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ABSTRACT The University of Dhaka mobility data set (DU-MD) is a human action recognition (HAR) data
set consisting of 10 classes and 5000 observations from 50 subjects recorded using wrist-mounted sensors
embracing accelerometry. The data set exhibits sufficient statistical diversity in physiological parameters
and a noteworthy correlation between similar activities with coveted quantitative and qualitative features,
suitable for training machine learning models. On the other hand, the wrist-mounted approach parallels the
future commercial scenarios. In this paper, we explore how the quantitative features of the DU-MD have
been extracted and selected. Existing machine learning models used in HAR, in particular, support vector
machines, ensemble of classifiers, and subspace K-nearest neighbours have been applied to our data set
for activity and fall classification, with outcomes being compared with benchmark and similar data sets.
With a HAR classification accuracy of 93%, fall detection accuracy of 97% and fall classification of 68.3%,
quantitative performance metrics have either approached or outperformed other data sets, making this data
set suitable for application in hardware-independent healthcare monitoring systems. Finally, we construct
an algorithm with our data set based on performance metrics, and suggest some strategies for large-scale
commercial implementation.

INDEX TERMS Human action recognition (HAR), activities of daily living (ADL), wearable, accelerometer,
machine learning algorithms, feature extraction, statistics, support vector machines, decision trees, nearest

neighbor methods.

I. INTRODUCTION
The University of Dhaka Mobility Dataset (DU-MD) [1] is
being developed to complement the application and devel-
opment of hardware-independent machine learning motion
detection models for existing ubiquitous wrist-mounted
motion detection systems such as activity trackers and fitness
bands, with focus on fall detection in senior citizens. The
open-source DU-MD embraces the wearable approach in
Human Action Recognition (HAR) and uses the principle
of accelerometry to aid classification of Activities of Daily
Living (ADL) or fall detection [2].

Qualitative comparison with widely-used benchmark and
existing HAR datasets [3] has been studied in the litera-
ture [1]. These datasets are summarized in Table 1.

The shortcomings of the benchmark dataset illustrated
in literature [1], which the DU-MD attempts to address
are:

o Only UMAFall [10] considers fall waveforms. Other

datasets are hence not suitable for fall detection.

o In case of HAR, HAD and HAPT dataset [6], [7], [9],
placement of data logger does not parallel the com-
mercial landscape of wearables in HAR; it is not fea-
sible or practical to attach smartphones or data loggers
around the waist or chest.

o With the exception of the HASC dataset [5], most
datasets were crafted in a controlled environment (using
maximal protective measures) with a few test subjects,
sacrificing realism.
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TABLE 1. Summary of some benchmark HAR datasets.

TABLE 2. Results from K-S test on age, weight and height [1].

Dataset Subject ADL Count | Principle Sample Count
Count

UCB WARD [4] 20 13 ‘Accelerometry; Gyrometry 1298

HASC [5] 540 6 Accelerometry 6700

UCIHAR [6] 30 6 ‘Accelerometry; Gyrometry 10299

USC HAD [7] 4 12 ‘Acclerometry; Gyrometry 340

Opportunity [8] 2 20 Acclerometry; Gyrometry; | 3371

Magnetometry
UCIHAPT [9] 30 66 ‘Acclerometry; Gyrometry 10929
UMAFall [10] 7 = Acclerometry; Gyrometry: | 531

*Considers 6 postural transitions (transition from one action to another).
**UMAFall considers 3 types of falls besides classic ADL. Rest of the
datasets have no fall waveforms.

« Machine learning models classifying a diverse class of
ADL require a large sample count (~> 5000), a large
subject count (~> 30) with statistical variance in phys-
iological parameters such as age, weight and height to
prevent bias [11]. Table 1 portrays that the WARD, HAD
and UMAFall [4], [7], [10] fails in first two criteria.

