
Received June 29, 2018, accepted July 29, 2018, date of publication August 13, 2018, date of current version September 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2864991

Multi-Client Order-Revealing Encryption
JIEUN EOM1, DONG HOON LEE 1, (Member, IEEE), AND KWANGSU LEE 2
1Graduate School of Information Security, Korea University, Seoul 02841, South Korea
2Department of Computer and Information Security, Sejong University, Seoul 05000, South Korea

Corresponding author: Kwangsu Lee (kwangsu@sejong.ac.kr)

This work was supported by the Institute for Information & communications Technology Promotion (IITP) through the Korea Government
(MSIT) under Grant 2016-6-00600–A Study on Functional Encryption: Construction, Security Analysis, and Implementation.

ABSTRACT Order-revealing encryption is a useful cryptographic primitive that provides range queries
on encrypted data since anyone can compare the order of plaintexts by running a public comparison
algorithm. Most studies on order-revealing encryption focus only on comparing ciphertexts generated by
a single client, and there is no study on comparing ciphertexts generated by multiple clients. In this paper,
we propose the concept of multi-client order-revealing encryption that supports comparisons not only on
ciphertexts generated by one client but also on ciphertexts generated by multiple clients. We also define
a simulation-based security model for the multi-client order-revealing encryption. The security model is
defined with respect to the leakage function which quantifies how much information is leaked from the
scheme. Next, we present two specificmulti-client order-revealing encryption schemeswith different leakage
functions in bilinear maps and prove their security in the random oracle model. Finally, we give the
implementation of the proposed schemes and suggest methods to improve the performance of ciphertext
comparisons.

INDEX TERMS Bilinear maps, multi-client order-revealing encryption, order-revealing encryption,
symmetric-key encryption.

I. INTRODUCTION
Today, a large amount of the users’ data is collected and
stored in cloud servers to provide various services utilizing
this personal data. Recently, as the concern of privacy issues
in personal data has increased, it has been an important issue
to safely store personal data in a cloud server and to prevent
it from being leaked. The simplest way to solve this problem
is to perform data encryption. However, it is difficult for the
cloud server to provide ordinary services such as keyword
searches, range queries, and numeric operations on encrypted
data since plaintexts are transformed to random ciphertexts.
In order to overcome this problem, advanced encryption
schemes that support computation on encrypted data such
as homomorphic encryption and functional encryption have
been actively studied [1], [2]. However, it is difficult to pro-
vide efficient services using them since these schemes are
somewhat inefficient.

One way to allow efficient computation on encrypted
data while providing privacy of user data is to consider
an efficient encryption scheme that allows only a limited
operation such as a search or range query. Searchable sym-
metric encryption (SSE) is a kind of symmetric-key encryp-
tion that supports keyword searching on encrypted data [3].

Order-preserving encryption (OPE) and order-revealing
encryption (ORE) are special kinds of symmetric-key encryp-
tion that can be used for efficient range queries over encrypted
data by comparing ciphertexts without decrypting these
ciphertexts. An OPE scheme is a deterministic encryption
scheme, which encrypts plaintexts in numeric values to gen-
erate ciphertexts in numerical values bymaintaining the order
of plaintexts, so that the order of plaintexts can be com-
pared by simply comparing the order of ciphertexts [4]–[6].
An ORE scheme is a probabilistic encryption scheme hav-
ing ciphertexts of arbitrary values, and the order of plain-
texts can be compared by running a public comparison
algorithm on ciphertexts [7]–[10]. The first ORE scheme of
Boneh et al. [7] provides the best possible security, but it is
inefficient since it uses heavy cryptographic tools such as
multi-linear maps. Recently, several practical ORE schemes
have been proposed but these schemes inevitably leak some
information on plaintexts in addition to the comparison
result [8]–[10].

All of the previous ORE studies only considered to com-
pare ciphertexts generated by a single client. However, in a
real environment, it is necessary to compare ciphertexts
generated by multiple clients if these clients handle related

45458
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-0692-2543
https://orcid.org/0000-0003-1910-8890


J. Eom et al.: MC-ORE

plaintexts. For example, we consider a scenario where stu-
dents are divided into multiple classes to take lectures taught
by different instructors. In this case, the grades of each class
are encrypted by the encryption key of each instructor, but
if necessary, the grades of these different classes should be
comparable without decryption. As another example, we can
consider a scenario in which patients are treated by different
physicians in a hospital and their medical data are encrypted
and stored with the secret keys of physicians. In this case,
a physician may want to compare the medical data of patients
that he or she has treated with the medical data of other
patients that have been treated by other physicians formedical
research purposes. To support these scenarios, a compari-
son key must be provided that can compare the encrypted
data generated by multiple clients and this comparison key
should be provided only to an authorized user. We call the
ORE scheme that supports comparison operations not only
on ciphertexts generated by one client but also on cipher-
texts generated by different clients, as the multi-client order-
revealing encryption (MC-ORE) scheme.

We note that an MC-ORE scheme can be easily
derived from a multi-input functional encryption (MI-FE)
scheme [11]. That is, if each ciphertext slot of an MI-FE
scheme is related to the client index of an MC-ORE scheme
and an MI-FE private key for the comparison function on two
ciphertexts is provided as an MC-ORE comparison key, then
we can build an MC-ORE scheme from an MI-FE scheme.
However, this approach is not practical because an MI-FE
scheme for general functions requires heavy cryptographic
tools such as multi-linear maps or indistinguishable obfusca-
tion.

A. OUR RESULTS
We summarize the contributions of this paper which include
the notion of MC-ORE and two practical MC-ORE schemes
with limited leakage in bilinear maps.

1) DEFINITION
We first introduce the notion of MC-ORE by extending the
concept of ORE [7] to additionally support the comparison
operation on ciphertexts which are generated by multiple
clients. In an MC-ORE scheme, each client creates cipher-
texts by encrypting plaintexts with his/her secret key and
anyone can publicly compare the order of two ciphertexts
generated by a single client similar to the functionality of
ORE. In addition to this basic functionality, it supports the
comparison operation of two ciphertexts created by different
clients if an additional comparison key for two clients is
given. Note that the comparison of two ciphertexts generated
from different clients is not a public operation since a com-
parison key given from a trusted center is needed to prevent
the leakage resulting from these comparisons. To define the
security model of MC-ORE, we follow the security model
of ORE that allows the leakage [9]. In this work, we give a
simulation-based security model for MC-ORE with a leak-
age function L. Informally, this definition states that if an

adversary can obtain information from ciphertexts of clients’
plaintexts (j1,m1), . . . , (jq,mq) where jk is the index of a
client, then it can be inferred from L((j1,m1), . . . , (jq,mq)).
One difference between our security model and that of ORE
with the leakage is that the adversary can query many com-
parison keys for different clients. To handle this comparison
key query, we define the static security model which requires
that the adversary should first specify a set of corrupted client
indices.

