness as derived from the conventional EEG
system. Interestingly, they obtained promising results in their
work [80] that have been able to improve in their update
work later [81]. Then Kripke et al. have made the transition
to a wrist piezoelectric actigraphy, and recorded 9 hours of
sleeping for 5 normal subjects using the actigraphic sys-
tem and a EEG-EOG-EMG signals combination. The results
obtained have shown a better correlation between actigraphy
and the conventional signals combination for TST, total sleep
period, and mid-sleep awakenings, respectively [79]. Since
then, several works have been trying to explore actigraphy’s
ability in the sleep time parameters estimation [82]–[86]. The
AASM indicates in it’s practice guidelines that actigraphy is
reliable in measuring sleep for healthy adults [87]. Moreover,
actigraphy has proven to be sufficiently sensitive to be used
in more specific applications of sleep studies. For instance,
monitoring sleep changes following treatment for insomniac
patients has been explored in [88] and [89]. In 2015, the
society of Behavioral Sleep Medicine (SBSM) has published
a guide to actigraphy monitoring to assist clinicians and
researchers to use actigraphy, citingmore than 150 actigraphy
based works, including many on sleep applications [90].

Although their usefulness in specific applications, sleep
actigraphy systems have been facing several limitations and
concerns on several levels, i.e., not only the system itself,
but also how it is validated relatively with the conventional
reference systems. As they form the vast majority of systems
used in both research and industry, only concerns and chal-
lenges facing accelerometer-based sleep actigraphy systems
are discussed in this paper.

1) PLACEMENT OF THE SENSOR
most sleep actigraphy systems are watch-like wrist-worn
bracelets that contains an accelerometer and a clock to record
activity patterns. Also, the vast majority are worn by the non-
dominant hand, and this particular placement has proven to
be the most practical for sleep applications while providing
a relatively good sensitivity to mobility. In few applications,
where clinical tests have been conducted to find potential
placements for actigraphic sensors, diaphragm and chest
have shown respiratory induced movements artifacts, which
makes it harder to discern wake states and movements during
sleep [85], [91]. In the same context, the trunk has been tested

by Enomoto et al. to wear an actigraphic sensor and has
shown an improved specificity [92]. Moreover, some actig-
raphy systems are equipped with a light sensor that measures
the ambient light intensity values in Lux in order to assess the
relationship between the activity level of the subject and the
variation of the ambient light [93].

2) N-AXIAL N-SITE MOVEMENTS REPRESENTATION
one of the core properties of an accelerometer is the num-
ber of axis it uses to represent movements. Another feature
of interest, when using actigraphy in sleep studies, is the
number of sites adopted to acquire data i.e., sensors place-
ment or position on the body. The most widespread type
is the one-site, particularly, with that site being the wrist.
Another widespread sensor placement is the ankle that is
mostly recommended and used in pediatric population [94].
Studies have shown that the number of axis and sites used
in accelerometer-based sensing affects directly the movement
detection ability, and hence, sleep and wake detection. Move-
ments having an orthogonal direction to the axis, or low
amplitude movements occuring in other body organs than
the wrist, could remain undetected in uni-axial one-site
accelerometer actigraphy causing aTST overestimation. A tri-
axial multisite accelerometer based actigraphy can be used to
make the activity detection more robust and accurate [95].

3) SENSITIVITY TO DISCERN WAKEFULENESS
one major concern about sleep actigraphy systems is their
sensitivity to discern wakefulness. Many researchers have
been giving insights on the robust system’s ability in the sleep
prediction, which in fact reflects the system’s sensitivity to
immobility. However, it’s the system’s sensitivity to mobility
that matters in the wakefulness detection and separation from
sleep. As a result, the more wakefulness occurs, the more
the results can be erroneous leading to a sleep overestima-
tion [96]. Hence, detecting sleep becomesmore inaccurate for
patients suffering from disturbed sleep, i.e., repeated arousals
and reduced TST [97].

4) DATA QUANTIFICATION MODALITIES
several movement quantification modes have been proposed
and implemented to process acquired data in the existing
actigraphy monitors. Researchers have shown that, given the
same activity pattern, these quantification modes have led to
different quantification of activities [98]. Hence it is proven
that these modalities could not be used interchangeably for
movement quantification. Most common movement quantifi-
cation modalities in actigraphy can be described as follows:

- time above threshold (TAT): consists of counting for
a time epoch, the amount of time during which the
activity level exceeded a custom (age range-specific)
predefined threshold, then storing the sum of counts for
that epoch in memory. A typical value of threshold could
be between 0.1 and 0.2g, where g is the acceleration of
gravity. The process is then repeated for the next epoch
after the counter is reset to zero [99].
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Giving a general idea about the number of movement’s
occurrence during sleep, TAT’s approach suffers from an
insensitivity to movement’s amplitude. Using only the
time during which a movement exists, a small move-
ment period is counted equally as a more intense one.
Moreover, TAT has been shown insufficient inmeasuring
the muscle force induced acceleration, which could evi-
dently result in an incomplete evaluation of the analyzed
activity pattern [100].