The coveted characteristics of the DU-MD are as follows:

« Subject count: 50

o ADL count: 10 (Walking, sitting, lying, jogging, stair-
case climbing, staircase down, standing, falling via
unconsciousness, falling via heart attack and falling via
slipping while walking).

o Principle: Accelerometry using a wrist-mounted data
logger; The newly developed open-source Internet of
Things (IoT) kit from IIS, University of Tokyo, known as
the Trillion Node Engine Project, was used to assemble
the data logger [12].

o Sample Count: 5000 (each person provided 10 samples
of each ADL, amounting to 100 samples per person).

o Three types of realistic falls taken into account for fall
detection.

« Signals sampled at 30 Hz to ensure detailed ADL wave-
form.

« Minimal protective equipment in testbed.

« Promising statistical diversity of physiological param-
eters and correlation between similar signals. Average
weight and height of the test subjects matched the aver-
age adult weight and height [1].

Kolmogorov-Smirnov (K-S) test was performed on age,
weight and height of 25 of the 50 subjects in literature [1]
to ensure sufficient statistical diversity. No bias was observed
in weight and height whilst a small bias was observed in age,
which was corrected by augmenting the significance level of
the test to 0.1. The results are duplicated in Table 2.

Kruskal-Wallis (K-W) one-way ANOVA was performed
on 10 walking ADL from a random test subject and outlined
in literature [1]. Each ADL contains 101 sample points. The
results are duplicated in Table 3.

At the 0.05 level, the populations are not significantly
different, which justifies that similar ADL are statistically
coherent and uniform.

The coveted features, amalgamated with statistical justifi-
cation of the dataset, now demands further analysis. In this
paper, we explore the following:
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Parameter | DF Statistic | P> D Inference

Age (yrs) 25 0.34132 0.0042 At 0.05 significance
level, data not drawn
from normal distribu-
tion.

Weight 25 0.18228 0.33696 At 0.05 significance

(kg) level, data drawn from
normal distribution.

Height 25 0.18228 0.33696 At 0.05 significance

(m) level, data drawn from
normal distribution.

TABLE 3. Results from K-W one way ANOVA [1].

X2 DF
C 100 100

P> 2
0.48119

« Construction of a feature vector from a given sample
window and selecting important features.

o Quantification of the performance of the dataset by
applying existing state of the art classification algo-
rithms used for HAR.

o Performance comparison with similar ADL from bench-
mark datasets, as well as performance analysis of fall
classification.

« Proposing a real-time system architecture and algorithm
to be used with our dataset.

Detailed explanation, figures and analysis supporting the dis-
course in Section I, as well as qualitative details of the dataset,
assembly of the datalogger and the assumptions/scenarios of
the testbed, can be found in literature [1]. The raw (unpro-
cessed) DU-MD is available at: eece.du.ac.bd/DU-MD
and aa.binbd.com/mobility.html

Il. METHODOLOGY

Classification problems in HAR generally involve signal pre-
processing, segmentation, feature extraction and classifica-
tion/training [13], [14].

o Pre-processing involves high-frequency noise removal
and separation of body and gravitational acceleration
components.

« Segmentation involves separating the signal into minute
components via a 'window’. Sliding windows, event-
defined windows and activity-defined windows are
widely used in HAR [13].

« Feature extraction involves constructing a feature vector
that contains several quantitative aspects of the signals,
some of which may help in differentiating each class of
actions.

o Finally, supervised classification involves training
a machine learning model using a labeled pro-
cessed/segmented dataset along with the feature vec-
tor. Common models in HAR include Support Vector
Machines (SVM), K-Nearest Neighbours (KNN) and
Convoluted Neural Networks (CNN).
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TABLE 4. Extracted features of the DU-MD.