2) BASIC CONSTRUCTION
Next we propose two realizable MC-ORE schemes with dif-
ferent leakage functions. Our first MC-ORE scheme concep-
tually follows the design principle of the ORE scheme of
Chenette et al. [9] that encrypts each bit of a plaintext by
using a pseudo-random function (PRF) that takes a prefix of
the plaintext as an input. However, it is not easy to extend
an ORE scheme that uses a PRF to an MC-ORE scheme that
supports the comparison operation for different clients since
the outputs of PRF with different client’s keys are random
values. To solve this difficulty, we use an algebraic PRF
in bilinear groups which is defined as PRFs(x) = H (x)s

where H is a hash function and s is a PRF key [12]. Sup-
pose there is a single client and the client creates ciphertexts
C = (H (x)s,H (x + 1)s) and C ′ = (H (x ′)s,H (x ′ + 1)s) for
plaintexts x and x ′ in binary values by using a secret key s.
A user can publicly check whether x + 1 = x ′ or not by
comparing H (x + 1)s = H (x ′)s from two ciphertexts. Now
suppose there are two clients with different secret keys s and
s′ and clients create ciphertexts C = (H (x)s,H (x + 1)s) and
C ′ = (H (x ′)s

′

,H (x ′ + 1)s
′

) for plaintexts x and x ′ in binary
values respectively. To compare two ciphertexts generated by
different clients, a user first receives a comparison key CK =
(ĝrs, ĝrs

′

) from a trusted center and checks whether x + 1 =
x ′ or not by comparing e(H (x + 1)s, ĝrs

′

) = e(H (x ′)s
′

, ĝrs).
To extend the comparison of binary values to large values,
we modify the encoding method of Chenette et al. [9] that
uses the prefixes of a plaintext. Letm = x1 x2 · · · xn ∈ {0, 1}n

be a plaintext. For each i ∈ [n], the encryption algorithm
encodes two strings Ei,0 = x1 x2 · · · xi−1‖0 xi and Ei,1 =
x1 x2 · · · xi−1‖(0 xi + 1) and evaluates Ci,0 = H (Ei,0)s and
Ci,1 = H (Ei,1)s. For example, the third bit of m = 101 is
encoded as E3,0 = 10‖01 = 1001 and E3,1 = 10‖(01 +
1) = 10‖10 = 1010. The ciphertext is formed as CT =
({Ci,0,Ci,1}i∈[n]). Note that we have m < m′ if there is the
smallest index i∗ such that the prefixes of two plaintexts with
i∗ − 1 length are equal and xi∗ + 1 = x ′i∗ . We prove the
security of our first MC-ORE scheme in the simulation-based
(SIM) security model with a leakage function that reveals the
comparison result as well as the most significant differing bit.

3) ENHANCED CONSTRUCTION
Our second MC-ORE scheme is the enhanced version of
the first MC-ORE scheme that reduces the leakage due to
the comparison of ciphertexts generated by a single client.
In our first scheme, a ciphertext was simultaneously used for

VOLUME 6, 2018 45459



J. Eom et al.: MC-ORE

two purposes: ciphertext comparisons in a single client and
ciphertext comparisons between different clients. In the sec-
ond scheme, we divide the ciphertext into two parts and treat
each ciphertext part differently. That is, the first ciphertext
part is only used for ciphertext comparisons in a single client,
and the second ciphertext part is only used for ciphertext
comparisons between different clients. For the first ciphertext
part, we can use any ORE scheme that has the reduced
leakage [8], [10]. For the second ciphertext part, we con-
struct an encrypted ORE (EORE) scheme by modifying our
first MC-ORE scheme. In the EORE scheme, an (encrypted)
ciphertext is created by first generating a ciphertext of the first
MC-ORE scheme and then encrypting it with a public-key
encryption scheme. Unlike the first MC-ORE scheme, this
EORE scheme does not allow ciphertext comparisons in a
single client since ciphertexts are securely encrypted. How-
ever, it allows ciphertext comparisons between different
clients since it can derive the original ciphertexts of the first
MC-ORE scheme if a comparison key is provided by the
trusted center. Therefore, there is no leakage from the second
ciphertext part and the leakage only depends on the first
ciphertext part if comparison keys are not exposed. We prove
the SIM security of our second MC-ORE scheme under the
external Diffie-Hellman assumption.

4) IMPLEMENTATION
Finally, we implement our MC-ORE schemes and evaluate
the performance of each algorithm. The proposed MC-ORE
scheme provides single-client comparison and multi-client
comparison algorithms. In the MC-ORE scheme, the most
computationally expensive algorithm is the multi-client com-
parison algorithm since it requires two pairing operations
per each bit comparison until the most significant differing
bit (MSDB) is found. To improve this multi-client compari-
son, we present other comparison methods and compare the
performance of these suggested methods. The first method is
a simple method that performs the comparison sequentially
from the ciphertext element of the most significant bit to that
of the least significant bit. It is efficient when the MSDB
exists in the higher bits, but it is inefficient when the MSDB
exists in the lower bits. The second method is a binary search
method that uses a binary search instead of a sequential
search to find the MSDB location. This method performs
approximately log n computations to find the MSDB location
where n is the length of a plaintext. The third method is a
hybrid method that combines multi-client comparisons and
single-client comparisons. This method can improve the per-
formance of ciphertext comparisons betweenmultiple cipher-
texts by performing one multi-client comparison and many
single-client comparisons.

B. RELATED WORK
1) ORDER-PRESERVING ENCRYPTION
The concept of OPE was introduced by Agrawal et al. [4]
in the database community, and this is a symmetric-key

encryption scheme that supports efficient comparison opera-
tions on ciphertexts since the order of plaintexts is maintained
in ciphertexts. The security model of OPE was presented
by Boldyreva et al. [5], and it is called indistinguishabil-
ity under ordered chosen plaintext attack (IND-OCPA). The
security notion of IND-OCPA says that an adversary can not
obtain any information from ciphertexts except the order of
underlying plaintexts. However, the ciphertext space of OPE
is required to be extremely large to satisfy this IND-OCPA
security. To achieve this IND-OCPA security, several variants
of OPE such as mutable OPE have been proposed, but most
of them are inefficient since they require stateful encryption
and an interactive protocol [13]–[15].

2) ORDER-REVEALING ENCRYPTION
Boneh et al. [7] introduced the notion of ORE which is
a generalization of OPE where the order of plaintexts can
be publicly compared by running a comparison algorithm
on ciphertexts. They also proposed a specific ORE scheme
that achieves the IND-OCPA security by using multi-linear
maps, but this scheme is quite impractical. Chenette et al. [9]
constructed the first practical ORE scheme by encrypting
each bit of messages using pseudo-random functions. They
showed that their scheme achieve a weaker security model
of ORE that reveals additional information of underlying
plaintexts in addition to the order of plaintexts. After the
work of Chenette et al., manyORE schemes were proposed to
reduce the additional leakage. Lewi and Wu [10] constructed
an IND-OCPA secure ORE scheme only for small plain-
text spaces by decomposing the encryption algorithm into
two separate functions, left encryption and right encryption
where the right encryption achieves the IND-OCPA secu-
rity. Cash et al. [8] constructed an ORE scheme with reduced
leakage by using property-preserving hash functions in bilin-
ear maps. Although this ORE scheme achieves to reduce the
leakage, it is inefficient due to the larger size of ciphertexts
and the pairing operation.

3) ATTACKS ON ORE
Naveed et al. [16] explored inference attacks on encrypted
database columns to recover messages against ORE-
encrypted databases. These attacks usually use the order and
frequency of plaintexts and auxiliary information such as
plaintext distribution. Durak et al. [17] and Grubbs et al. [18]
proposed improved inference attacks of Naveed et al. in sev-
eral ways and additionally presented leakage-abuse attacks
against ORE schemeswith the specified leakage. Both attacks
showed that the leakage of ORE can be effectively used to
recover more accurate plaintexts than that was theoretically
analyzed.

II. MULTI-CLIENT ORDER-REVEALING ENCRYPTION
In this section, we define the syntax and the security model
of multi-client order-revealing encryption by extending those
of order-revealing encryption.

45460 VOLUME 6, 2018



J. Eom et al.: MC-ORE

A. NOTATION
Let [n] be the set of {1, . . . , n} and [k, n] be the set of
{k, . . . , n}. Let cmp(m,m′) be a comparison function that
returns 1 if m < m′ and returns 0, otherwise. Let ind(m,m′)
be an index function that returns the index of the most sig-
nificant differing bit between plaintexts m and m′ of n-bits
and returns n + 1 if m = m′. Let prefix(m, i) be a prefix
function that takes as input a plaintext m = x1 x2 · · · xn ∈
{0, 1}n and an index i and returns x1 x2 · · · xi−1 as the prefix
of xi.