- zero crossing (ZC): consists of counting the number
of time the activity level crossed the zero level. The
zero level, or zero-reference, is a predefined threshold
that represents the absence of activity without artifacts.
Thus for each epoch of time, the number of zero-level
crossings is counted and stored. The counter is reset to
zero for the next epoch [101].
Similar to TAT, ZC has the limitation of insensibility
to movement’s amplitude as it cares about the number
of activities regardless of their magnitude. In general,
and especially during sleeping or resting periods, body
movements are known to lay in the lower frequencies
components. However ZC has been shown to favor high
frequency components of the acceleration (activity) sig-
nal that are a prominent source of noise, which leads
to an inaccurate overall activity index, or inaccurate
quantification of movement-induced acceleration [102].

- digital integration (DI): also known as proportional inte-
grating mode (PIM), consists of calculating the area
under curve (AUC) of the acceleration signal for an
epoch of time using numerical integration techniques.
A high sampling frequency is used (typically 40 Hz) in
the analog-to-digital conversion (ADC). Thus the output
count for an epoch is given by calculating the total AUC
for that epoch, which represents the average level of
activity [102]. The advantage ofDI quantification is tak-
ing account of movement’s amplitude during the count-
ing process. Hence it literally performs a movement
quantification technique, by considering the occurrence
and intensity of movements during specific epochs.

- SUMACT: is a particular type of PIM or DI quantifi-
cation that consists of returning data linearly related to
the integrated acceleration over a predefined time epoch
of 1 minute. SUMACT has been used widely in market
actigraphy monitors [103].

- MAXACT: is a particular type of SUMACT that consists
of performing multiple proportional integration on n
sub-epochs belonging to a time epoch, then selecting
the sub-epoch that contains the maximum value. The
most widespread version ofMAXACT are the one having
10 seconds sub-epochs and 1 minute epoch [103].

Furthermore, researchers have compared the utility of
using each of the data quantification modalities in sleep
studies [103]. More specifically, the effect of changing data
quantification modalities on the movement detection has
been explored using wrist actigraphy, and then, the effect
on the accuracy of sleep detection has also been explored.

Results have shown that TAT and ZC have a high cross-
correlation, considerably higher than each’s correlation with
DI. However, DI has shown to yield the best results for sleep
detection accuracy. The concept of DI has been discovered
and suggested to yield better results in sleep studies long
before its application in sleep studies because of its higher
computational cost, when compared to TAT and ZC.

5) VALIDATION OF ASSESSMENT
in several works, authors trying to validate the actigraphy
and its performance to predict sleep-wake periods have been
missing a very important notion in what’s related to the neu-
robehavioral state itself. More particularly, these papers have
used the agreement rate between the outcomes of actigraphy
and electrographic data (EEG, EMG, and EOG) as a criterion
for evaluating how successful the performance is. However,
this requires taking the assumption that electrographic data
provides an alternative of the neurobehavioral state, or is an
exact measure of it, which is not the case, even if researchers
have agreed that the electrographic measures (used in PSG)
are the standards to measure the neurobehavioral states, and
are more sensitive to body movements. This raises concerns
about actigraphic outcomes being judged by PSG’s. Thus
instead of using agreement rate between PSG and actigra-
phy to evaluate actigraphy’s performance in predicting sleep-
wake periods, the evidence requires calculating the correct
classification rate by taking sleep-wake periods as determined
by actigraphy, to the ones calculated by PSG but only the
ones that are correct, i.e., represents the neurobehavioral
state.

6) SCORING ALGORITHMS
in activity level quantification, sleep state scoring is the last
processing level after data acquisition, ADC, pre-processing
and activity counting. It is the step in which a correlation is
established between sleep/wake states and the body activity
level using a threshold-specific decision function by com-
paring the number of activity counts in a time segment to
the threshold itself. Several scoring algorithms have been
proposed in the literature, the most widespread among them
being Sadeh’s [85], and Cole-Kripke’s [84]. Inspired by
Sadeh’s algorithm [85], the general steps for sleep scoring
are given in the current sub-section in order to be used when
reading all the algorithmsmentioned in the Table 2, as they all
follow a common general procedure as follows: 60 seconds
epochs y-axis data is fed to the algorithm in order to give a
sleep/wake classification for each epoch. The scoring proce-
dure is made in three main steps:

- Initialization: parameters are defined and/or set to initial
values, including the index of the current epoch, the win-
dow length (Number of epochs taken in consideration
when counting) and the number of activity counts.

- Counting: the decision function is defined and calculated
using statistical parameters of the activity counting such
as logarithmic values of standard deviation of the num-
ber of counts in a window.
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TABLE 2. A comparison of the main contributions to actigraphiy scoring algorithms.

- Scoring: the value of the decision function is compared
to a pre-defined threshold in order to score the current
epoch by giving it a label, e.g., ‘wake’ or ‘sleep’.

B. SLEEP VIDEO MONITORING
Several types of sensors have been used for video monitor-
ing during sleep studies to monitor different physiological
aspects such as posture, body and limb movements, breathing
activity and the sleep/wake states [118]. Depending on the
application, the targeted measures and the clinical and envi-
ronmental constraints, red-green-blue (RGB), IR, or thermal
cameras are used as a standalone or in combination in the data
acquisition step [118]–[125].

Although its limited clinical application, sleep video
monitoring offers several advantages over other conven-
tional or unobtrusive methods, especially when used for spe-
cific applications such as periodic limb detection.

Some of the main advantages of sleep video monitoring
over conventional methods can be resumed as follows:

- Unobtrusive, requires no direct contact with the subject,
does not induce skin discomfort caused by electrodes,
does not limit or constraint movements, and can be
adopted outside supervised clinical conditions.

