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ABSTRACT Dynamic thermal-hydraulic simulation models have been extensively used by process industry
for decision support in sectors, such as power generation, mineral processing, pulp and paper, and oil and gas.
Ever-growing competitiveness in the process industry forces experts to rely evenmore on dynamic simulation
results to take decisions across the process plant lifecycle. However, time-consuming development of
simulation models increases model generation costs, limiting their use in a wider number of applications.
Detailed 3-D plant models, developed during early plant engineering for process design, could potentially be
used as a source of information to enable rapid development of high-fidelity simulation models. This paper
presents amethod for automatic generation of a thermal-hydraulic process simulationmodel from a 3-D plant
model. Process structure, dimensioning, and component connection information included in the 3-D plant
model are extracted from the machine-readable export of the 3-D design tool and used to automatically
generate and configure a dynamic thermal-hydraulic simulation model. In particular, information about the
piping dimensions and elevations is retrieved from the 3-D plant model and used to calculate head loss
coefficients of the pipelines and configure the piping network model. This step, not considered in previous
studies, is crucial for obtaining high-fidelity industrial process models. The proposed method is tested
using a laboratory process, and the results of the automatically generated model are compared with
experimental data from the physical system as well as with a simulation model developed using design
data utilized by existing methods on the state of the art. Results show that the proposed method is able to
generate high-fidelity models that are able to accurately predict the targeted system, even during operational
transients.

INDEX TERMS 3D CAD model, 3D plant model, automatic model generation, first-principles model,
process modeling, process simulation, thermal-hydraulic model.

I. INTRODUCTION
Thermal-hydraulic simulation models are used for calcu-
lating thermodynamic properties of hydraulic flow [1]–[3].
They are based on first-principles models (FPMs), which
rely on rigorous engineering, physics and chemical relations
to represent the behavior of the modeled system [4], [5].
Simulation models based on FPMs can be static or dynamic.
Static simulation models describe a system without the time

dimension, thus they can only determine time-independent
system response to a specific set of inputs [6]. In con-
trast, dynamic FPMs can be used to study the transient
responses of a process to expected and unexpected distur-
bances in order to improve the design, control, operation, and
safety of the process [7]. During the last decades, simulation
results of dynamic thermal-hydraulic simulation models have
been extensively used for different applications of industrial
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FIGURE 1. Conceptual diagram of the dynamic simulation model applications over the process plant lifecycle.

process plants in sectors such as power generation, mineral
processing, pulp and paper, and oil and gas. Examples of these
applications range from engineering support [8]–[10] and
operation planning [11]–[13] to offline and online process
optimization [4], [14], [15]. Dynamic thermal-hydraulic sim-
ulation models have become highly important for strategic
decision making across the process plant lifecycle [16], [17].

Since thermal-hydraulic models are based on FPMs, they
capture a higher detail of process information compared
to similar alternatives based on data-driven modeling [16].
Data-driven models are those focused on finding relations
between the inputs and outputs of a system based only
on the data captured of such system. In contrast, FPMs
can provide reliable performance estimates even before the
physical system has been built and before its data has been
collected [18]. Consequently, dynamic thermal-hydraulic
models are essential for a number of important simulation-
based applications over the plant lifecycle, as shown in Fig. 1,
even during early lifecycle phases when the plant has not been
commissioned or operated. However, developing FPMs can
be time-consuming and expensive compared to data-driven
alternatives [16]. Although re-use of existing models can help
addressing issues related to the maintainability of industrial
models [19]–[21], the laborious maintenance and expensive
development of FPMs limit wider industrial adoption of these
systems [16].

Automatic model generation (AMG) has been identified
as a promising approach for further research to overcome
these shortcomings of FPMs [22]. Existing AMG methods
use data from engineering sources that are accessible during
the process design phase. These sources include piping and
instrumentation diagrams (P&ID), equipment technical data
sheets and control application configuration [20], [23], [24].
However, it is not possible to generate accurate dynamic
thermal-hydraulic FPMs without information on the phys-
ical dimensions of the process equipment and the process
pipeline network. In particular, key parameters for such FPMs
are the head loss coefficients which represent head losses
due to elbows or branches in the pipelines. These param-
eters can be calculated only from detailed information of
the structure and dimensions of curved pipe segments [25].

Since it is desired that the model is available during early
lifecycle stages when the physical plant has not been built,
this information can be obtained only after a 3D pipe
routing has been accomplished [26]. Information available
from 3D computer assisted design (CAD) models of the
plant could potentially be used in combination with other
engineering data to automatically generate process simula-
tion models. Therefore, the objective of this paper is the
following:
• To propose a novel AMG method which exploits
3D plant model information for enabling rapid and
efficient development of high-fidelity thermal-hydraulic
simulation models in order to increase industrial adop-
tion of simulation-based tools and applications.