B. ORDER-REVEALING ENCRYPTION
Order-revealing encryption (ORE) is a special kind of
symmetric-key encryption that supports a comparison oper-
ation on encrypted data by using a public procedure [7].
In ORE, a client creates ciphertexts of plaintexts by using
his/her secret key SK and uploads these ciphertexts to a
remote database. After that, anyone can compare the order of
two ciphertexts CT and CT ′ by using a public comparison
algorithm. The following is the syntax of ORE given by
Chenette et al. [9].
Definition 1 (ORE): An ORE scheme consists of three

algorithms, Setup,Encrypt,Comparewhich are defined over
a well-ordered domain D as follows:

• Setup(1λ). The setup algorithm takes as input a security
parameter λ and outputs a secret key SK.

• Encrypt(m, SK). The encryption algorithm takes as
input a plaintext m ∈ D and the secret key SK and
outputs a ciphertext CT .

• Compare(CT ,CT ′). The comparison algorithm takes
as input two ciphertexts CT and CT ′ and outputs a
comparison bit b ∈ {0, 1}.

The correctness of ORE is defined as follows: For all SK
generated by Setup and any CT ,CT ′ generated by Encrypt
on plaintexts m,m′, it is required that Compare(CT ,CT ′) =
cmp(m,m′).

The best possible security of ORE, which is IND-OCPA,
was defined by Boneh et al. [7]. The simulation-based secu-
rity of ORE with additional leakage L was defined by
Chenette et al. [9].

C. MULTI-CLIENT ORDER-REVEALING ENCRYPTION
Multi-client order-revealing encryption (MC-ORE) is an
extension of ORE that supports comparison operations not
only between ciphertexts generated by a single client but
also between ciphertexts generated by different clients.
In MC-ORE, each client of an index j creates ciphertexts of
plaintexts by using his/her secret key SKj which is given by
a trusted center. Anyone can compare two ciphertexts CTj
and CT ′j generated by the single client by using a public
comparison algorithm as the same as in ORE. In addition,
a client can compare two ciphertexts CTj and CT ′k generated
by different clients with different indices j and k if the client
obtains a comparison key CKj,k from the trusted center. The
syntax of MC-ORE is given as follows.

Definition 2 (MC-ORE): An MC-ORE scheme consists
of six algorithms, Setup, GenKey, Encrypt, Compare,
GenCmpKey, and CompareMC, which are defined as
follows:
• Setup(1λ,N). The setup algorithm takes as input a secu-
rity parameter λ and the number of clients N ∈ N and
outputs a master key MK and public parameters PP.

• GenKey(j,MK ,PP). The key generation algorithm takes
as input a client index j ∈ [N ], the master key MK, and
the public parameters PP. It outputs a secret key SKj for
the client index j.

• Encrypt(m, SKj,PP). The encryption algorithm takes as
input a plaintext m ∈ D, the secret key SKj, and the
public parameters PP. It outputs a ciphertext CTj.

• Compare(CTj,CT ′j ,PP). The comparison algorithm
takes as input two ciphertexts CTj,CT ′j of the same
client index j and the public parameters PP. It outputs a
comparison bit b ∈ {0, 1}.

• GenCmpKey(j, k,MK ,PP). The comparison key gen-
eration algorithm takes as input two client indices
j, k, the master key MK, and the public parame-
ters PP. It outputs a comparison key CKj,k for two
clients.

• CompareMC(CTj,CT ′k ,CKj,k ,PP). The multi-client
comparison algorithm takes as input two ciphertexts
CTj,CT ′k of two client indices j, k, the comparison
key CKj,k , and the public parameters PP. It outputs a
comparison bit b ∈ {0, 1}.

The correctness of MC-ORE is defined as follows: For all
PP,MK , {SKj}j∈[N ] generated by Setup and GenKey, any
CKj,k generated by GenCmpKey, and any CTj,CT ′j ,CT

′′
k

generated by Encrypt on plaintexts m,m′,m′′, it is required
that:

Compare(CTj,CT ′j ,PP) = cmp(m,m′) and

CompareMC(CTj,CT ′′k ,CKj,k ,PP) = cmp(m,m′′).

The simulation-based security (SIM-security) model of
MC-ORE is defined with a leakage function which enables
quantifying any information inevitably leaked from the
scheme. Since the leakage is affected by whether comparison
keys are exposed, the leakage function LS is defined with
respect to a set S of the revealed comparison keys. In the
real experiment, an adversary can access a comparison key
generation oracle to obtain any comparison key as well as
an encryption oracle to obtain any ciphertext of its choice
(ji,mi) where ji is the client index corresponding to the i-th
message mi. Eventually, the adversary outputs the deducing
result from the given information. In the ideal experiment,
the adversary also can obtain any comparison key and any
ciphertext, but all values are generated by the simulator which
has only the information derived from the leakage function
LS ((j1,m1), . . . , (jq,mq)). The security is proved by showing
the outputs of two distributions are indistinguishable.

However, the leakage function is influenced by the order
of ciphertext queries and comparison key queries. When

VOLUME 6, 2018 45461



J. Eom et al.: MC-ORE

(j1,m1) and (j2,m2) are queried to the encryption oracle,
the simulator generates ciphertexts CTj1 and CTj2 with no
leakage if the comparison key CKj1,j2 was not exposed. After
that, if the adversary requests CKj1,j2 causing the leakage
LS ((j1,m1), (j2,m2)), it can identify that there is something
wrong in the simulation of CTj1 and CTj2 . That is, the sim-
ulator should have generated the ciphertexts by predicting
the leakage but it is difficult to simulate with such a flexi-
ble leakage function. In addition, when CKj1,j3 and CKj2,j3
are exposed, the simulator generates CTj1 and CTj2 with no
leakage since CKj1,j2 is not exposed. After that, if (j3,m3) is
queried to the encryption oracle, the simulator generates CTj3
with the leakage LS ((j1,m3), (j2,m3)). Again, the adversary
can notice that the simulation of CTj1 and CTj2 is wrong.
Thus, we define the static version of the SIM-security model
in which a set S of revealed comparison keys and the cipher-
text queries are initially fixed. The static SIM-security model
of MC-ORE with the leakage function LS is defined as
follows.
Definition 3 (Static SIM-Security With Leakage): For a

security parameter λ, let A be an adversary and B be a
simulator. Let S = {(j, k)}j,k∈[N ] be a set of index tuples
where CKj,k is revealed and let LS (·) be a leakage function.
The experiments of REALMC-OREA (λ) and SIMMC-ORE

A,B,L (λ) are
defined as follows:

REALMC-OREA (λ)
1.
(
stA, S, ((j1,m1), · · · , (jq,mq))

)
← A(1λ)

2. (PP,MK )← Setup(1λ,N )
3. CKj,k ← GenCmpKey(j, k,MK ,PP), ∀(j, k) ∈ S
4. for 1 ≤ i ≤ q,
CTji ← Encrypt(mi, SKji ,PP)

5. Output (CTj1 , · · · ,CTjq ) and stA

SIMMC-ORE
A,B,L (λ)

1.
(
stA, S, ((j1,m1), · · · , (jq,mq))

)
← A(1λ)

2. (stB,PP)← B(1λ,N )
3. CKj,k ← B(stB), ∀(j, k) ∈ S
4. for 1 ≤ i ≤ q,(

stB,CTji
)
← B

(
stB,LS ((j1,m1), · · · , (ji,mi))

)
5. Output (CTj1 , · · · ,CTjq ) and stA

We say that an MC-ORE scheme is ST-SIM secure if
for all polynomial-size adversaries A, there exists a
polynomial-size simulator B such that the outputs of the
two distributions REALMC-OREA (λ) and SIMMC-ORE

A,B,L (λ) are
indistinguishable.
Remark 4: For S = {(j, k)}j,k∈[N ] of index tuples where

the comparison key CKj,k is revealed, let LS be the following
leakage function:

LS
(
(j1,m1), · · · , (jq,mq)

)
=
{
cmp(mi′ ,mi) : 1 ≤ i′ < i ≤ q, ji′ = ji or (ji′ , ji) ∈ S

}
.