01. Mean-X 02. Mean-Y 03. Mean-Z

04. Median-X 05. Median-Y 06. Median-Z

07. STD-X 08. STD-Y 09. STD-Z

10. Var-X 11. Var-Y 12. Var-Z

13. Min-X 14. Min-Y 15. Min-Z

16. Max-X 17. Max-Y 18. Max-Z

19. MAD-X 20. MAD-Y 21. MAD-Z
22.IQR-X 23.IQR-Y 24.IQR-Z

25. Entropy-X 26. Entropy-Y 27. Entropy-Z

28. PeakFreq-X 29. PeakFreq-Y 30. PeakFreq-Z

31. VSMean 32. VSMedian 33. VSSTD

34. VSVar 35. VSMin 36. VSMax

37. VSMAD 38. VSIQR 39. SlopeChange-X
40. SlopeChangeY 41. SlopeChangeZ 42. VSSlopeChange
43. ZeroCross-X 44. ZeroCross-Y 45. ZeroCross-Z

46. VSZeroCross 47. MeanCA-X 48. MeanCA-Y

49. MeanCA-Z 50. VSMeanCA 51. MeanCV-X

52. MeanCV-Y 53. MeanCV-Z 54. VSMeanCV

55. Kurtosis-X 56. Kurtosis-Y 57. Kurtosis-Z

58. VSKaurtosis 59. Skewness-X 60. Skewness-Y

61. Skewness-Z 62. VSSkewness 63. Range-X

64. Range-Y 65. Range-Z 66. VSRange

67. PCA-X 68. PCA-Y 69. PCA-Z

70. VSPCA 71.DS-X 72.DS-Y

73.DS-Z 74. MeanVecNorm-X 75. MeanVecNorm-Y
76. MeanVecNorm-Z 77. MeanZScore-X 78. MeanZScore-Y
79. MeanZScore-Z 80. MeanRemove-X 81. MeanRemove-Y
82. MeanRemove-Z 83. VecNormMeanRem-X | 84. VecNormMeanRem-Y
85. VecNormMeanRem-Z

A. SIGNAL SEGMENTATION AND PREPROCESSING

Rather than applying autonomous segmentation windows,
we have manually segmented each signal to account for
unequal sample size of each instance such that each action
waveform was reduced to a window of 101 samples
(~ 3.3 seconds). A 4th order IIR Butterworth low-pass filter
with a cut-off frequency of 20 Hz (Filter A) was chosen
and then applied to the waveforms to remove high frequency
accelerometer noise; such an approach to noise removal and
chosen cut-off frequency has been justified quantitatively in
literature [6] and [15]. To separate gravity acceleration (GA)
components from body acceleration (BA) components, a 4th
order IIR Butterworth low-pass filter with a cut-off frequency
of 0.3 Hz (Filter B) was implemented and output of Filter A
was fed to Filter B; the BA components were then calculated
by subtracting the output of Filter B (GA components) from
output of Filter A [15]. The output of Filter B (GA compo-
nents) was then used to generate a feature vector.

B. FEATURE VECTOR CONSTRUCTION

Classic features mentioned in literature [6], [15], and [16]
such as mean, median, standard deviation (STD), max-
ima/minima, median absolute deviation (MAD), interquartile
range (IQR), entropy, the score of principal components,
vector sum (VS) parameters and frequency domain param-
eters were calculated for the processed signals. A new
set of features involving wavelet transforms [17], namely
mean approximation coefficients (CA) and mean diago-
nal detail (CV) coefficients for Symlet Wavelet Transform
(sym2, level 5), as well as dominant sign of a signal (DS) were
also employed for performance analysis. Table 4 summarizes
all of the 85 extracted features.

44778

o Mean: The arithmetic mean/average is given by:

n
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where n = number of samples and x; = ith sample value.

Median: The median of a class is given by:

N/2—F )
Jm
where L,, = lower boundary of median class, C = class
size, F = cumulative frequency before median class, N
= total frequency and f;,, = frequency of median class.
Standard Deviation (STD): The standard deviation of a
sample class is given by:
> (i —X)?

il @

M:Lm—l—C( @)

where n = number of samples, x; = i

X = sample mean.
Variance: The variance of a class is given by:

S =0 4

sample value and

where o = standard deviation
Maxima (Max) and Minima (Min): Provides the maxi-
mum and minimum values of a particular signal.
Median Absolute Deviation (MAD): The median abso-
lute deviation is given by:

n

MAD. =3 "
i=1

-M
n

)

where n = number of samples, x; = ith sample value and
M = median.
Interquartile Range (IQR): The IQR is given by:

IOR = Q03 — 0 (6)

where Q3 = 3’d/Upper Quartile, Q; = 1*'/Lower Quar-
tile.