- Apart from tibials, where EMG electrodes are
applied [15], some legsmuscles activity are oftenmissed
by EMG. This information is preserved in 3D methods
of video monitoring [110].

- EMG signals are sensitive to tonic muscle contractions
leading to an over detection of limb movements in
most PSG procedures caused by signal deflections over
time. Moreover, an alteration of skin-electrodes contact
causes signal deflections and false movements anno-
tations, which can affect sleep/wake detection and an
overestimation of the periodic limb movement (PLM)
index (number of PLM per hour of sleep time). These
problems can be avoided in video monitoring. Next,
we will present the two widely used video-based moni-
toring methods:

1) POSTURE AND MOVEMENT MONITORING
researchers have been trying to develop and validatematerials
and methods to make video-surveillance a potential solu-
tion for posture and movement analysis and quantification
during sleep. Image processing based approach is essential
to extract the human body from the captured images dur-
ing video-surveillance. Several approaches have been pro-
posed and implemented such as skin and edge segmentation
and skin color detection in order to provide a reliable esti-
mate of sleep/wake states and further sleep parameters and
behaviours such as sleep latency, TST, sleep efficiency, PLM
index and awakenings by detecting and tracking human body
movement [110], [112], [130], [131]. Moreover, some works
have succeeded to reach further levels of sleep analysis by
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TABLE 3. A comparison of the main contributions to video-surveillance of body movements during sleep and the involved physiological behaviors.

providing a relatively acceptable classification of the five
sleep stages in question (N1, N2, N3, W and REM) [132].
Although the advantages this method can provide, it suffers
from weaknesses when used in posture and/or movement
detection. For instance, lower limbs are harder to detect in
some cases such as sleep-monitoring a female wearing a one-
piece sleep dress, or a person covered by a blanket, leading
to a posture misclassification and in some cases, move-
ment underestimation due to undetected limbs, especially
for skeleton-based video tracking. Moreover, the required
vision to detect some joints can be occluded and confusion
may occur for some postures classification as well [133].
Researchers have also been trying to identify posture and
estimate sleep stages using bed sheets containing textile
based pressure sensors [134], [135]. In our previous work,
a support vector machine algorithm has been developed and
tested to automatically identify posture [136]. Unlike other
methods such as camera surveillance, the advantage of such
method is the ability of recognizing posture without inter-
fering with the subject’s comfort. More particularly, some
types of clothes or blankets obstruct the view of cameras and

impact the performance, which is not confronted in pressure
sensor mattresses. Table 3 shows some of the existing video-
surveillance methods that have proven the pertinence of this
line of research in analyzing sleep behaviors especially in
environments where PSG can not be applied.

2) BREATHING ACTIVITY MONITORING
sleep video monitoring has been used to monitor breathing
activity and detect specific breathing disorders [137]. For
instance, the physiological changes induced by breathing,
discussed in section III-A, could be detected via several
methods and algorithms. There exist two main approaches in
the literature to monitor breathing using video surveillance:

- depth information based monitoring, that consists in
dynamically using the skin-IR sensor distance via
points or patches of interest, in order to have a surrogate
measure of the volume change induced by breathing.

- skeleton tracking that consists in detecting joints in the
human body and monitoring their periodic displacement
in the frequency range of respiration in order to correlate
this change with breathing.

45140 VOLUME 6, 2018



G. Matar et al.: Unobtrusive Sleep Monitoring Using Cardiac, Breathing, and Movements Activities

TABLE 4. A comparison of the main contributions to video-surveillance of breathing activity during sleep and the involved physiological behaviors.

Table 4 shows the main contributions made in the field of
breathing activity video monitoring during sleep. It is shown
that applications of such approach vary from simple BRmon-
itoring to more complex behaviors such as inferring apnea
and hypopnea events. Authors in [138] have classified wake,
REM and NREM using respiratory features extracted from
plethysmographic data and achieved an accuracy of 80.30%
with a cohen’s kappa coefficient of κ = 0.65 approximately.
Another approach could be used in unobtrusive monirot-
ing of breathing activity that has been merely explored by
researchers is by dynamically acquiring the body pressure
distribution on the mattress during sleep. We acquired pres-
sure images of the body during sleeping positions at a frame
rate of 10 Hz in order to extract breathing activity information
from the data. The algorithm developed in [136] has been
used to identify sleep posture, and accordingly select a col-
lection of pressure sensors that are believed to be involved in
acquiring the volume changes induced by breathing i.e., the
chest area. Fig. 5 shows a sample of the obtained signal for
dorsal posture.

V. CARDIAC BASED UNOBTRUSIVE SLEEP
MONITORING METHODS
A. HRV ANALYSIS IN SLEEP STUDIES
Researchers have tried to classify sleep stages using several
types of HRV features such as time and frequency domain,

FIGURE 5. Respiratory effort signal derived using a pressure sensor
mattress from a subject sleeping in a dorsal position.

geometric and non linear methods [69], [139]. For instance,
wake andREM stages have been proven distinguishable using
a combination of non-linear features and a global increase
of linear HRV features [140]. Xiao et al. have interestingly
obtained an accuracy of 88.67% with a cohen’s kappa coef-
fitient of κ = 0.7393 while trying to classify three group
of states, i.e., wake, REM, and NREM, using a combination
of 41 features including time and frequency domain, and geo-
metric features [141]. Time and frequency domain features
extraction methods for sleep studies are briefly discussed in
this paper.