If an MC-ORE scheme is secure with leakage LS , then it is
IND-OCPA secure.

III. BASIC MC-ORE CONSTRUCTION
In this section, we propose our first construction of MC-ORE
with leakage and prove the ST-SIM security of our scheme.

A. ASYMMETRIC BILINEAR GROUPS
Let Gas be a group generator algorithm that takes as input
a security parameter λ and outputs a tuple (p,G, Ĝ,GT , e)
where p is a random prime and G, Ĝ, and GT be three cyclic
groups of prime order p. Let g and ĝ be generators of G and
Ĝ, respectively. The bilinear map e : G × Ĝ → GT has the
following properties:

1) Bilinearity: ∀u ∈ G,∀v̂ ∈ Ĝ and ∀a, b ∈ Zp,
e(ua, v̂b) = e(u, v̂)ab.

2) Non-degeneracy: ∃g ∈ G, ĝ ∈ Ĝ such that e(g, ĝ) has
order p in GT .

We say that G, Ĝ,GT are asymmetric bilinear groups if the
group operations inG, Ĝ, andGT as well as the bilinear map
e are all efficiently computable, but there are no efficiently
computable isomorphisms between G and Ĝ.
Assumption 5 (External Diffie-Hellman, XDH): Let

(p,G, Ĝ,GT , e) be a tuple randomly generated by Gas(1λ)
where p is a prime order of the groups. Let g, ĝ be random
generators of groups G, Ĝ, respectively. The XDH assump-
tion is that the decisional Diffie-Hellman(DDH) assumption
holds in G. That is, if the challenge tuple

D =
(
(p,G, Ĝ,GT , e), g, ĝ, ga, gb

)
and T

are given, no PPT algorithm A can distinguish T = T0 =
gab from T = T1 = gc with more than a negligible
advantage. The advantage of A is defined as AdvXDHA (λ) =∣∣Pr[A(D,T0) = 0]− Pr[A(D,T1) = 0]

∣∣ where the probabil-
ity is taken over random choices of a, b, c ∈ Zp.

B. CONSTRUCTION
Before we present our basicMC-ORE scheme, we first define
a leakage function for our scheme. Let N ∈ N be the
maximum number of clients and S = {(j, k)}j,k∈[N ] be a set of
client index tuples where a comparison key CKj,k is revealed.
A leakage function LS is defined as follows:

LS
(
(j1,m1), · · · , (jq,mq)

)
=
{
cmp(mi′ ,mi), ind(mi′ ,mi) :

1 ≤ i′ < i ≤ q, ji′ = ji or (ji′ , ji) ∈ S
}
.

If S = ∅, then LS becomes equal to the leakage function L
defined by Chenette et al. [9]. Otherwise, i.e. if S 6= ∅, some
comparison keys are revealed and it causes increased leakage.
Our basic MC-ORE scheme is described as follows:
MC-ORE.Setup(1λ,N ). This algorithm first generates bilin-

ear groups G, Ĝ,GT of prime order p with group
generators g ∈ G and ĝ ∈ Ĝ. It chooses a random
exponent sj ∈ Zp for all j ∈ [N ] and outputs a master
key MK = {sj}j∈[N ] and public parameters PP =
((p,G, Ĝ,GT , e), g, ĝ,H ) where H : {0, 1}∗→ G is a
full-domain hash function.

MC-ORE.GenKey(j,MK ,PP). Let MK = {s1, · · · ,
sN }. It outputs a secret key SKj = sj.

45462 VOLUME 6, 2018



J. Eom et al.: MC-ORE

MC-ORE.Encrypt(m, SKj,PP). Let m = x1 x2 · · ·
xn ∈ {0, 1}n and SKj = sj. For each i ∈ [n],
it computes Ci,0 = H (prefix(m, i)‖0 xi)sj and Ci,1 =
H (prefix(m, i)‖(0 xi + 1))sj where ‖ is the concatena-
tion of two bit strings. It outputs a ciphertext CTj =(
{Ci,0,Ci,1}i∈[n]

)
.

MC-ORE.Compare(CTj,CT ′j ,PP). For the same client
index j, let CTj = ({Ci,0,Ci,1}i∈[n]) and CT ′j =
({C ′i,0,C

′

i,1}i∈[n]). It first finds the smallest index i∗ such
that Ci∗,0 6= C ′i∗,0 by sequentially comparing Ci,0 and
C ′i,0. If such index i

∗ exists andCi∗,1 = C ′i∗,0 holds, then
it outputs 1. If such index i∗ exists and Ci∗,0 = C ′i∗,1,
then it outputs 0. If no such index i∗ exists, then it
outputs 0.

MC-ORE.GenCmpKey(j, k,MK ,PP). Let sj and sk be the
secret keys of client indices j and k . It chooses a random
exponent r ∈ Zp and computes K0 = ĝrsj ,K1 = ĝrsk .
It outputs a comparison key CKj,k = (K0,K1).

MC-ORE.CompareMC(CTj,CT ′k ,CKj,k ,PP). Let CTj =
({Ci,0,Ci,1}i∈[n]) and CT ′k = ({C ′i,0,C

′

i,1}i∈[n]). Let
CKj,k = (K0,K1). It first finds the smallest index i∗

such that e(Ci∗,0,K1) 6= e(C ′i∗,0,K0) by sequentially
comparing e(Ci,0,K1) and e(C ′i,0,K0). If such index i∗

exists and e(Ci∗,1,K1) = e(C ′i∗,0,K0) holds, then it
outputs 1. If such index i∗ exists and e(Ci∗,0,K1) =
e(C ′i∗,1,K0), then it outputs 0. If no such index i∗ exists,
then it outputs 0.

C. CORRECTNESS
To show the correctness of the above scheme, we define
encoding functions E0,E1 that take (i,m) as input and output
the encoded i-th bit of m = x1 · · · xn ∈ {0, 1}n as follows:

E0(i,m) = prefix(m, i)‖0 xi, E1(i,m)

= prefix(m, i)‖(0xi + 1).

The encoding functions satisfy the following conditions.
If m = m′, E0(i,m) = E0(i,m′) holds for all i ∈ [n].
If m < m′ and i∗ is the smallest index such that xi∗ 6= x ′i∗ ,
then E0(i,m) = E0(i,m′) holds for all i < i∗ and E0(i,m) 6=
E0(i,m′) holds for all i ≥ i∗, and especially, E1(i∗,m) =
E0(i∗,m′) holds.

Let SKj = sj be the secret key of a client index j and
CTj = ({Ci,0,Ci,1}i∈[n]) and CT ′j = ({C ′i,0,C

′

i,1}i∈[n]) be
ciphertexts on messages m = x1 x2 · · · xn ∈ {0, 1}n and
m′ = x ′1 x

′

2 · · · x
′
n ∈ {0, 1}

n. If m < m′, there must be the
smallest index i∗ such that xi = x ′i for all i < i∗ and xi∗ 6= x ′i∗ .
Thus, we have that

Ci,0 = H (E0(i,m))sj = H (E0(i,m′))sj = C ′i,0 ∀i < i∗

and

Ci∗,1 = H (E1(i∗,m))sj = H (E0(i∗,m′))sj = C ′i∗,0.