In this work, the data included in the 3D plant model is used
for calculating piping sections lengths, elevations as well as
head loss coefficients of the pipeline network, and to auto-
matically generate a thermal-hydraulic model within a com-
mercial simulation platform. As a result, the fidelity of the
simulation model is increased compared to the one obtained
following existing state-of-the-art-methods. The proposed
method is demonstrated with a laboratory process system.
This paper is structured as follows. Section II provides an
overview of related work. Section III presents the proposed
AMG methodology. The implementation of the proposed
method is presented in Section IV and the results are shown
in Section V. The conclusions and future work are finally
presented in Section VI.

II. RELATED WORK
A. DEVELOPMENT OF SIMULATION MODELS IN
PROCESS INDUSTRIES
The development of industrial FPMs is a complex task
which generally involves three stages [16]. First, engineering,
physics or chemical descriptions of the system are obtained.
This is followed by the development of the model of the pro-
cess to be controlled in the targeted simulation tool. Finally,
the model development is completed with model initializa-
tion. During initialization, an initial solution of the model
equations based on a nominal set of input parameters and
simulation variable values is obtained [27].
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FIGURE 2. Conceptual diagram showing the data sources availability for automatic model generation during the plant lifecycle and their
classification.

Model development complexity varies according to the
application and it is dependent on the characteristics of the
solver utilized by the simulation tool [28]–[30]. Simulation
tools are classified according to the solver used for calcu-
lating model variables as simultaneous modular (SM) or as
equation oriented (EO) [16], [31]–[33]. In SM tools, process
units and streams are solved in a specific sequence start-
ing with the input feed streams. In contrast, in EO tools,
the model does not have a fixed solution directionality.
As a result, it can be handled as a set of equations to be solved
simultaneously [18], [34]. The study in [35] presents a thor-
ough comparison between EO and SM approaches. Model
development tradeoffs between EO and SM approaches are
related to the amount of effort needed to achieve model
initialization [36], [37].

Regardless of the solution method utilized by the chosen
tool, simulation models of industrial processes are typically
generated manually using flowsheet-based simulation envi-
ronments [23], [38], [39]. These environments consist of
graphical user interfaces for dragging and dropping process
unit simulation components into a model configuration can-
vas, where they can be connected according to the structure of
the process that is being modeled [40]. In these tools, model
configuration of every component is carried out manually.
Model configuration refers to the steps required to provide
parameters that represent the real system to every model
component. In this work, model components are all the ele-
ments that comprise the simulation model including models
of process equipment, piping network and thermal-hydraulic
points (TH points). A major advantage of flow-sheet-based
modeling environments is that the model development can be
collaboratively carried out by teams of process experts that
are not necessarily familiar with the underlying simulation
language. Additionally, industrial flow-sheet-based simula-
tion environments commonly offer script-based configuration
languages which can be used to speed-up the creation of

simulation model components as well as their configuration.
Furthermore, the model structure can be easily explored with
the graphical representation of the process. However, because
these models are still generated manually, development and
maintenance of industrial applications based on FPMs is
still laborious and expensive [19], [41]–[43]. This makes
FPMs less attractive than lower fidelity options based on
data-driven approaches, which can be developed with lower
engineering effort [16], [44].

B. AUTOMATIC MODEL GENERATION
AMG has been identified as a possible direction for fur-
ther research to increase cost-efficiency and to reduce
development and maintenance time of FPMs [22], [26].
AMG approaches use information mapping algorithms to
generate a simulation model based on the targeted system
information [27]. These algorithms automatically map the
accessed data into the model logic specified by the simulation
language utilized [45].

AMG can utilize different data sources. These sources
become available in different phases of the plant lifecycle,
as shown in Fig. 2. For this reason, the availability of data
sources determines how early in the lifecycle it is possible to
apply the automatic generation method. In the manufacturing
systems domain, information sources for AMG have been
classified based on the type of information they provide as
Technical, System Load and Organizational [46]. No similar
classification has been proposed for process plants, for which
there are additional sources from which historical informa-
tion of process dynamics and critical operating regions data
can be obtained. Fig. 2 extends the classification presented
in [46]. Based on our previous research in industrial process
simulation [22], [47], [48], Fig. 2 places the data sources
availability in the corresponding phases of the process plant
lifecycle. This is significant because, as Fig. 2 shows,
if the generation method is to be applied before the
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plant commissioning, it should rely exclusively on techni-
caldata sources.

AMG methods generally follow implementation
techniques classified in [49] as Parametric, Structure and
Hybrid-knowledge-based. In Parametricmethods, models are
generated by connecting simulation components stored in
simulation libraries. Simulation components are further con-
figured based on nominal parameters available from process
information repositories [50]. In Structural methods, model
generation is based on data describing the structure and
layout information of a system, available from relevant CAD
and engineering systems [51]. Hybrid-knowledge-based
methods combine Parametric and Structural approaches.
Hybrid-knowledge-based techniques are a common approach
followed by existing AMG approaches, as detailed informa-
tion of the plant is seldom available only in parametric or only
in structural data sources [23], [51]–[53].