0 L+h(iN c)' i=1,2,3 @)
i Q fQ 4 s s &y
where Ly = lower boundary of quartile group, h =
quartile width, ¢ = cumulative frequency before quar-
tile group, N = total frequency and fp = frequency of
quartile group.

Signal Entropy: Entropy refers to the statistical random-
ness in a sample, or the average information in a signal.
It is defined as:

" 1
HX) = P(Xk)Ing( ) (8)
,; P(xy)

where x; = k" sample value and P(X) is a probability
distribution function.

Largest Frequency Component (PeakFreq): The peak/
largest frequency component is found out by first find-
ing out the Fast Fourier Transform (FFT) of the signal
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FIGURE 1. Plot of approximation and detail coefficients of a “walk”
signal after Symlet wavelet transformation.

and then deciphering the frequency at which the largest
response is observed from the spectrum.

o Vector Sum (VS): The vector sum of a signal in three
dimensions is given by:

S =G/AZ+ 42 +A2) 9)

where Ay, Ay and A; are the x, y and z components of a
signal.

« Sign change of Slope (SlopeChange): This is done by
finding out the slope (differentiating with respect to
time) of the signal at every point and then listing the
changes in sign to signify the direction of motion of the
curve.

o Zero Crossing (ZC): This is used to detect the points at
which the signal crosses zero on the time axis. Mathe-
matically:

y=0=7(x) (10)

where f{x) is the polynomial that provides the values of
y. At x axis intercept, y = 0.

o Approximation Coefficients (CA) and Mean Diagonal
Detail Coefficients (CV): A wavelet transform involves
decomposing an original signal using a series of filters
such that the output of the high pass filter provides
some coefficients (called detail coefficients), while the
output of the low pass filter provides approximation
coefficients. These two groups of coefficients describe
the original signal. Figure 1 shows the Wavelet Analyzer
Toolbox in MATLAB in action which can be used to
obtain the aforementioned coefficients.
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o Kaurtosis: The peakedness or kurtosis is given by:

pa =) (= f) (11)

where all values of x are summed over, and f{x) is the
probability distribution function of x.
o Skewness: The skewness of a distribution is given by:

X-X\°
y=E ( 3 ) (12)
o
where X is the mean and o2 is the standard deviation.
« Range: Range of a signal is the difference between the
maximum and minimum value of the signal.
« Score of Principal Components (PCA): The k" factor
score of principal components (an approximation of
actual signal in terms of two other vectors containing

essential patterns to describe the signal) of a signal is
given by:

Tk(i) = X(i) - W(k) (13)

where x; is the input data vector, w() are k”* loadings.

o Dominant Sign (DS): The number of positive and neg-
ative samples in a signal are compared and then 1 is
assigned to the signal if number of positive samples
exceed or is equal to negative samples; a 0 is assigned to
the signal is negative samples exceed positive samples.

e Mean Vector Normalization (MeanVecNorm): The sam-
ples of a signal are divided by the signal’s vector sum and
then the mean value of the resulting signal is taken.

o Mean Z Score (MeanZScore): The z score of each signal
is calculated using the formula:

X-X
z=( ) (14)
o

Afterwards, the mean value of the new signal is calcu-
lated.

« Mean Removal (MeanRemove): Each sample of a signal
is subtracted from the mean and then the mean of the new
signal is calculated.

e Vector Normalization and Mean Normalization (Vec-
NormMeanRem): Vector normalization is carried out
on a signal, and then the mean of the new signal is
subtracted from the samples of the new signal. The mean
of the resulting signal is then calculated.

All  mathematical referenced

from [18]-[22].

equations have been

C. FEATURE AND CLASS SELECTION
After analyzing with some classifiers and observing the par-
allel coordinate plot of each feature, as well as standard
deviations of the features, 39 features were finally chosen for
classifier training empirically, shown in Table 5.