Let SKj = sj and SKk = sk be the secret keys of two
client indices j and k , and CKj,k = (K0,K1) = (ĝrsj , ĝrsk )
be the comparison key. Let CTj = ({Ci,0,Ci,1}i∈[n]) and

CT ′k = ({C ′i,0,C
′

i,1}i∈[n]) be ciphertexts on messages m and
m′. If m < m′, there must be the smallest index i∗ such that
xi = x ′i for all i < i∗ and xi∗ 6= x ′i∗ . Thus, we have that

e(Ci,0,K1) = e(H (E0(i,m))sj , ĝrsk ) = e(H (E0(i,m)), ĝ)rsjsk

= e(H (E0(i,m′))sk , ĝrsj ) = e(C ′i,0,K0) ∀i < i∗

and

e(Ci∗,1,K1) = e(H (E1(i∗,m))sj , ĝrsk ) = e(H (E1(i∗,m)), ĝ)rsjsk

= e(H (E0(i∗,m′))sk , ĝrsj ) = e(C ′i∗,0,K0).

D. SECURITY ANALYSIS
We prove the security of the basic MC-ORE scheme with the
leakage functionLS in the ST-SIM security model. We define
a sequence of experiments fromH0 corresponding to the real
experiment to H3 corresponding to the ideal experiment and
show that the outputs of two experiments are indistinguish-
able. At first, the ciphertexts of clients whose comparison
keys are not exposed are randomly generated. In the next
experiment, the ciphertexts of clients whose comparison keys
are exposed are generated with random values. Finally, in the
last experimentH3, the ciphertexts are simulated with respect
to the leakage functionLS , and consequentlyH3 corresponds
to the ideal experiment. The details are given as follows.
Theorem 6: The basic MC-ORE scheme is ST-SIM secure

with the leakage function LS in the random oracle model if
the XDH assumption holds.

Proof: We prove the security of the basic MC-ORE
scheme through a sequence of hybrid experiments. The first
experiment is defined as the real MC-ORE security exper-
iment and the last one is defined as the ideal experiment
with the leakage function LS in which the adversary has no
advantage. The hybrid experiments H0,H1,H2, and H3 are
defined as follows:
H0: This experiment corresponds to the real world experi-

ment.
H1: This experiment is similar to H0 except that the cipher-

text CTj such that (j, j′) /∈ S for any client index j′ is
generated by using random elements.

H2: This experiment is similar to H1 except that the cipher-
text CTj such that (j, j′) ∈ S for some client index j′ is
generated by using random elements.

H3: In this experiment, the ciphertexts are generated with the
leakage function LS and the rest are same to H2. This
experiment corresponds to the ideal world experiment.

From the following Lemmas 8, 9, and 10 that claim the
indistinguishability of the above experiments, we have that
H0 and H3 are computationally indistinguishable.

Before we present additional Lemmas for the proof of the
above theorem, we define the encoded messages E0(k,m) =
prefix(m, k)‖0xk and E1(k,m) = prefix(m, k)‖(0xk + 1)
where m = x1 · · · xn ∈ {0, 1}n. In addition, we introduce the
multi-external Diffie-Hellman assumption.
Assumption 7 (Multi-External Diffie-Hellman, mXDH):

Let (p,G, Ĝ,GT , e) be a tuple randomly generated by

VOLUME 6, 2018 45463



J. Eom et al.: MC-ORE

Gas(1λ) where p is a prime order of the groups. Let g, ĝ be
random generators of groups G, Ĝ, respectively. The mXDH
assumption is that if the challenge tuple

D =
(
(p,G, Ĝ,GT , e), g, ĝ, ga, {gbi,1 , · · · , gbi,n}i∈[t]

)
and T

are given, no PPT algorithm A can distinguish T =

T0 =
(
{gabi,1 , · · · , gabi,n}i∈[t]

)
from T = T1 ={

(gci,1 , · · · , gci,n}i∈[t]
)
with more than a negligible advan-

tage. The advantage of A is defined as AdvmXDHA (λ) =∣∣Pr[A(D,T0) = 0] − Pr[A(D,T1) = 0]
∣∣ where the

probability is taken over random choices of a, (bi,1, · · · , bi,n),
(ci,1, · · · , ci,n) ∈ Zp for all i ∈ [t].
This mXDH assumption is equivalent to the XDH assump-

tion since the challenge tuple of mXDH assumption can be
obtained from the XDH assumption by using the random
self-reducibility property [19].
Lemma 8: The hybrid experimentsH0 andH1 are compu-

tationally indistinguishable to the polynomial-time adversary
assuming that the mXDH assumption holds.

Proof: To prove this lemma, we additionally define
a sequence of hybrid experiments H0 = H0,0,H0,1, . . . ,

H0,q̃ = H1 for some q̃ as follows.

H0,µ: Let I = (j1, · · · , jq) be a tuple of challenge client index.
For all ji ∈ I such that (ji, ∗) /∈ S, let j∗1, · · · , j

∗

q̃ ∈ I be
distinct client indices where q̃ ≤ q. Let SIµ = {i ∈ [q] :
ji = j∗µ} be an index set of same client indices where
µ ∈ [q̃]. In this experiment, we change the generation
of the µ-th ciphertext set with the index set SIµ. If ` ≤
µ, the ciphertexts in the `-th ciphertext set with SI` are
changed to be random elements. Otherwise, the cipher-
texts in the `-th ciphertext set with SI` are generated by
running the normal encryption algorithm. Note that the
ciphertexts with the client index ji such that (ji, ∗) ∈ S
in H0,µ−1 and H0,µ are equally generated by running
the normal encryption algorithm.

Without loss of generality, we assume that (j∗µ, ∗) /∈ S. Sup-
pose there exists an adversary A that distinguishes H0,µ−1
fromH0,µ with non-negligible advantage. A simulator B that
solves the mXDH assumption using A is given: a challenge
tuple D =

(
(p,G, Ĝ,GT , e), g, ĝ, ga, {gbi,1 , · · · , gbi,2n}i∈[t]

)
and T =

(
{Xi,1, · · · ,Xi,2n}i∈[t]

)
. B interacts with A as

follows.
Let (stA, S, ((j1,m1), · · · , (jq,mq))) be the output ofA and

SIµ be the target index set of j∗µ. The simulator B first sets
the secret keys of all clients except the target client. For each
j 6= j∗µ, it chooses a random exponent sj and sets SKj = sj. For
the target client index j∗µ, it implicitly sets SKj∗µ = a. Now, B
can generate any comparison keyCKj,k for all tuple (j, k) ∈ S
since it knows secret keys sj and sk if (j, k) ∈ S.

To handle hash queries, B maintains a random oracle table
TH for the consistency of a simulation. Initially, B fixes some
hash queries for the simulation of the ciphertext with the chal-
lenge tuple (ji,mi) such that i ∈ SIµ, which is output of A.
For the first message m1, B sets hk,0 = gb1,2k−1 , hk,1 = gb1,2k
and adds the tuples (E0(k,m1), hk,0) and (E1(k,m1), hk,1) to

the table TH for all k ∈ [n]. For each message mi, B first
finds the biggest index d = ind(mi,mi′ ) for any i′ < i and
finds tuples (E0(k,mi′ ), h′k,0), (E1(k,mi′ ), h

′

k,1) from TH for
all k ∈ [d]. It sets hk,0 = h′k,0, hk,1 = h′k,1 for all k ∈ [d − 1]
since E0(k,mi′ ) = E0(k,mi) and E1(k,mi′ ) = E1(k,mi).
If cmp(mi,mi′ ) = 1, then B sets hd,0 = gbi,2d−1 , hd,1 = h′d,0
and otherwise, it sets hd,0 = h′d,1, hd,1 = gbi,2d . Next, it sets
hk,0 = gbi,2k−1 , hk,1 = gbi,2k for all k ∈ [d + 1, n]. It adds
the tuples (E0(k,mi), hk,0) and (E1(k,mi), hk,1) to the table
TH for all k ∈ [n]. After that, if a random oracle query for an
encoded message Eβ (k,m) is requested for each β ∈ {0, 1},
B first finds a tuple (Eβ (k,m), h) on the table TH . If the tuple
does not exist, then it chooses a random element h ∈ G and
adds the tuple (Eβ (k,m), h) to TH . Finally it gives h to A as
a response.