A number of different AMG methods for industrial appli-
cations have been proposed. Some of the earliest implementa-
tion examples come from the manufacturing domain. In [54],
a conceptual framework for the generation of simulation
models from graph-based process plants and resource con-
figurations is proposed. Similarly, in [40], [55], and [56], the
proposed model generation methods are carried out through
the use of libraries of simulation model components. Since
the methods in [40] and [54]–[56] have been developed for
manufacturing applications, they use discrete-event models,
in which the operation of a system is captured as a discrete
sequence of events in time. This limits their application for
AMG of thermal-hydraulic industrial processes in domains
such as petrochemical processes, mineral processing, heat
and power generation and pulp and paper production, which
require continuous models to track the system dynamics over
time.

In the industrial process domain, there have been some
efforts on the automatic generation of control application
programs for virtual commissioning. Virtual commissioning
refers to the use of computational simulation technology to
test the automation system functionality during the execution
and delivery phases of the plant lifecycle (see Fig. 2) before
the plant operation is started [42]. In [57], a method for
automatic generation of PLC (Programmable Logic Con-
troller) control programs from simulation library compo-
nents is proposed. In [19], a method for control application
model development based on the re-use of interoperable
simulation units [58] is presented. In [51], the automatic
generation of the control application model is carried out
using data from an already-operating plant. These AMG tech-
niques are targeted mostly for the design and testing of the
automation system. However, because virtual commission-
ing takes place during execution and delivery phases of the
plant lifecycles, these methods are not applicable for plant
engineering at the design phase. Moreover, they focus on
the development of control application programs and not on
the generation of the simulation model of the process to be
controlled.

Automatic generation of simulation models already before
the commissioning phase is desired, as the models available
during the process design can be utilized in a wider number
of applications during later stages, thereby increasing their
cost-efficiency [35], [43], [59]. Additionally, early phase sim-
ulation is key for performance optimization at the system
level rather than at the subsystem level [60]. As previously
explained, AMG of industrial process models at the process
design phases must be based on engineering data. Therefore,
existing research on AMG during the process design [20],
[23], [53], [61] focuses on automatic generation of process
simulation models based on engineering data. In these stud-
ies, model generation is carried out using computer assisted
design and engineering (CAD/CAE) systems. This informa-
tion includes P&ID and data sheets of process equipment.
However, pipeline network information from these sources is
limited only to the piping sections diameters. Piping lengths,
elevations and structure information is mandatory for config-
uring the model head loss coefficients of pipelines [25].

In recent decades, pushed by trends in the construction
industry, process engineering and procurement companies
have started developing 3D models of industrial production
plants. These models are developed during plant engineer-
ing for designing and dimensioning plant facilities, pro-
cesses and equipment [62]. Recently, 3D models of process
plants have been developed automatically from engineering
data [26], [63], [64] and applied during operation and main-
tenance phases for virtualization of the plant [17], [51].
Information available from 3D plant models could poten-
tially be used for simulation model generation. In particular,
pipeline route layout information available from 3D plant
models could be used for obtaining lengths, elevations and
structure of the piping network to calculate head loss coef-
ficients. However, the utilization of 3D model information
has only been suggested for finite-element-based flow cal-
culations [23], [52] and no example implementation of this
approach is available. Moreover, there has not been any
implementation example which exploits 3D model informa-
tion for AMG of dynamic thermal-hydraulic FPMs, from
which information of the plant operation transients could be
obtained for different important industrial applications such
as engineering support, control application design, operation
planning and process optimization.

In contrast, this paper presents an AMG method which
utilizes information from the 3D plant model to automatically
generate a dynamic thermal-hydraulic process simulation
model. Although it is possible to manually search and retrieve
the information from a 3D model or CAD drawings of the
modeled process, often this work is considered too laborious,
and thus, rough estimates are used for model configuration.
Therefore, the proposed AMG method aims to reduce model
development effort thereby increasing industrial adoption of
applications based on thermal-hydraulic simulation models.

In particular, in this work 3D pipe routing information is
utilized for calculating head loss coefficients and lengths of
the pipelines as well as for obtaining process components and
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FIGURE 3. Conceptual diagram of the proposed 3D plant model-based AMG approach and its comparison with existing state-of-the-art AMG
approaches which are mainly based on utilizing P&ID data and equipment data sheets.

FIGURE 4. Proposed method for automatic simulation model generation
from the 3D model information.

piping sections elevations. This information is highly impor-
tant as the thermal-hydraulic simulationmethodology follows
mechanistic modeling, where structure and characteristics of
the target process are modeled in detail and first principles of
physics are used to describe the process phenomena, such as
fluid flows and heat transfer [1], [2]. Consequently, the cor-
rectness of dimensions is utmost important. The pipeline
sections’ cross-sectional areas, lengths and shapes affect the
flow rates and process delays, system volumes, and hydrody-
namic losses. Furthermore, the elevations of the equipment
and pipe sections affect the pressure levels of the system. This
information is not available from a typical PI&D.

FIGURE 5. Model components configuration subprocess.