1) frequency domain methods: consist in counting and
assigning the number of N-N intervals that belong to
the specific pre-defined frequency ranges.

There exist several methods in the literature that serve
in extracting these parameters, such as the classical
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power spectral density (PSD) estimation (also called power
spectral estimation), Lomb-Scargle periodigram and wavelet
entropy measures [142]. Among them, fast fourrier transform
based methods are the most widespread, and they include
parametric and non-parametric methods.

- non-parametric methods consist in finding a reliable
estimate of the PSD by performing some operations
such as smoothing and averaging, applied directly on
the autocorrelation function of the signal or its periodi-
gram. No prior information or assumption is made on
how the data is produced. Classic methods include The
Barlett [143], The Welch [144] and The Blackman and
Turkeymethod [145]. Being data-driven techniques, non
parametric methods offer advantages such as algorithm
simplicity and computation speed but require the high
amount of data to obtain a consistent HRV analysis.

- parametric methods frequency domain parametric
methods consist in modeling the data as an output of
a linear system that is driven by white noise. Hence,
the estimation problem becomes estimating the model
parameters. The most widespread method consists in
modeling the data using an auto-regressive (AR) model.
Several approaches have been proposed to estimate
the AR model parameters such as Yule-Walker, Burg,
foward-backward least squares andmaximum likelihood
estimators [146]. Alternatives to the AR model include
maximum entropy spectral estimation, moving-average
(MA) and auto-regressive MA estimators [147], [148].
In special cases, e.g., the signal is relatively short, para-
metric methods could yield higher resolutions, lead-
ing to smoother spectral components. One limitation of
these methods is validating the suitability of the chosen
model and model complexity (e.g., order).

2) Time domain methods it is noteworthy that a time-
varying form of AR models has also been used in
time-domain methods [149]. unlike frequency domain
methods, time domain methods for analyzing cardiac
variability consist in calculating statisfical parameters
from the ECG signal over time, hence no signal trans-
formation to frequency domain is required. Although
less used than frequency domain methods in general
sleep stages identification purposes, time domainmeth-
ods have been used for specific applications where
the variation of interests are more ample than those
occurring between sleep stages, such as sleep-related
breathing disorders. For instance, authors in [150] have
used time domain methods to feed a classifier in order
to identify OSAS patients. Computed parameters in
time domain methods include standard deviation of
N-N intervals (SDNN), mean of the standard deviations
of all N-N intervals for the consecutive 5-minutes seg-
ments (SDNN index), square root of the mean of the
sum of the squares of differences between consecutive
RR intervals, standard deviation (SD) of the averages
of N-N intervals in all 5-minute segments, and standard
error of N-N intervals.

B. PRE-PROCESSING, TECHNICAL CONSIDERATIONS AND
CHALLENGES FOR UNOBTRUSIVELY ACQUIRING
ECG SIGNALS DURING SLEEP
Challenges facing the interpretability of the produced signals
during unobtrusive protocols of ECG acquisition and the
technical considerations that should be taken into account in
order to obtain a reliable HRV analysis are addressed in this
section.

- Sampling rate: low or high sampling rate end up with
altering the spectrum; the best range can be set between
250 and 500 Hz and in some cases can be higher [151].
For unobtrusive ECG acquisition during sleep, 360 Hz
has been used by [152] for the electrode placement
shown in the Fig. 7(f). In some cases, specially for long
term applications, sampling rate should be lowered for
several considerations [153]; herein where interpolation
techniques can play an important role in reducing the
error [154]. It has been shown in conventional hard-
ware acquisition protocols that using proper interpola-
tion techniques gives a margin to lower the sampling
rate even to a value of 100 Hz while maintaining an
acceptable error [154].

- Frequency range: high and low cutoff frequencies must
be chosen in a proper way. The choice to be made have
to be based on the hardware specifications, specially the
type of electrodes used for acquisition in such a way the
high cutoff frequency should be lower than the one of
the hardware, otherwise points of interests e.g, peaks
become less recognizable altering HRV analysis. For
instance, instead the common 150 Hz cut-off frequency,
Ricciardi et al. have shown that a better ECG signal
tracing quality could be achieved using a 40 Hz high
cut-off frequency without altering the clinical interpre-
tation of the ECG, making it the lowest acceptable high
frequency [155].

- Duration of ECG recording: depending on each appli-
cation, time of ECG recording required to perform
HRV analysis may vary. Accordingly, the right meth-
ods of HRV analysis are chosen. Usually, comparing
the recording length and the wavelength of the lower
bound, the first should be somewhat 10 times of the sec-
ond [156]. Hence, in HRV-based sleep staging, duration
length related restrictions are satisfactorily met where
the recording is long enough, and the whole night ECG
recording is accounted for in the analysis.