To handle the creation of ciphertexts, B carefully uses the
hash table and the challenge elements in the assumption. Let
((j1,m1), · · · , (jq,mq)) be the challenge tuples. If (ji, ∗) ∈
S, then B simply creates a ciphertext by running the MC-
ORE.Encrypt algorithmwith hash queries since it knows the
secret key sji . If (ji, ∗) /∈ S, then it means that i ∈ SI` for some
` ∈ [q̃]. B creates a set of ciphertexts with the index set SI`
for each ` ∈ [q̃] as follows:

• Case ` < µ: B creates the ciphertext for the index
i ∈ SI` sequentially. For the smallest index i ∈
SI`, it chooses random elements Rk,0,Rk,1 ∈ G for
all k ∈ [n] and creates CTji = ({Rk,0,Rk,1}k∈[n]).
For the next index i, it first finds the biggest index
d = ind(mi,mi′ ) for any i′ < i. It sets Ck,0 =
C ′k,0,Ck,1 = C ′k,1 for all k ∈ [d − 1] where
CTji′ = ({C ′k,0,C

′

k,1}k∈[n]). If cmp(mi,mi′ ) = 1, then
it chooses a random element Rd,0 ∈ G and sets Cd,0 =
Rd,0,Cd,1 = C ′d,0. Otherwise, it chooses a random ele-
mentRd,1 ∈ G and setsCd,0 = C ′d,1,Cd,1 = Rd,1. Next,
it chooses random elements Rk,0,Rk,1 ∈ G and sets
Ck,0 = Rk,0,Ck,1 = Rk,1 for all k ∈ [d+1, n]. It creates
the ciphertext CTji = ({Ck,0,Ck,1}k∈[n]). At last, it cre-
ates the `-th ciphertext set CTSI` = ({CTji}i∈SI` ).

• Case ` = µ: B creates the ciphertext for the index
i ∈ SIµ sequentially. For the smallest index i ∈ SI`,
B sets Ck,0 = X1,2k−1,Ck,1 = X1,2k for all k ∈ [n]
and creates the ciphertext CTji = ({Ck,0,Ck,1}k∈[n]).
For the next index i, B first finds the biggest index
d = ind(mi,mi′ ) for any i′ < i. It sets Ck,0 =
C ′k,0,Ck,1 = C ′k,1 for all k ∈ [d − 1] where CTji′ =
({C ′k,0,C

′

k,1}k∈[n]). If cmp(mi,mi′ ) = 1, then it sets
Cd,0 = Xi,2d−1,Cd,1 = C ′d,0 and otherwise, it sets
Cd,0 = C ′d,1,Cd,1 = Xi,2d . Next, it sets Ck,0 =
Xi,2k−1,Ck,1 = Xi,2k for all k ∈ [d+1, n]. It creates the
ciphertext CTji = ({Ck,0,Ck,1}k∈[n]). At last, it creates
the µ-th ciphertext set CTSIµ = ({CTji}i∈SIµ ). Note that
it does not know the secret key a.

• Case ` > µ: It creates the ciphertext set CTSI` by
running the MC-ORE.Encrypt algorithm with hash
queries.

45464 VOLUME 6, 2018



J. Eom et al.: MC-ORE

If T =
(
(gab1,1 , · · · , gab1,2n ), . . . , (gabt,1 , · · · , gabt,2n )

)
,

then CTSIµ are ciphertexts in H0,µ−1. Otherwise, CTSIµ
are ciphertexts in H0,µ. By the mXDH assumption,
two experiments H0,µ−1 and H0,µ are computationally
indistinguishable.
Lemma 9: The hybrid experimentsH1 andH2 are compu-

tationally indistinguishable to the polynomial-time adversary
assuming that the mXDH assumption holds.

Proof: We additionally define a sequence of hybrid
experiments H1 = H1,0,H1,1, · · · ,H1,q̃ = H2 for some q̃
as follows.
H1,µ: Let I = (j1, · · · , jq) be a tuple of challenge client

index and let j, j′ ∈ I be co-related indices if
(j, j′) ∈ S or there exist {ki}i∈[n] ⊆ I such that
(j, k1), (k1, k2), · · · , (kn−1, kn), (kn, j′) ∈ S for any n ∈
[q− 2]. Let RIµ = {i ∈ [q] : jis are co-related indices}
be an index set of co-related client indices where µ ∈
[q̃]. In this experiment, we change the generation of the
µ-th ciphertext set with the index set RIµ. If ` ≤ µ,
the ciphertexts in the `-th ciphertext set with RI` are
changed to be random elements. Otherwise, the cipher-
texts in the `-th ciphertext set withRI` are generated by
running the normal encryption algorithm. Note that the
ciphertexts with the client index ji such that (ji, ∗) /∈ S
in H1,µ−1 and H1,µ are equally generated by using
random elements.

Suppose there exists an adversary A that distinguishes
H1,µ−1 from H1,µ with non-negligible advantage. A simu-
lator B that solves the mXDH assumption using A is given:
a challenge tuple D =

(
(p,G, Ĝ,GT , e), g, ĝ, ga, {gbi,1 , · · · ,

gbi,2n}i∈[t]
)
and T =

(
{Xi,1, · · · ,Xi,2n}i∈[t]

)
. B interacts with

A as follows.
Let (stA, S, ((j1,m1), · · · , (jq,mq))) be the output ofA and

RIµ be the target index set. The simulator B first sets the
secret keys of clients as follows. For each j = ji, if i /∈ RIµ,
it chooses a random exponent sj ∈ Zp and sets SKj = sj.
Otherwise, it chooses a random exponent sj ∈ Zp and implic-
itly sets SKj = asj. Then, B can generate a comparison key
CKj,k = (ĝrsj , ĝrsk ) for each tuple (j, k) ∈ S with the help of
a random exponent r ∈ Zp, though it does not know a.
To handle hash queries, B maintains a random oracle

table TH for the consistency of a simulation. This simulation
is same to the proof of the Theorem 8 except that B fixes
some hash queries for the simulation of the ciphertext with
the challenge tuple (ji,mi) such that i ∈ RIµ.
To handle the creation of ciphertexts, B carefully uses the

hash table and the challenge elements in the assumption. Let
((j1,m1), · · · , (jq,mq)) be the challenge tuples. If (ji, ∗) /∈ S,
then B creates a ciphertext by using random elements as in
H1,µ−1. If (ji, ∗) ∈ S, then it means that i ∈ RI` for some
` ∈ [q̃]. B creates a set of ciphertexts with the index set RI`
for each ` ∈ [q̃] as follows:
• Case ` < µ: B creates the ciphertext for the index
i ∈ RI` sequentially. For the smallest index i ∈ RI`,
it chooses random elements Rk,0,Rk,1 ∈ G and com-

putes Ck,0 = R
sji
k,0,Ck,1 = R

sji
k,1 for all k ∈ [n].

It creates CTji = ({Ck,0,Ck,1}k∈[n]). For the next index
i, B first finds the biggest index d = ind(mi,mi′ ) for
any i′ < i and computes s = sji/sji′ . It computes
Ck,0 = C ′sk,0,Ck,1 = C ′sk,1 for all k ∈ [d − 1] where
CTji′ = ({C ′k,0,C

′

k,1}k∈[n]). If cmp(mi,mi′ ) = 1, then
it chooses a random element Rd,0 ∈ G and computes
Cd,0 = R

sji
d,0,Cd,1 = C ′sd,0. Otherwise, it chooses

a random element Rd,1 ∈ G and computes Cd,0 =
C ′sd,1,Cd,1 = R

sji
d,1. Next, it chooses random elements

Rk,0,Rk,1 ∈ G and computes Ck,0 = R
sji
k,0,Ck,1 = R

sji
k,1

for all k ∈ [d + 1, n]. It creates the ciphertext CTji =
({Ck,0,Ck,1}k∈[n]). At last, it creates the `-th ciphertext
set CTRI` = {CTji}i∈RI` .