III. PROPOSED METHODOLOGY
The conceptual diagram of the proposed 3D plant model-
based AMG method and its comparison with existing
P&ID-based AMG approaches is shown in Fig. 3. The steps
of the proposed AMG method are shown as Unified Model
Language (UML) activity diagrams in Fig. 4 and Fig. 5.
As shown in Fig. 4, the method is divided into Model Gen-
eration and Model Initialization. During Model Generation,
3D plant model information is retrieved. Then, the simulation
process equipment and the piping network are generated
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and connected. During Model Initialization, the simulation
model is configured, connected to its control application and
finally, controlled to an initial simulation state. As explained
in Section II A, flow-sheet-based simulation tools are com-
monly used in process industry to model thermal-hydraulic
systems in domains such as petro-chemical, power genera-
tion, pulp and paper as well as mineral processing. Therefore,
the proposed method is targeted to be implemented for flow-
sheet-based simulation tools. In addition to being widely
adopted in industry, flow-sheet-based simulation tools offer
two advantages highly important for AMG:

1) They include libraries of modeled process equip-
ment, which can be connected and configured to build
system-wide simulation models.

2) They commonly offer script-based modeling and sim-
ulation commands which can be used to ease the gen-
eration, connection and configuration of the modeled
process components.

In the following sections, the Model Generation and the
Model Initialization sub-steps of the proposed method are
elaborated.

A. MODEL GENERATION
DuringModel Generation, the proposedmethod first retrieves
information of the 3D plant model. Accessing 3D plant model
information is a non-trivial task that depends on the avail-
ability of communication interfaces and on the information
export options of the 3D modeling tool utilized. Commer-
cial 3D modeling tools offer different interfaces from which
information can be accessed by external systems. Common
interfacing mechanisms include connectivity options either
through application programming interfaces (API) or through
direct communication to their data bases. 3D modeling
systems also provide options for exporting model infor-
mation. Common export formats include spreadsheets and
tables of comma separated values (CSV). Additionally, some
tools offer export options of files which are compliant with
the Industry Foundation Classes (IFC) data model format.
IFC is an XML-based file format standardized in ISO 16739.
It is used to describe building data, including their pipelines.
It has become a popular data export format as 3D mod-
eling tools commonly used in process industry, such as
Aveeva E3D [65] and Cadmatic [66], offer file export options
based on this standard. However, because this standard is
mainly used in construction industry, IFC currently supports
only heating, ventilation and air conditioning piping net-
works. For this reason, 3D model information of thermal-
hydraulic industrial processes cannot be represented using the
IFC data model as they are comprised of complex pipelines
and equipment.

Industrial standards for data modeling and exchange
between process plant engineering systems, such as
3D CAD tools, have been developed during the last decades.
A promising example of these standards is the Computed
Assisted Engineering Exchange (CAEX) [67] standard.
CAEX is a neutral data format for plant information exchange

defined in the IEC 62424 specification. It has been adopted
by the industry-driven initiative AutomationML [68]. How-
ever, commercial 3D CAD tools used in the process indus-
try do not offer export in CAEX format. More recently,
the Data Exchange in Process Industry (DEXPI) [69] initia-
tive has been working towards the development of a gen-
eral data exchange standard for the process industry. The
DEXPI specification is the result of this initiative. It is an
extension of the ISO 15926 [70], originally intended for
information exchange between P&ID and 3Dmodeling tools.
Although the DEXPI specification is supported by a group of
major P&ID tool vendors and process owners, its application
is currently limited only to P&ID information exchange.
A comparison of the tradeoffs between CAEX and
ISO 15926 is presented in [71]. Adoption of standards such as
CAEX and DEXPI would ease integration between 3D mod-
eling tools with other industrial process systems, including
process simulators.

Since commercial 3D modeling tools currently do not
offer export options based on industrial process standards,
the proposed method utilizes 3D plant model information
retrieved in CSV format. Information available from 3D plant
models includes equipment dimensions, positions, elevations
and connections as well as the pipe sections’ lengths and
elevations. It also includes data related to the piping structure,
especially elbows and branches, needed to calculate the loss
coefficients of the process pipelines. In this work, position
and elevations are classified separately. Positions refer to
XY positions on the horizontal plane. Elevations are defined
as the Z coordinate in respect to the XY plane. Finally,
the 3D models also contain process equipment naming and
nomenclature information. This is required if the simula-
tion model is connected to the real control application or to
an automation system emulator during plant operation and
maintenance phases. Fig. 6 shows an UML class diagram
of the information available from the 3D plant model of a
process comprised of some of the most common components
in thermal-hydraulic systems such as tanks, vessels, valves
and pumps. Fig. 6 also includes different pipe geometries
such as tees, and elbows.