- N-N interval misdetection: during the recording,
an over-detection of N-N intervals may happen due
to technical considerations (software and/or hardware).
The end-reason is the occurrence of peaks in the ECG
signal having amplitudes surpassing the criteria set that
make a peak considered as a component of an N-N
interval or of a peak couple. Usually for diagnosis pur-
poses, or studies involving HRV analysis to sensitively
track variability in the aim of concluding or correlating
with physiological changes, a high accuracy is needed
and such over-detection could be reduced automatically
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by application-specific filters [157] and [158]. Thus
some detected N-N intervals will be filtered out by the
previously mentioned filters. The criteria required for
filtration should be determined depending on several
factors such as the conditions of the recording, the envi-
ronment, the types of errors occurring, the tolerance
required, etc. Such filters are based on static time-
interval thresholding, where the criteria for example
consists of filtering out an N-N interval having one fifth
the time-value of the preceding one. Alternatives can
be adopted for correction whether for automatic filters
used for both long and short term recordings, or manual
inspection, and manual correction of detected peaks for
short-term recording segments [159].

- Results interpretability: several factors determine to
what extent the results are reliable [160]. One important
factor is the analysis domain chosen to elaborate results,
e.g., time or frequency domains. For short term applica-
tions, frequency domain analysis has shown more corre-
lation with sleep stages when compared to time-domain
methods. However, for long-term recording, frequency
domain methods are less reliable than the time-domain
ones. However, an approach that helps leveraging the
benefits of frequency domain methods for long-term
applications, consists in decomposing the long term
measurement’s time in time-equal sequential short seg-
ments, then averaging the individual calculated spectral
components, before correlating with sleep stages [69].
A special case is when the electrical activity of the heart
remains stable or undergoing slight changes in these
predefined short segments, which results in the same
lack of reliability of the main (long-term) recording.

C. SENSING TECHNOLOGY
ECG measurements in sleep studies have been used with
various acquisitions protocols, i.e., electrodes placement,
electrodes types, acquisition environments and applications.
However, each application requires a specific combina-
tion of sensing characteristics depending on several criteria,
such as the parameters of interest and precision tolerance.
Conventional ECG signals acquisition are accompanied by
different types of noises introducing unwanted components
to the data acquired. However, acquiring ECG in unobtrusive
sleep applications consist of measuring these low amplitude
physiological signals while providing the least contact with
the skin of a person sleeping on a mattress, which makes
the measurement subject to a higher amount and new types
of noise when comparing with the conventional methods of
signal acquisition. Hence, specific hardware acquisition is
required to handle these challenges in order to preserve a con-
sistent signal quality, e.g, signal-to-noise ratio. Conventional
types of artefacts accompanying ECG signals include power
line interference, electrode contact noise, movement-induced
noise, high frequency noise, breathing periodic noise. This
section mentions and discusses the sensing hardware that
has been used in unobtrusive sleep assessment procedures,

the limitations of such designs preventing them to reach
industry and what are the missing considerations to make
them more realistic [161].

FIGURE 6. Conductive vs. capacitive coupling in the context of sleep
studies .

1) CAPACITIVE ECG COUPLING
consists in acquiring ECG signals using a conductive elec-
trode (plate), while considering the subject’s skin as the other
parallel conductive plate of a capacitor and his clothes as the
capacitor’s separative dielectric isolator as shown in Fig. 6.
Hence, instead of considering clothes as a barrier to get
the signal, they could be considered as a component of the
electrical coupling. For some sleep monitoring applications
i.e., home monitoring, capacitive ECG electrodes could be a
potential solution since no direct contact with the body (skin)
is allowed. Researchers have explored different scenarios for
capacitive coupled acquisitions on several levels, specially in
what is related to the size of the skin-electrodes region and
electrodes placements [162]–[167].

2) CONDUCTIVE ECG COUPLING
Conductive ECG coupling has been widely used in both
conventional and alternative/unobtrusive methods of sleep
assessments [152], [168], [169]. Although it requires a
direct contact with the skin in order to acquire ECG sig-
nals as shown in Fig. 6, the acquisition protocols in which
it has been employed have helped meeting some unob-
trusiveness requirements in the context of sleep studies.
More particularly, researchers have developed unobtrusive
ECG acquisition scenarios that could meet unobtrusive sleep
requirements by introducing wirelessly connected conductive
and non adhesive electrodes. This could make longterm ECG
acquisition possible by not restraining the subject’s possible
movements or tosses during sleep and avoiding skin irritation
and overnight skin-electrodes contact deterioration.

D. OPTIMIZING THE ELECTRODES MAPPING
ON THE MATTRESS
Based on the priority of the designers, a compromise between
accuracy/SNR, comfort, and autonomy of the system would
constraint the choice of electrodes placement. A previous
work has been focused on the optimization of the electrode
placement for various applications. such as reconstruction
of the image of the electrical activity of the heart [170]
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FIGURE 7. Capacitive electrodes placement on mattress in unobtrusive signal acquisition scenarios.

by optimizing the electrodes placement for multi-channel
electrocardiography. Also with wearable applications, such
algorithms have been applied in order to improve the acute
myocardial infarction detection [171]. In addition, automated
design of ECG measurement systems has been conceived
based on the multiobjective optimization approach [172].
Bipolar measurements optimization using a pair of electrodes
with different locations involving different interelectrode dis-
tances where compared with respect to signal to noise level,
signal strength, and inter-patient deviation [173]. Results
have shown that for non-diagnostic purposes like the detec-
tion of the cardiac beat, the QRS complex remains detectable
even for a one fourth of the standard distance between V1 and
V2. Since the study has been done in a direct skin-electrode
contact acquisition with standard leads, the results do not
accurately describe the case of non-contact ECG acquisitions
used in unobtrusive sleep studies, rather they give a general
idea about the correlation between IED and signal behavior.