• Case ` = µ: B creates the ciphertext for the index
i ∈ RIµ sequentially. For the smallest index i ∈ RIµ, B
computes Ck,0 = X

sji
1,2k−1,Ck,1 = X

sji
1,2k for all k ∈ [n]

and creates the ciphertextCTji = ({Ck,0,Ck,1}k∈[n]). For
the next index i, B first finds the biggest index d =
ind(mi,mi′ ) for any i′ < i and it computes s = sji/sji′ .
It computes Ck,0 = C ′sk,0,Ck,1 = C ′sk,1 for all k ∈ [d −
1] where CTji′ = ({C ′k,0,C

′

k,1}k∈[n]). If cmp(mt ,mt ′ ) =
1, then B computes Cd,0 = X

sji
i,2d−1,Cd,1 = C ′sd,0 and

otherwise, it computes Cd,0 = C ′sd,1,Cd,1 = X
sji
i,2d .

Next, it computes Ck,0 = X
sji
i,2k−1,Ck,1 = X

sji
i,2k for all

k ∈ [d + 1, n]. Then, it creates the ciphertext CTji =
({Ck,0,Ck,1}k∈[n]). At last, it creates the µ-th ciphertext
set CTRIµ = {CTji}i∈RIµ . Note that it does not know the
secret key a.

• Case ` > µ: It creates the ciphertext set CTRI` by
running the MC-ORE.Encrypt algorithm with hash
queries.

If T =
(
(gab1,1 , · · · , gab1,2n ), . . . , (gabt,1 , · · · , gabt,2n )

)
, then

CTRIµ are ciphertexts in H1,µ−1. Otherwise, CTRIµ are
ciphertexts in H1,µ. By the mXDH assumption, two exper-
iments H1,µ−1 and H1,µ are computationally indistinguish-
able.
Lemma 10: The hybrid experiments H2 and H3 are

indistinguishable to the polynomial-time adversary with the
leakage function LS in the random oracle model.

Proof: Suppose there exists an adversary A that
distinguishes H2 from H3 with non-negligible advantage.
We construct an efficient simulator B for which the two
distributions H2 and H3 are statistically indistinguishable.
Let (stA, S, ((j1,m1), · · · , (jq,mq))) be the output of A. B

first outputs random public parameters PP with the initial
state stB. It selects a random secret key SKj = sj ∈ Zp for
each client index j ∈ [N ] and it can generate any comparison
key CKj,k for (j, k) ∈ S since it knows all secret keys.
To handle hash queries, B maintains a random oracle table

TH for consistency of the simulation. If a random oracle query
for Eβ (k,m) is requested for each β ∈ {0, 1}, B first finds the
tuple (Eβ (k,m), h) from the table TH . If the tuple does not
exist, then it chooses a random element h ∈ G and adds the
tuple (Eβ (k,m), h) to TH . Finally it gives h toA as a response.

VOLUME 6, 2018 45465



J. Eom et al.: MC-ORE

To handle the creation of ciphertexts, B also maintains a
ciphertext table TCT for consistency of the simulation. Let
I = (j1, · · · , jq) be a tuple of challenge client index. For all
ji ∈ I such that (ji, ∗) /∈ S, let j∗1, · · · , j

∗

q̃1
∈ I be distinct client

indices and SIµ = {i ∈ [q] : ji = j∗µ} be an index set of same
client indices where µ ∈ [q̃1]. For all ji ∈ I such that (ji, ∗) ∈
S, let RIµ = {i ∈ [q] : jis are co-related indices} be an index
set of co-related client indices where µ ∈ [q̃2]. B simulates
the creation of a set of ciphertexts with a client index set
SIµ or RIµ by using stB and LS ((j1,m1), · · · , (jq,mq)) as
follows:
• For the creation of the ciphertexts with each set SIµ, B
initiates the ciphertext table TCT . For the smallest index
i ∈ SIµ, B chooses random elements (ck,0, ck,1) ∈
G × G and sets (Ck,0,Ck,1) = (ck,0, ck,1) for all
k ∈ [n]. It adds the tuple (i, (c1,0, c1,1), . . . , (cn,0, cn,1))
to TCT and creates CTji = ({Ck,0,Ck,1}k∈[n]). For
the next index i ∈ SI`, it creates the ciphertext
sequentially as follows. It first finds the biggest index
b = ind(mi,mi′ ) for any i′ < i and then finds a
tuple (i′, (c′1,0, c

′

1,1), . . . , (c
′

n,0, c
′

n,1)) from the table TCT .
If b = n + 1, it sets (ck,0, ck,1) = (c′k,0, c

′

k,1) for all
k ∈ [n]. If not, it proceeds the following steps 1)− 3):
1) It sets (ck,0, ck,1) = (c′k,0, c

′

k,1) for all k ∈ [b− 1].
2) It chooses random elements (ck,0, ck,1) ∈ G × G

for all k ∈ [b+ 1, n].
3) If cmp(mt ,mt ′ ) = 1, it sets cb,1 = c′b,0 and

chooses a random element cb,0 ∈ G. Otherwise,
it sets cb,0 = c′b,1 and chooses a random element
cb,1 ∈ G.

Then, B creates CTji = ({ck,0, ck,1}k∈[n]) and adds
the tuple (i, (c1,0, c1,1), . . . , (cn,0, cn,1)) to TCT . At last,
it creates the ciphertext set CTSIµ = ({CTji}i∈SIµ ).

• For the creation of the ciphertext with each set RIµ, B
initiates the ciphertext table TCT . For the smallest index
i ∈ RIµ, B chooses random elements (ck,0, ck,1) ∈
G × G and computes (Ck,0,Ck,1) = (c

sji
k,0, c

sji
k,1) for all

k ∈ [n]. It adds the tuple (i, (c1,0, c1,1), . . . , (cn,0, cn,1))
to TCT and creates CTji = ({Ck,0,Ck,1}k∈[n]). For
the next index i ∈ RIµ, it creates the ciphertext
sequentially as follows. It first finds the biggest index
b = ind(mi,mi′ ) for any i′ < i and then finds a
tuple (i′, (c′1,0, c

′

1,1), . . . , (c
′

n,0, c
′

n,1)) from the table TCT .
If b = n + 1, it sets (ck,0, ck,1) = (c′k,0, c

′

k,1) for
all k ∈ [n]. If not, it proceeds the steps 1) − 3)
described in the creation of the CTSIµ . Then, B com-
putes (Ck,0,Ck,1) = (c

sji
k,0, c

sji
k,1) for all k ∈ [n].

It creates CTji = ({Ck,0,Ck,1}k∈[n]) and adds the tuple
(i, (c1,0, c1,1), . . . , (cn,0, cn,1)) to TCT . At last, it creates
the ciphertext set CTRIµ = ({CTji}i∈RIµ ).

CORRECTNESS OF THE SIMULATION
To show the correctness of the simulation, we prove that the
distributions

(
(CTSI1 , . . . ,CTSIq̃1 ), (CTRI1 , . . . ,CTRIq̃2 )

)
and

(
(CTSI1 , . . . ,CTSIq̃1 ), (CTRI1 , . . . ,CTRIq̃2 )

)
of the

ciphertexts output inH2 andH3 are statistically indistinguish-
able and the outputs of random oracle are properly simulated.
We have to show that the following conditions hold.

• ∀` ∈ [q̃1],∀`′ ∈ [q̃2], CTSI` and CTRI`′ are distributed
independently.

• ∀` ∈ [q̃1],∀`′ ∈ [q̃2], CTSI` ≡ CTSI` and CTRI`′ ≡
CTRI`′ .