After retrieving system information from the 3D modeling
tool, the AMG method starts by parsing the information
included in the retrieved CSV files. Next, the process equip-
ment and the piping network are generated automatically
using simulation configuration commands available in flow-
sheet based simulation tools. Each process component is
generated onto the simulator configuration canvas and posi-
tioned at the XY coordinates specified by the 3D model data.
Once the simulated process components and piping network
are generated, they are connected using TH points. In this
work, TH points are defined as coordinate locations in space
which define elevations and positions of the connections
between process components and pipelines. These points
play an important role in the thermal-hydraulic solution as
they represent a calculation volume with a state informa-
tion. Elevation data for process components and pipelines
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FIGURE 6. UML class diagram of the information available from the 3D plant model comprised of common components in thermal-hydraulic systems.

FIGURE 7. SysML block definition diagram of simulation model
components. TH-points are thermal-hydraulic points.

is important, as it is needed for hydrostatic pressure calcula-
tions. Fig. 7 shows a Systems Modeling Language (SysML)
block definition diagram that captures simulationmodel com-
ponents. Fig. 8 shows an internal block diagram that uses
the block types defined in Fig. 7 to illustrate examples of
connections between process equipment and pipes through
TH points.

B. MODEL INITIALIZATION
Model Initialization begins with the configuration of
the model components. As previously defined, model
components are all the elements that comprise the

FIGURE 8. Internal block diagram that uses the block types defined in
Fig. 7 for the purpose of illustrating examples of connections
between process equipment and pipes through TH points.

simulation model, including models of process equipment,
pipelines and TH points. During this configuration, nom-
inal values are assigned to component parameters. Nom-
inal equipment information is the de facto information
which represents the conditions in which process equipment
are expected to operate normally. Nominal data includes
flows, positions, pressure heads, head losses coefficients,
power coefficients, voltage levels, heat coefficients, etc.
While geometry-related data can be easily derived from
the 3D model information, other operating nominal val-
ues of process equipment, marked in purple in Fig. 6,
are not typically included in 3D models. This information
could be included in 3D plant models, thereby easing the
automatic generation of simulation models from 3D mod-
els. However, this is not a common practice in industry.
Therefore, in the proposed approach, detailed equipment
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FIGURE 9. 90◦ Elbow fitting and its diameter (D0), bend angle (δ) and
bend radius (R0). Figure adapted from [80].

nominal operating parameters are retrieved from data
sheets of process equipment. The simulation model com-
ponents configuration sub-step, in which nominal param-
eters are written into the model components, is shown
in Fig. 5.

Model configuration also includes the calculation of head
loss coefficients. Head loss coefficients are a nominal param-
eter of pipes, also referred as pressure loss or as form loss
coefficients [72]. Head loss occurs due to friction and tur-
bulence caused by changes in direction or cross-section area
of pipelines [73]. Consequently, head loss occurs mostly in
piping fittings such as reducers, expansions, elbows, tees
(a 3-way connector) and 4-way connectors. There are a
number of different methods for obtaining head loss coef-
ficients in pipeline fittings [74]–[77]. Analytical methods
are generally based on the Herschel-Bulkley model [78].
Alternatively, commonly used numerical models for head
loss coefficients calculations of different fitting geometries
can be obtained from process engineering handbooks such
as [79] and [80].

Calculation of head losses in pipelines is highly
important for obtaining accurate simulation models of
thermal-hydraulic systems. In the proposed method, head
loss coefficients are calculated after obtaining geometrical
information of the pipe fittings from the 3D plant model.
This information cannot be obtained from other engineering
sources such as P&ID diagrams or equipment data sheets.
Geometrical information of process pipelines required for
head loss coefficients calculation includes the fitting type as
well as its length, diameter (D0), bend angle (δ) and bend
radius (R0). In the proposed algorithm, head loss coefficients
of these and other fittings are calculated based on the equa-
tions in [80]. As an example, equations (1) to (4) show the
calculations that the AMG algorithm utilizes to obtain the
head loss coefficient of 90◦ elbow fittings, shown in Fig. 9.
The total head loss coefficient ζ of a 90◦ elbow fitting is the
sum:

ζ = ζl + ζfr (1)

where ζl is the local head loss coefficient of the elbow fitting;
and ζfr is the friction coefficient throughout the fitting length.

ζl = AlBlCl (2)

Al is determined as a function of the fitting bend angle δ.
In the case of a 90◦ degrees elbow, Al = 1.0.

Bl = 0.21/
√
(R0/D0) (3)

Cl = 1.0 for circular or square cross sections.

ζfr = 0.0175λ(R0/D0)δ (4)

where λ is the friction coefficient of unit length of the curved
pipe. λ varies according to the relation R0/D0 of the elbow
and can be calculated using equations 6-12 to 6-14 of [80].

After the simulation model has been configured, model
initialization is required to provide the model with a set of
values which define starting conditions. Model initialization
procedures vary according to the simulation tool utilized.
In some SM simulators, it is possible to directly write a good
estimate of the initial state into the model as they provide
a method for sequentially calculating individual model vari-
ables [32]. However, especially during early plant lifecycle
phases, plant state information is not available [36]. On the
other hand, in EO simulators it is not possible to directly
write the state of simulation variables, because the models
are explicitly described as equations and not as algorithms
of the solutions of such equations [22]. Steady-state process
models have been used to estimate initial values for dynamic
simulators [16], [81]. However, the obvious drawback of
this alternative is that steady-state models must be available.
Consequently, the initialization proposed in this work is per-
formed using the control system for driving the simulation
model to a given initial state. This approach can be carried out
even if no steady-state simulator is available and it is applica-
ble to both, SM and EO dynamic simulators. For this reason,
before initialization, the automatically generated simulation
model is connected to its control application. Upon initializa-
tion, the AMGmethod is completed and the simulationmodel
can be used for the targeted application.