E. ECG SIGNAL ACQUISITION IN THE CONTEXT
OF UNOBTRUSIVE SLEEP STUDIES
A wide range of ECG signal processing techniques in the
context of unobtrusive sleep studies exists. In the present
section, the ones that do not require wearable or wired sen-
sors, i.e., implemented on the mattress, are presented and dis-
cussed in what is related to electrodes placements, obtained
results, and impacts or constraints imposed on the subject’s
sleep.

As mentioned before, the choice of the electrodes type
is highly correlated with their positioning and the body
area concerned during the measurement. If the acquisition
involves a direct contact with the skin of the person, then con-
tact electrodes are used, otherwise the use of capacitive elec-
trodes is recommended as they do not require a direct contact
and can handle clothes electrical isolation. In the literature,
two types ofECG sensors positioning were adopted, followed
by differences in materials/types, numbers of electrodes and
contact area size of the electrodes:

- Acquisition using neck and feet region: this type of
electrodes positioning derived from the fact that the
unveiled body parts of a person wearing normal pyjamas
are the hands, face, feet and neck. Being the stable
unveiled regions on the bed, the neck and feet were

chosen to acquire signals from. Even though contact
ECG electrodes are best to be used, however conven-
tional wet or dry direct-contact electrodes such as Ag-
Agcl are out of selection as the acquisition is chosen
to be unobtrusive; hence, capacitively coupled textile
electrodes, i.e., using capacitive electordes plates, are
used in this electrode positioning.

- Acquisition using dorsal-chest region: depending on
the wearing clothes specification, one of the two types
of electrodes has been used in this electrodes position-
ing. For instance, where wearing clothes is prohibited,
direct contact with the skin is allowed, hence conductive
electrodes were used, otherwise capacitively coupled
textile or metal electrodes were used.

In 1993, a first study of its kind has been conducted by Ishi-
jima [174] to acquire ECG signals following this electrodes
positioning. Conductive textile materials were used to per-
form the acquisition. For the sake of comparison, three types
of textiles composed of electrically conductivematerials were
tested in the acquisition process made of carbon fiber, and
nickel plated acrylic fibers where one of them made of span
yarn and the second of single filament, respectively. As shown
in Fig. 7(a), the textile electrodes were placed on the pillow so
positioned under the nape, and on the lower section of the bed
sheet to be under the heel of the person, taking into considera-
tion all the constraints imposed such as the appropriate length
of textiles and the body parts that should remain in the mea-
suring section. However, respiratory-induced artefacts have
not been taken into consideration in his design, because the
ECG acquisition regions were far from the chest area making
the system susceptible to unpredictable and uncorrectable
noise. Hence in 1996, Ishijima [175] added two sheets of
capacitive electrodes under the chest area of the person to
detect the respiratory-induced chest movements through the
alternation of capacitance between the two sheets while keep-
ing the same design for ECG acquisition as the first study.
The change of the capacitance that reflects the respiration
movements is fed to a frequency to voltage converter to mon-
itor the capacitance change continuously. Ishijima’s work has
been the very start in this field of sleep research. Ignoring the
movement’s artefact and not taking any measure to correct
the induced baseline drift makes the system unsuitable to
home applications and daily use.Moreover, the system cannot
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self-adapt with tosses and changes in body position, so ECG
signal alterations for 5-12 seconds were encountered at each
movement. Although such acquisition protocol does not
maintain along the night the necessary accuracy to derive
cardiopulmonary diagnostic data as it was the intended appli-
cation, but it successfully detects the heart rate with a percent-
age of 82 to 93 % during a continuous recording for 7 hours
of sleep.

Devot el al., proposed a similar design following the same
electrodes positioning of Ishijima as shown in Fig. 7(a),
where wearing cloth is permitted for the person [169]. They
evaluated the feasibility of correlating frequency domain
analysis of HRV parameters to sleep staging. Their results,
were promising in terms of percentage of classification
between REM and NREM sleep with an average coverage
of 81.8% over a night recording; however, this evaluation
was based on time segments that do not contain artefacts,
which is unrealistic in real applications where no shielded
rooms are available in homes, so the percentage of coverage
should be measured over all night period without excluding
unwanted segments. In addition, the number of successful
detection of arousals suffers from a high number of under-
estimated instances, again due to the presence of artefacts.
Devot and Ishijima’s works regarding the placement of ECG
were comparable to lead III based on einthoven’s triangle.

Lim et al. proposed another acquisition protocol based
on the capacitive sensing where wearing clothes was
allowed [166]. Attached on the mattress’s chest area, an array
of eight conductive electrodes and a reference electrode sheet
as shown in Fig. 7(c) are involved in conducting a unipolar
measurement for each one of the eight electrodes with respect
to the reference sheet. The system has proved to be good for
HRV analysis with a high coverage of heart rate; drawbacks
are the rigidity of the electrodes array because it was pro-
truded in order to assure more stable and higher contact area
with the subject, causing soreness to the body region involved
in the contact.