Figure 2 shows the standard deviations/parallel coordinate
plot of all the features (assuming O mean).

The number of classes were reduced from 10 to 8 by
grouping three types of falls into one class since classifiers
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TABLE 5. Best features of the DU-MD dataset.

01. Mean-X 02. Mean-Y 03. Mean-Z
04. Median-X 05. Median-Y 06. Median-Z
07. STD-X 08. STD-Y 09. STD-Z

10. Min-X 11. Min-Y 12. Min-Z

13. Max-X 14. Max-Y 15. Max-Z

16. Entropy-X 17. Entropy-Y 18. Entropy-Z
19. PeakFreq-X 20. PeakFreq-Y 21. PeakFreq-Z
22. VSSTD 23. VSVar 24. VSMin

25. VSMax 26. VSIQR 27. MeanCA-X
28. MeanCA-Y 29. MeanCA-Z 30. Range-X
31. Range-Y 32. Range-Z 33. VSRange
34. PCA-X 35. PCA-Y 36. PCA-Z
37.DS-X 38. DS-Y 39.DS-Z

FIGURE 2. Standard deviations of selected features.

were facing problems in distinguishing between three types

of falls.

FIGURE 3. Accuracy and speed of several algorithms on the dataset.

TABLE 6. Confusion matrix of EoC-45 on DU-MD.

True Class Predicted Class TP FN
Jogging (J) 100 100 0
Laying Down (LD) 95 5 95 5
Sitting (Si) 5 95 95 5
Staircase Down (SD) 90 5 5 90 10
Staircase Up (SU) 10 85 5 85 15
Standing (St) 10 85 5 85 15
Walking (W) 5 5 90 90 10
Falling (F) 3 2 95 95 5
J LD Si SD SuU St w F

TABLE 7. Confusion matrix of 1-1 QSVM on DU-MD.

Ill. RESULTS

A. PERFORMANCE OF HUMAN ACTIVITY CLASSIFICATION
(ALL CLASSES)

Several existing HAR algorithms such as Support Vector
Machines (SVM) [6], K-Nearest Neighbours (KNN) [23]
and Ensemble of Classifers (EoC) (we have used bagged
decision trees) [13] were tested on the dataset consisting
of 2000 observations, 8 classes and 39 features. Out of all
the algorithms, SVM and EoC exhibited promising perfor-
mance on our dataset, with EoCs exhibiting an accuracy
from 90.5% ~ 93% and SVMs exhibiting an accuracy from
87.5% ~ 90.5%. The variations include:

e One-vs-One Multi-Class Cubic SVM (1-1 CSVM)

e One-vs-All Multi-Class Cubic SVM (1-A CSVM)

o One-vs-One Multi-Class Quadratic SVM (1-1 QSVM)
o One-vs-All Multi-Class Quadratic SVM (1-A QSVM)
« EoC; Bagged Decision Trees with 30 learners (EoC-30)
« EoC; Bagged Decision Trees with 45 learners (EoC-45)
« EoC; Bagged Decision Trees with 60 learners (EoC-60)

For validation, the dataset was partitioned randomly with
a holdout ratio of 1:9 (holdout validation); a low holdout
ratio was chosen since the dataset was relatively small. The
performances of these classifiers are summarized in Figure 3.

44780

True Class Predicted Class TP FN

Jogging (1) 95 5 95 5
Laying Down (LD) 90 10 90 10
Sitting (Si) 10 90 90 10
Staircase Down (SD) 5 85 5 10 85 15
Staircase Up (SU) 10 80 5 5 80 20
Standing (St) 5 80 5 10 80 20

Walking (W) 5 95 95 5

Falling (F) 3 2 95 95 5

J LD Si SD SU St w F

TABLE 8. Performance comparison with other benchmark datasets.