IV. IMPLEMENTATION OF THE PROPOSED APPROACH
The proposed methodology was implemented and tested
using a laboratory-scale heat production plant (HPP) process.
The HPP process, shown in Fig. 10, is considerably sim-
pler than real power plants but has been designed together
with automation professionals to ensure that it includes
key automation functionalities of such processes [82]–[85].
Fig. 11 shows the P&ID of the HPP process. The process
is comprised of three open tanks (B100, B200 and B400),
a vessel (B300), two pumps (M100 andM200), a heating ele-
ment (E100), various shut-off valves and two control valves
(Y102 and Y501). The water in the tank B100 is heated using
the heating element E100 and its temperature is controlled
using an on-off controller. The pressure P300 in the tank
B300 is controlled by a PID controller using pump M200.
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FIGURE 10. Heat production plant process (HPP) used as a testbed for
the proposed method.

FIGURE 11. Piping and instrumentation diagram (P&ID) of the HPP
testbed.

The water level L200 of tank B200 is controlled by two
PID controllers connected in a cascade configuration using
proportional valve Y102. The position of proportional valve
Y501 is regulated to simulate a load in the consumption of
hot water. The consumed water flows back into tank B100 to
be re-heated. The control application of the process was
developed following the IEC-61131-3 standard and runs on
a soft programmable logic controller.

The dynamics in the HPP systemmostly reside in the tanks,
which have the largest share of the system total volume, and
the level of which can change. Similarly, the control valves

FIGURE 12. HPP 3D model developed in AutoCAD Plant 3D.

are dynamic elements. In particular, the proportional valve
Y102 which is used to regulate the flow F100 of the cascade
configuration controlling the level L200 of tank B200. Fur-
thermore, the pipelines introduce part of the system volume
and a transport delay for the fluid flow. However, since the
system is operated on a constant temperature, they have a
minor dynamic role in this study. For the same reason, heat
transfer or thermal inertia aspects are negligible. Generally,
the control loops play a significant role in the dynamics and
in the discrepancies between physical and modeled systems.
In this case, this factor was eliminated by using exactly
the same control application and tuning parameters in the
physical and simulation systems.

The HPP testbed is an 8-year-old process and no 3Dmodel
was developed during its design. Therefore, in order to test
the proposed methodology with 3D model information as is
available during early lifecycle phases of a real industrial
process, a 3D model of the HPP was developed in AutoCAD
Plant 3D [86]. AutoCAD Plant 3D is one of the tools that
are broadly used in industry. The 3D model of the physical
system is presented in Fig. 12. The HPP 3D model was built
after measuring physical dimensions of the real process.

The AMGmethod was implemented on the simulation tool
Apros [87]. Apros is a commercial flowsheet-based tool for
modeling and dynamic simulation of thermal-hydraulic pro-
cesses. It has been used to simulate various industrial systems
such as combined heat and power plants [88], nuclear power
plants [89], renewable energy production systems [90], [91],
as well as pulp and paper mills [92]. Apros provides simu-
lation libraries with simulation components of common pro-
cess equipment, which can be connected through pipes and
TH points to simulate process sub-systems or entire plants.
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FIGURE 13. Layout of the HPP simulation model generated automatically and its comparison with the lower isometric view of the HPP 3D model.

This tool also provides functionalities to develop a model of
the process automation system for independently controlling
the simulationmodel. Apros relies on the platform’s program-
ming language Simantics Constraint Language (SCL) [93]
to manage and automate different tasks related to the model
creation and configuration. Consequently, the proposedAMG
method was developed utilizing the SCL language.

The AMG method requires access to the data from the
HPP 3Dmodel before the simulation model can be generated.
In AutoCAD Plant 3D, there are various options for access-
ing the 3D plant model information. These options include
information access through an API or directly through the
3D model database. Additional information access options
are offered as file export in CSV format. However, the format
of the exported CSV files does not follow any information
exchange standard. Moreover, it does not include any infor-
mation on the connections between the process equipment.
Therefore, the HPP 3D model information, including the
connection data, is retrieved directly from the AutoCAD
Plant 3D database. This information is accessed through
an SQL server which connects to the data base client
of the 3D modeling tool and then exports the required
data as CSV files. This information is not modified nor
queried, therefore, it maintains the original format as in the
database.