Ueno [163] conducted also their experiments based on
three capacitively coupled electrodes. The electrodes place-
ment is shown in Fig. 7(d). The system maintained a good
ECG quality for at least seven hours of sleep. Wu et al.
conducted three types of experiments to evaluate the perfor-
mance of monitoring ECG with different types of postures
for several subjects, and the performance durability on long
term monitoring [165]. The electrodes positioning is shown
in Fig. 7(e) where a unipolar capacitive sensing is adopted
for signal acquisition. High average rate of R-Peaks detection
was recorded during eight hours of sleep, with a root mean
square error of heart beat detection of approximately one
beat per minute. Even though it was not the intended idea
of this work, from a signal quality perspective, it is clear that
the results obtained make the work a promising solution for
capacitive sensing to derive R-Peaks then perform a HRV
analysis in the aim of inferring sleep stages. However for
the perspective of practicality and suitability with real appli-
cations, a major drawback of the system that was not cited

clearly by the authors emerged after modifying the electrodes
size. In the first acquisition protocol proposed, the three
electrodes were covering the whole width of the mattress.
This has led to an important decrease of the QRS amplitudes
detected for some postures and this is mainly caused by the
direct contact of the person’s hand(s) with the electrode sheets
that are meant to be used for capacitive measurement not
conductive one. To solve this problem, the authors reduced
the width of the electrode sheets length to cover a smaller
part of the mattress width to avoid contact with the person’s
hands. However, the previous statement could be considered
as true only if the person was sleeping in the middle of the
mattress with his dorsal-chest region covering the electrode
sheets. If the person was lying on the very right or left
side of the mattress, there is a big chance that his hand(s)
contact again the electrode sheets. So, this update made to
the system enhanced the signal quality while imposing a
constraint on the position and the mobility of the person,
so movements are allowed only while staying in the same
position, whichmakes the system impractical for autonomous
and long term monitoring. Park et al. tried the direct con-
tact approach in which the person is permitted to wear a
short-sleeves shirt and short pants in order to maintain a
direct contact with the bed sheet conductive electrodes [152].
They explored a new approach using ECG signal processing
to derive respiration signal from ECG. They derived the
respiration after a comparison made between two different
types of acquisition protocols: one consists of the two elec-
trodes in the shoulder’s region which is compared to lead I
and the other using the same electrodes positioning used
with Ishijima [174], [175] and Devot et al. [169] as shown
in Fig. 7(f). A high coverage of ECG derived respiration
was obtained making a promising step for deriving respira-
tion from ECGwith a high accuracy. Peltokangas et al. [176]
have tried the bipolar measurement for heart rate and HRV
detection. A high average coverage of 95.08% was recorded
among all measurements for a total of 158 hours divided
on 22 nights (Approximately 7 hours of sleep per night).
However the person was not allowed to wear a shirt as
the eight conductive fabric electrodes require direct contact
with the skin. As a result, the concept of this system was
clearly based on prioritizing the success of detection at the
expense of the autonomy which makes the solution imprac-
tical as a stand alone system for sleep monitoring. Other
researchers such as Ishida et al. [177], Vehkaoja et al. [164],
Chamadia et al. [178] and Kato et al. [179] have proposed
somehow similar acquisition protocols based on capacitive
electrodes positioning according to Fig. 7(h), (b), (d) and (d),
respectively, showing more potential solutions of unobtrusive
ECG acquisition during sleep.

VI. CONCLUSION AND FUTURE PERSPECTIVES
Cardiac activity, respiration, posture and body movements
abide the most measured physiological signals in unobtru-
sive sleep monitoring techniques. Features include especially
the variability of the heart rate that could be projected and
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studied in several domains, along with respiratory parameters
such as rate, regularity and auto-similarity, and body move-
ments and postures features. The majority of the state-of-
art works have been using one of these signals to estimate
sleep stages accordingly, leading to a weak discriminative
power when compared to the conventional PSG sleep stages
classification. More particularly, existing methods have been
able to distinguish between two or three classes, i.e., wake
and sleep, or wake, REM and NREM stages, while the PSG
classification output is usually a combination of 5 classes,
having the discriminative power of separating NREM into
three stages, i.e., NREM1, NREM2 and NREM3. With the
introduction of new techniques of data analysis such as deep
machine learning algorithms, a combination of the aforemen-
tioned features of unobtrusively measurable physiological
behaviors could potentially lead to a well-established auto-
matic and unobtrusive sleep stages classifier system. Future
work has to be done in this line of research in order to leverage
advancements in computation power and data availability
in serving the ultimate goal of sleep studies and provide a
wider diagnosis of sleep problems towards a healthy sleep
worldwide population.

A. EMERGING SENSING AND EARLY-STAGE TECHNIQUES
A number of the proposed state-of-the-art works remain
in their early stage, eventhough some of them have been
revealed since decades, and that is due to several factors,
including lack of clinical validation and research database.
A dedicated work is needed in order to bring these tech-
niques to the medical field, making available a wide range
of research opportunities. Early-stage potential techniques of
acquiring unobtrusively physiological signals in the applica-
tion of sleep monitoring include:

1) Ballistocardiography: consists of producing graphical
representations of cardiac induced repetitive human
body movements in order to give insights on the blood
injections. It has been first proposed in the early 80’s
and still not adopted in clinics [180], [181]. Ballisto-
cardiography has several open research areas such as
lack of standardization with respect to 1) the measured
signal, by proposing a unified nomenclature for peaks
and valleys and 2) a unified or a standard site of mea-
surement [182].