Dataset Classes Instances | Features SVM EoC (%)
(%)

HAR 6 10299 561 [13] 96 [13] 97 [13]
HASC 6 6700 144 [15] 95.3[13] 95.5[13]
HAPT 6+1% 10929 561 [13] 94.2 [13] 97 [13]
DU-MD 7+1h 2000 (out | 39 (best 90.5 93
(40%) of 5000) b of 85)

*6 postural transitions have been considered one class (transitions).

b 3 types of falls grouped into one class to improve performance.
b At the time of writing, 2000 instances were available for training.

The confusion matrices [24] of EoC-45 and 1-1 QSVM
are shown in Tables 6 and 7. Table 8 shows comparative
performances of DU-MD with the HASC, HAPT and HAR
benchmark datasets using SVM and EoC. Accuracy (%) in
correctly classifying ADL has been used as a performance
metric for all datasets.

Several important inferences can be made from Table 8.

o Compared to the benchmark datasets, we used fewer
features (hence less processing power required), fewer
instances but more classes. This caused a lag in accuracy
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S.S. Saha et al.: Feature Extraction, Performance Analysis, and System Design Using the DU-MD

IEEE Access

FIGURE 4. Performance of our dataset in activity recognition compared to
other HAR datasets using wrist mounted sensors/combination. DU-MD
exceeded mean accuracy of all datasets.

of 4-6 percent when compared with other datasets, since
we provided insufficient training examples with a large
number of classes. We expect the accuracies to approach
the benchmark accuracies when we complete processing
the entire dataset of 5000 observations after the rest of
the observations are obtained.

« HAR and HAPT used waist-mounted mobile phones
as sensors, while HASC used a mobile phone carried
around inside a pocket. Whilst such approaches are not
always practical as discussed earlier, a study by Cleland
et al. [25] found out that wrist-mounted HAR systems
perform slightly poorly compared to other locations
of the body. So it is no surprise that the performance
of DU-MD is slightly degraded compared to other
datasets. In fact, Figure 4 shows some notable datasets
in wrist-mounted HAR systems and their performances
as mentioned in literature [25], compared to our dataset.
Figure 4 shows that our dataset outperformed all other
datasets marginally (without using neural networks,
heuristics, or other deep learning models). Further-
more, HASC, HAPT and HAR datasets are not appli-
cable in fall detection systems. However, our dataset
has fall waveforms and the classifiers detected falls
with an accuracy of 93-97% and a modal accuracy
of 95%.

The Receiver Operating  Characteristic ~ Curve
(ROC Curve) [24] for fall detection using EoC-45 and
1-1 QSVM are shown in Figure 5, while Figure 6 shows
performance of our dataset for fall detection compared to
performance of other datasets [26]-[30]. Note that these
manuscripts attempt several different algorithms to improve
their fall detection accuracies while we apply a single classi-
fier. Neural networks and deep learning principles were used
to improve fall detection as shown in Figure 6.
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FIGURE 5. (Top) ROC curve for QSVM; (Bottom) ROC curve for EoC-45.

FIGURE 6. Performance of our dataset in fall detection compared to other
fall detection datasets. Datasets not using machine learning have been
ignored.

B. PERFORMANCE OF FALL CLASSIFICATION

For fall classification (differentiating between three falls),
Subspace K-Nearest Neighbour (S-KNN), with 60 learners
and a subspace dimension of 15 yielded an accuracy of 68.3%
on the 600 fall waveforms with 39 features and 3 fall classes.
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FIGURE 7. Performance of our dataset in fall classification compared to
other fall classification datasets [25], [29], [30].

TABLE 9. Confusion matrix of S-KNN after fall classification.

True Class Predicted Class TP FN

Fall (Heart Attack) 62 19 19 62 38

Fall (Slipping) 9 72 9 72 28

Fall (Unconscious) 20 10 71 71 29
Fall(Heart Attack) Fall (Slipping Fall (Unconscious)

FIGURE 8. Similarity matrix of the three classes of falls for each feature
(1-39) shown in RGB color map, which indicates similarity of each class
with the other.