After the information is retrieved, the AMG algorithm
starts the automatic generation of the simulation model by
creating the simulated process equipment models of the HPP,
such as the open tanks, the vessel, valves and pumps. Next,
the pipes and fittings are created. In AutoCAD Plant 3D,
elbows are classified as pipe fittings, while other pipe fit-
tings with more than two connection ports are classified
as pipe sections. Consequently, pipe fittings such as tees
with three or more connection ports must be distinguished
from regular piping sections. Therefore, the model generation
method counts the number of ports in each pipe and classi-
fies it accordingly to the OCL (Object Constraint Language)
specifications in the notes in Fig. 6.

Once the simulated process equipment models and the
pipelines are generated, the algorithm creates the TH points.
Model components are created and provided with informa-
tion about their dimensions and, in the case of the pipping
network, their lengths. The equipment, the piping and the
TH points are generated in the Apros configuration canvas
at the XY position specified in the HPP 3D model infor-
mation. As it was previously explained, the elevation of the
model components, retrieved from the 3D model is given as a
parameter of the TH points. Next, the connections between all
the model components are created. The resulting model and
its comparison with the HPP 3D model is shown in Fig. 13.
As it can be seen, the placement of the model components
in the Apros configuration canvas corresponds to the lower
isometric view of the HPP 3D model.

The model configuration is carried out using information
retrieved from both the HPP 3D model and the process
equipment data sheets. Data retrieved from the data sheets
is provided to the algorithm as CSV tables, in similar way as
it is done with the 3D model data. This information is mainly
related to the equipment nominal parameters such as nominal
flows and positions of valves as well as nominal pressure
heads and nominal flows of pumps. Model configuration is
completed once the head loss coefficients of the pipelines
are calculated by the model generation algorithm using the
equations presented in Section IV B.

Model initialization is carried out by connecting the simu-
lationmodel to the control application and driving the process
to the desired initial state. For testing purposes, a model of the
control application was developed manually in Apros. The
model of the control application replicates the real control
system structure, equations and tuning parameters. Another
alternative would be to utilize control application emulation
systems which could be used to connect an instance of the
real control application to the simulation model.

In Apros, model initialization was carried out by pro-
viding boundary conditions and then excluding the entire
model from simulation. Next, model sub-systems are
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FIGURE 14. Simulation results of the automatically generated simulation model and its comparison with the HPP measurements. Transients are
caused by changes in the set point of the water level L200 of the tank B200.

FIGURE 15. Simulation results of the automatically generated simulation model and its comparison with the HPP measurements. Transients are
caused by changes in the set point of the pressure P300 in the vessel B300.

gradually included into the simulation and then controlled by
the control application to the desired state. This is system-
atically repeated until all the simulation model sub-systems
are at the desired initial state. This initialization procedure
is followed to guarantee model stability at the desired initial
conditions and it could be followed in other simulation tools
in cases where these tools offer similar options for excluding
model sub-systems from simulation. After initialization, the
automatically generated model is ready to be tested.

In order to further assess the proposed method, the auto-
matically generated model results are compared with those
from a simulation model created manually. The manually
created model was developed utilizing the plant P&ID and
the process equipment data sheets. This is the same source
information that is used in the closest state of the art literature
for AMG of industrial processes [20], [23], [53], [61]. Con-
sequently, the manually created model was developed with
limited information related to the structure of the process
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FIGURE 16. Comparison of the simulation results between the automatically generated model and the manually created model. Transients
are caused by a change in the set point of the water level L200 of the tank B200.

pipelines. Since the head loss coefficients are not available
from the source information used for the manual generation,
the simulation tool’s default head loss coefficient value was
applied. In order to perform a fair comparison, and in order to
highlight the improvement of the results due to the differences
on the form loss coefficients values, the process equipment
elevations and pipe lengths were taken with a tape measure
and then provided to the manually created simulation model.
Consequently, in this respect, the manually developed model
is even more accurate in respect of its parameter values than
a model created with data sources utilized by state-of-the-art
methods.

V. RESULTS
During the first experiment, the automatically generated
model was tested by comparing its results with experimental
data of the HPP process. In these experiments, the simula-
tion model and the HPP process were run simultaneously
through various transients, controlled by their respective con-
trol application. These experiments were carried out utilizing
the simulation architecture described in [22]. As previously
explained, the same control application structure and tun-
ing parameters are used to control both systems. During
these experiments, the physical system and the model start
at the same initial conditions and the same changes in their
controlled variable set points are applied simultaneously to
both systems. The results of these experiments are shown
in Fig. 14 and Fig. 15. Fig. 14 compares the simulation results
with the process measurements during transients caused by
changes in the set point of the B200 tank water level L200.
The flow F100 is the water flow between tank B100 and
B200, measured between valve Y102 and pumpM100. Simi-
larly, Fig. 15 compares the simulation results with the process
measurements during transients caused by changes of the set
point of the pressure inside the vessel B300. Results show that
the behavior of the automatically generated simulation model

TABLE 1. Comparison of the normalized root mean square errors (nrmse)
of the automatically generated and the manually created model in
respect to the hpp experimental data.

is in good agreement with the physical process, even during
operation transients.