2) Air mattresses: breathing, body movements and car-
diac activities could be detected by the volume change
of the pneumatic underneath the subject [183]–[186].
This method has been validated on synthetic data and
then clinically only in supine sleeping posture [184].
A range of determinants influence the performance and
applicability of suchmethods and are related to both the
acquisition protocol and the subject i.e., inter-posture
and inter-subject variability [186].

3) Ultrasound sensors: ultrasonic sensors have been used
in order to detect breathing rate and body movement
activities [187]–[191]. For instance, receiving a modi-
fied version of the projected ultrasonic wave can give

insights about the frequency of the detected move-
ments, this method of movement detection is also
referred to as Doppler technique. Although the advan-
tages provided by this technique, a number of param-
eters choice make its use subject-specific or sensitive
to noise. For instance, an optimal carrier frequency
has to be chosen based on the type of targeted body
movements that is in some cases, subject-specific,
as higher frequencies allow a better sensitivity to small
movements [192].

4) Wireless detection systems: they include systems
that use Wi-Fi signals [193]–[196], microwave anten-
nas [197] and ultrawideband systems [196] in order
to detect respiration and body movements activities.
They consist of devices that are able to acquire the
wireless channel state information of the radio signals
in order to measure rhythmic patterns induced by body
movements and breathing activities [198]. Some of the
drawbacks of these techniques consist in the limited
decetable motion range in specific postures, e.g., lateral
motions involving a displacement greater than 20cm
are not detected in an ultrawideband system for breath-
ing monitoring [196].

5) Optical fibers based systems: consist of using
microbend fiber optic sensors underneath the sub-
ject’s mattress in order to monitor breathing and body
movements activities in order to extract sleep param-
eters such as TST [199], [200]. A number of research
opportunities are available with optical fibers such as a
further analyzing the motion types that could emerge
during acquisition and assigning specific retroactive
feedback to attenuate the impact, such as in the case
of the occuring muscle tremors, that could be a poten-
tial disturbance to the acquired information [201]
and [202].

6) Other techniques: include phonocardiographic sen-
sors [203], static charge beds [204], in-ear EEG
sensors [205], etc.

B. RECOMMENDATIONS AND REMARKS
FOR FUTURE WORKS
Based on the conclusion and what we presented in this paper,
our conclusive recommendations and remarks for future
directions can be resumed as follows:
• Clinical experimentation and database availability:
lack of data is majorly facing two of the most crucial
steps towards an unobtrusive sleep monitoring: 1) val-
idation, and hence medical devices monitoring sleep
unobtrusively, and 2) teaching machines to perform
autonomous tasks, and lessening medical intervention
and assistance requirements. A potential line of research
leading to advancements in this area consists of con-
ducting clinical experiments in order to collect physi-
ological data during sleep. For instance, a simultaneous
data acquisition using both the experimental device and
the standard system i.e., PSG, is bound to give the
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opportunity to researchers to compare, analyze, teach
machines and validate with respect to the standard mea-
surements leading to a faster pace of advancements.

• Clinical validation with respect to standards: researchers
have been focusing on proposing methods and devices
for giving insights on sleep behavior leading to a larger
spectrum of unobtrusive sleep monitoring techniques.
However, a number of studies have shown that these
techniques have been rarely validated with respect to
PSG in a significant and reliable way [16], [206].
Clinical validation is an inevitable phase for approving a
medical device and adopting it in clinics. Hence, future
efforts are bound to work on this line of research in the
aim of validating the applicability of a broad range of
existing devices and acquisition techniques.

• Machine learning application in unobtrusively
acquired data during sleep: this line of research
consists of using the growing knowledge in machine
learning techniques in the application of sleep studies.
In an era where both the computation speed and deep
neural networks are expanding in a tremendously fast
pace, high dimensional unveiled patterns are expected
to be leveraged in estimating sleep hypnograms, clas-
sify apnea events and score sleep quality [207]. This
direction has recently started gaining researchers’ inter-
ests [208]–[210]. However, the existing works have cov-
ered the classification of sleep stages based on obtrusive
and conventional data. Hence, this highlights the need
to conduct similar research using autonomous physio-
logical functions such as cardiac, breathing and body
movements activities in order to bring advancements in
unobtrusive sleep monitoring.

• Assessing conformity of the proposed techniques
to norms and regulations: it is one of the essential
requirements resulting in a potential medical device.
It consists of a systemic evaluation of the regulations and
norms as early as during the design phase to the imple-
mentation and validation. As previously established in
the paper, rarely the proposed unobtrusive sleep mon-
itoring techniques have succeeded to reach industrial
gates, who’s outcome is a class-defined medical device.
Thus a substantial work has to be done in this area in
order to transfer the existing knowledge to the medical
field.

• Exploring hardware, smart clothes, wearables, and
E-textiles for data acquisition Last but not least,
exploring potential and new ways of acquiring physio-
logical data without imposing constraints on the subject
is a tremendous need in the field of sleep studies. The
future work has to be done on two levels: 1) proposing
new methods and apparatus: although a wide spectrum
of methods and devices have been proposed, proposing
new solutions could make it considerably much easier
for unobtrusive sleep monitoring to reach the medi-
cal field. And 2), improving the existing systems in
what is related to hardware performance optimization

and parameterization; for instance, improving electrodes
positioning in capacitive ECG sensing eventhough by
using same electrodes types, has improved potentially
the signal quality and HRV analysis, leading to a better
correlation with sleep stages [170].
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