12-fold cross validation was used to protect against bias.
Figure 7 shows performance of other similar datasets when
classifying various types of fall.

The confusion matrix of fall classification using S-KNN is
shown in Table 9.

The color map of the similarity matrix of the three types of
falls shown in Figure 8.

The falls that we are trying to classify have similar wave-
forms with only the initial window before the actual fall
being different as explained in literature [1], whereas other
fall classification datasets focused on detecting the direc-
tion of falls (e.g., falling backwards or forwards or side-
ways), which explains the relatively low accuracy of our fall
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classifier compared to other fall classification datasets as
shown in Figure 7. This is also confirmed by a color map
of the similarity matrix of the three types of falls shown
in Figure 8, which indicates the correlation of the features
for each type of fall against each other (heart attack vs.
slipping, slipping vs. unconsciousness and heart attack vs.
unconsciousness). The matrix clearly indicates that many
features are similar to each other, further explaining the low
accuracy.

The confusion matrix in Table 9 indicates that the classifier
is only 62% accurate in case of heart attacks. In order to
improve this, we suggest using a non-invasive heart rate
monitor to verify whether the predicted action actually refers
to a heart attack or not. Such a combination has already been
applied in literature [31] with promising results, however,
we aim to detect heart attacks using commercial heart rate
monitors found within fitness bands to align with the philos-
ophy of our dataset goals rather than using discrete heart rate
sensors for heart attack detection [32].

IV. IMPLEMENTATION STRATEGIES

Application of existing fitness bands in activity tracking and
heart rate monitoring such as the Xiaomi Mi Band, Apple
Watch, Samsung Gear Fit, Garmin Vivofit, FitBit Flex etc.
regarding accuracy and precision have been studied and jus-
tified in literature [33]. Reported accuracies are as high as
99.1%. As aresult, fitness bands can be used as the intended
sensor whilst processing is to be carried inside a smartphone.

Inside residential and restricted environments, the smart-
phone can be kept within allowable communication range of
the activity tracker and act as the processing node. Multiple
activity trackers can tap one processing node, which may
be useful in hospitals and retirement homes. Special RFID
Tag Systems mentioned in papers [34], [35] can also be used
to monitor both external and internal motion signatures of
subjects using a single harmonic RFID tag rather than using
multiple fitness trackers, with the action recognition kernel of
the system being trained using our dataset.

In external environments or places where Internet is
unavailable, it is expected that the user will carry both the
sensor node and the processing node. Energy consumption
in smartphones executing HAR algorithms have been studied
extensively in papers [30], [36] and all smartphones are going
to be equipped with innate energy-efficient machine learning
processors / neural engine SoC (such as ARM ML or Apple
A11) mentioned in literature [38] and [39] in near future.
Several aspects of using the smartphone as a processing
node, such as dataset generation, hardware-friendly machine
learning algorithms and online activity recognition has been
discussed extensively and justified in by Ortiz [39].

A. PROPOSED ALGORITHM

Figure 9 shows the suggested algorithm to be used in real time
systems trained using our dataset. The raw data is obtained
in real time from an accelerometer coupled with a heart rate
monitor. The interfacing software parses the data and passes
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FIGURE 9. Proposed algorithm to be used in real time for systems trained
with our dataset. Red lines indicate highly dangerous event flow, orange
lines indicate moderately dangerous event flow, green lines indicate low
danger event flow.

it off to the classification engine, either bagged decision
trees or support vector machine. If the classifier classifies the
data as anything but falling, the data is reported back to the
interfacing software. Parallely, the heart rate of the patient is
also continuously monitored, and emergency actions (such as
calling 911 and informing relatives via email/SMS) are taken
if the cardiac output deviates from natural values.

If the classifier detects a fall, then the interfacing software
runs a second engine (Subspace KNN) to classify the type
of fall. If an abnormality is detected in the cardiac output
while the classifier classified the signal due to falling from
heart attack, then the classifier immediately classifies the fall
as falling due to heart attack; otherwise the system reruns
the calculations to check again. Unconsciousness is detected
by comparing the period of inactivity against a threshold
time for which the person is inactive, after which the system
performs emergency actions. If the user is not unconscious
but requires assistance, he/she can instruct the interfacing
software to do so. Compared to existing commercial fall
detection systems, we have fused two sensors on a single
fitness band for improved fall classification accuracy and
false positive elimination.