For the second experiment, the automatically generated
model results are compared with the manually created model.
As previously explained, a fair comparison was ensured by
configuring the manually created model parameters as accu-
rate as possible using information available from the physical
system in addition to the P&ID and the equipment data sheets.
The manually created model took an approximate of 5 hours
to be developed and initialized by a process and simulation
expert. In contrast, the simulation model generated following
the method proposed in this work takes roughly 10 minutes
to be automatically generated by the presented method.

During these comparison experiments, the manually cre-
ated model, the automatically generated model and the HPP
process were run simultaneously, controlled by their respec-
tive control applications with identical structure and tun-
ing parameters. Fig. 16 shows the comparison between the
manually and automatically generated models with respect to
the measurements of the physical process. This figure shows
the comparison of the water level L200 in tank B200 and the
flow F100 during experiments in which transients are caused
by a change in the L200 set point. In Fig. 16, the same initial
condition has been used in both experiments for the tank
B200 level. However, the difference between initial condi-
tions for the flow F100 in Fig. 16 is an unavoidable result of
the fact that the head loss coefficients of the manually created
and automatically generated simulation models are different.
Table 1 compares the normalized root mean squared errors
(NRMSE) of the automatically generated model and the man-
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ually created simulation models in respect to the process
data series for the experiments depicted in Fig. 16. NRMSE
is used to facilitate the comparison between datasets with
different units and scales [94]. These results show that the
simulation model generated automatically from the 3D plant
model is not only generated with lower engineering effort,
but it also has a lower NRMSE compared to the simulation
model created manually. This is a result of configuring the
automatically generated model using the calculated informa-
tion of the piping sections exact length and elevations as
well as the pipeline form loss coefficients. It is worth noting
that using poor estimates of the pipeline network lengths
and elevations for the state-of-the-art model that was used
as a reference would have resulted in yet a larger difference
between the NRMSE values.

A direct comparison to any figures in the state-of-the-
art works [20], [23], [53], [61] is not possible, since the
case studies are different. However, the manually created
model was built using all of the source information and
reasoning capabilities presented in the state-of-the-art works.
Therefore, the NRSME is considered representative of the
performance of the state-of-the-art methods. Since both mod-
els in Table 1 are based on the same case study and the
NRMSEs are calculated from the same transient scenarios,
the NRMSEs in Table 1 are directly comparable numbers
that capture the performance improvement of the proposed
method.

VI. CONCLUSIONS
This paper has proposed a method for automatic generation
of thermal-hydraulic simulation models from the 3D plant
model information. A key step in the model configuration of
the proposed method, which has not been included in previ-
ous works, is the utilization of pipelines information included
in the 3D plant model to calculate and configure the automat-
ically generated simulation model. In this work, information
of the pipeline structure and equipment is derived from the 3D
plant model and used for obtaining piping sections’ lengths
and elevations as well as for calculating pipelines form loss
coefficients. This information cannot be obtained from other
data sources available during the process design. Experiments
show that the results of the model generated following the
proposed AMG method closely correspond to the process
measurements, even during process transients.

In order to further evaluate the presented approach,
the automatically generated model was compared with a
model created from information utilized in the current AMG
state-of-the-art. The results of this experiment show that,
although the information in Table 1 is specific to our case
study, significant improvements in NRMSE is expected also
for other case studies due to the following reasons. The
achieved reduction of the NRMSE is a result of calculating
the head loss coefficients of the pipelines. This parame-
ters can only be calculated using information available only
from the 3D plant model. Therefore, the proposed approach
is expected to generally result in significant improvements

over state-of-the-art methods that rely only on P&ID and
equipment data sheet information. The specific quantitative
improvement will depend on properties of the process and in
particular the pipe routing, since the number and properties
of elbows and tees will significantly impact the head loss
coefficients for the pipelines. These parameters have a major
impact on the transient behavior of dynamic simulations.

The overall results show that this work addressed the
objective presented in Section I, as the proposed method
enables a more rapid and efficient model development com-
pared to manual modeling approaches. This should enable a
wider industrial adoption of simulation-based applications.
Additionally, the presented method utilizes process informa-
tion available during the design stage of the plant lifecycle,
increasing the cost-efficiency of the generated model. This
is due to the fact that, as shown in Fig. 1, simulation models
generated at early process design can be used for other impor-
tant applications during the later stages of the process plant
lifecycle.

A drawback of the presented method is its dependability
on the information access options which can vary according
to the 3D modeling tool utilized. This can limit the appli-
cability of the proposed AMG method only to 3D modeling
tools which provide access to their 3D model databases. For
this reason, an interesting research direction is the study
of intermediate formats for information exchange between
3D modeling tools and other engineering data sources. Stan-
dardization of this format would further increase industrial
adoption of methods such as the one presented in this work.
Moreover, in this work, the control application required to
control the generated model is developed manually. There-
fore, future work will also focus on the development of
methods for automatic generation of a control application for
controlling the generated simulation model, especially based
on IEC 62424 descriptions that are available at the design
phase of the plant lifecycle.
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