B. DEPLOYING ON THE CLOUD

In environments deploying a large number of sensing nodes,
cloud-based machine learning services can be used to reduce
processing requirements and focus on subject monitoring and
data analytics [40]. Figure 10 shows our proposed cloud
architecture, based on Microsoft Azure services [41] for
deploying real-time systems. Each cluster consists of one
receiving node (can be a smartphone or a computer) and
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FIGURE 10. Proposed real-time loT mesh architecture for systems trained
using our data in controlled environments (such as hospitals).

several sensor nodes (fitness bands or RFID tags). The sinks
arrange the data in a form suitable for processing by Azure
Machine Learning Studio. The sinks upload data to Azure IoT
Hub and a monitoring station, located inside the same facility
as the sinks and sources. The IoT Hub securely stores all
vital signs, traces, and physiological information. It streams
data in real time to Azure ML [42] and shares data with
Azure Stream Analytics occasionally. The ML Studio runs
our proposed algorithm for HAR in real time and stores activ-
ities (shown in red color) in Azure IoT Hub. Additionally,
the classified activities for each subject are sent to the mon-
itoring station. If an emergency situation persists (e.g., a fall
is registered), the monitoring station is easily notified. The
monitoring station is also able to access all stored data (shown
in orange color) securely. Stream Analytics analyzes activi-
ties for patterns and custom creates health tips and reminders
subjectwise, which are forwarded to the Notification Hub.
The Notification Hub sends these notifications to the sinks of
the clusters at optimum times (shown in dashed green). The
applications shall be developed using the Xamarin Platform
for machine-independent applications.

V. CONCLUSION AND FUTURE WORK

In this paper, we quantitatively validated part of the open-
source DU-MD that was introduced in the literature [1].
Apart from exhibiting promising statistical diversity in phys-
iological parameters and correlation between similar classes,
an average accuracy of 91.75% was obtained when One-vs-
One Quadratic SVM and Bagged Decision Trees (Ensemble
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FIGURE 11. Overview of the suggested real time implementation scheme.

of Classifiers) were used for HAR with a maximum accu-
racy of 93% obtained using EoC, which is within 4~6%
of benchmark datasets. Maximum fall detection accuracy
was 97%, which exceeded accuracies obtained from most
similar datasets. In addition, we obtained a moderate accuracy
of 68.3% in fall classification using Subspace KNN as a
classifier. We proposed solving the low-accuracy problem in
fall-classification by bringing in heart rate monitors into play,
found within most fitness bands.

In addition, we qualitatively explored possible imple-
mentation strategies of systems to be trained using our
dataset. We proposed an algorithm that may be run on such
machines and also provided a cloud-based IoT architecture of
a large scale system where multiple sensors may be deployed
using several services from Microsoft Azure. Implementation
schemes for both large scale and small scale deployment were
suggested.

Scopes involving future perusal include the application of
dense labeling algorithm [43] for automatic segmentation
instead of manual or traditional sliding windows. Perfor-
mance analysis on the entire dataset must be carried out
when complete. Performance analysis of our dataset using
deep learning models such as convolutional and recurrent
neural network [44], [45] is also recommended. ’Real-time’
performance analysis of our proposed algorithm by vary-
ing the length of the time series (i.e., window size) [46],
hence making window size flexible, will be commercially
significant, especially quantifying processing requirements
and energy efficiency of our proposed algorithm when run on
a smartphone. Application of sequential spatial information
through the application of Long Term Short Memory (LSTM)
network would be important during real time operation. Other
possible research areas include deployment and performance
analysis of proposed IoT mesh architecture and testing perfor-
mance of our classifiers over a wide range of fitness bands to
test whether the dataset is indeed truly hardware independent.
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