The first condition is simply proved since each ciphertext
for SI` and RI`′ are simulated independently. Next, we use
induction to prove that the second condition holds. For each
` ∈ [q̃1] (or ` ∈ [q̃2]), let CTSI` = (CT1, · · · ,CTt ) and
CTSI` = (CT 1, · · · ,CT t ) (or CTRI` = (CT1, · · · ,CTt ) and
CTRI` = (CT 1, · · · ,CT t )). Obviously, the statement is true
for i = 1. Assume that it is true for i − 1 and we prove that
(CT1, . . . ,CTi) ≡ (CT 1, . . . ,CT i). The detailed description
is provided in Appendix.

In addition, suppose that the tuple (E0(k,m), h) is in TH
and (i, (c1,0, c1,1), . . . , (cn,0, cn,1)) is in TCT for some i such
that mi = m. By the Lemmas 8 and 9, A can not find out
that h and ck,0 are different. This completes the correctness
of simulation.

E. EXTENSIONS
We present several extensions of our basic MC-ORE scheme
to overcome their shortcomings.

1) REDUCING TRUST ON THE CENTER
The basic MC-ORE scheme has the problem that a cen-
ter should be fully trusted because it generates the secret
keys of individual clients and comparison keys of differ-
ent clients. The existence of a trusted center is very strong
constraint and it is costly to ensure the security of such a
center in reality. One way to reduce trust on the center is
that each client himself selects a secret key and securely
transfers the corresponding information to the center instead
of having the center owns the secret keys. That is, each
client chooses its secret key sj and securely sends ĝsj to the
center, and then the center can generate a comparison key
CK = ((ĝsj )r , (ĝsk )r ) by using ĝsj , ĝsk received from clients
and a random exponent r . In this case, the center only can
generate comparison keys, but it can not generate client’s
ciphertexts since it does not have the secret keys of individual
clients.

2) REMOVING THE TRUSTED CENTER
Unlike the previous ORE schemes, our basic MC-ORE
scheme requires a center to generate secret keys of individ-
ual clients and comparison keys between different clients.
Although we suggested a method to reduce trust on the
center, we cannot remove the ability of the center to gen-
erate comparison keys. Note that if a comparison key is
exposed, a malicious client can compare any ciphertexts
between two clients by using the exposed comparison key.
One idea to securely generate a comparison key even after
the center is completely removed is that two clients perform

45466 VOLUME 6, 2018



J. Eom et al.: MC-ORE

a cryptographic protocol to share the same random value ĝr

which is used to create ĝrsj and ĝrsk . The simplest way to
non-interactively share the random value is to use a hash func-
tion. That is, two clients with indices j and k generateH (j‖k)sj
andH (j‖k)sk respectively, and transmit these values to a third
client. Note that these values are a valid comparison key since
H (j‖k) corresponds to ĝr for some random exponent r .

IV. ENHANCED MC-ORE CONSTRUCTION
In this section, we propose our second construction of
MC-ORE with reduced leakage and prove the ST-SIM secu-
rity of our scheme.

A. CONSTRUCTION
In the basic MC-ORE scheme, both ciphertext comparisons
in a single client and between different clients leak the most
significant differing bit as well as the result of the compar-
ison. Although there are some ORE schemes with reduced
leakage [8], [10], it is difficult to extend those schemes to
support comparisons on ciphertexts generated by different
clients. To build an MC-ORE scheme with reduced leakage,
we divide the ciphertext into independent two parts such that
the first part only supports ciphertext comparisons in a single
client, and the second part only supports ciphertext com-
parisons between different clients. For the first part, we use
any ORE scheme with reduced leakage. For the second part,
we construct an encrypted ORE (EORE) scheme by modi-
fying our basic MC-ORE scheme so that it can not be used
for ciphertext comparisons in a single client. If the second
part has no leakage until a comparison key is provided, only
the reduced leakage of the ORE scheme affects the overall
leakage.

1) ENCRYPTED ORE
We first construct an EORE scheme by modifying our basic
MC-ORE scheme. The syntax of EORE is very similar to
that of MC-ORE defined in Definition 2 except that the
comparison algorithm is excluded. The ciphertext of the
EORE scheme is created by first generating a ciphertext of
the basic MC-ORE scheme and then encrypting it with a
public-key encryption scheme. The comparison key of the
EORE scheme includes additional elements that decrypt the
encrypted ciphertext to obtain the comparison form of the
basic MC-ORE scheme. The ciphertext comparison is per-
formed in a similar manner to the basic MC-ORE scheme.

Let S = {(j, k)}j,k∈[N ] be a set of index tuples where the
comparison key CKj,k is revealed. A leakage function LEORES
is defined as follows:

LEORES
(
(j1,m1), · · · , (jq,mq)

)
=
{
cmp(mi′ ,mi), ind(mi′ ,mi) : 1 ≤ i′< i≤q, (ji′ , ji) ∈ S

}
.

Our EORE scheme with leakage LEORES is given as follows:
EORE.Setup(1λ,N ). This algorithm first generates bilin-

ear groups G, Ĝ,GT of prime order p with group
generators g ∈ G and ĝ ∈ Ĝ. It chooses ran-

dom exponents sj, aj ∈ Zp and computes hj = gaj

and ĥj = ĝaj for all j ∈ [N ]. It outputs a mas-
ter key MK =

(
{sj, ĥj}j∈[N ]

)
and public parameters

PP =
(
(p,G, Ĝ,GT , e), g, ĝ, {hj}j∈[N ],H

)
where H :

{0, 1}∗→ G is a full-domain hash function.
EORE.GenKey(j,MK ,PP). Let MK = ({s1, · · · , sN },

{ĥ1, · · · , ĥN }). It outputs a secret key SKj = sj.
EORE.Encrypt(m, SKj,PP). Let m = x1 x2 · · · xn ∈

{0, 1}n and SKj = sj. For each i ∈ [n], it com-
putes Fi,0 = H (prefix(m, i)‖0xi)sj and Fi,1 =

H (prefix(m, i)‖(0 xi + 1))sj . For each Fi,b, it selects
a random exponent t ∈ Zp and computes Ci,b,0 =
Fi,bhtj and Ci,b,1 = gt . It outputs a ciphertext CTj =(
{Ci,b,0,Ci,b,1}i∈[n],b∈{0,1}

)
.

EORE.GenCmpKey(j, k,MK ,PP). Let sj and sk be the
secret keys of client indices j and k . It chooses a random
exponent r ∈ Zp and computesK0,0 = ĝrsj ,K0,1 = ĥ

rsj
k

and K1,0 = ĝrsk ,K1,1 = ĥrskj . It outputs the comparison
key CKj,k = ({Kb,0,Kb,1}b∈{0,1}).

EORE.CompareMC(CTj,CT ′k ,CKj,k ,PP). Let
CTj = ({Ci,b,0,Ci,b,1}) and CT ′k = ({C ′i,b,0,C

′

i,b,1})
for i ∈ [n] and b ∈ {0, 1}. Let CKj,k =

({Kb,0,Kb,1}b∈{0,1}). It first finds the smallest index i∗

such that e(Ci∗,0,0,K1,0)/
e(Ci∗,0,1,K1,1) 6= e(C ′i∗,0,0,K0,0)/e(C ′i∗,0,1,K0,1) by
sequentially comparing these values from an index
0 to n. If such index i∗ exists and e(Ci∗,1,0,K1,0)/
e(Ci∗,1,1,K1,1) = e(C ′i∗,0,0,K0,0)/e(C ′i∗,0,1,K0,1)
holds, it outputs 1. If such index i∗ exists and
e(Ci∗,0,0,K1,0)/e(Ci∗,0,1,K1,1) = e(C ′i∗,1,0,K0,0)/
e(C ′i∗,1,1,K0,1), then it outputs 0. If no such index i∗

exists, then it outputs 0.
Remark 11: The leakage function LEORES is same to the

leakage function LS of the basic MC-ORE scheme except
that it excludes the condition ji′ = ji. It means that the
basic MC-ORE scheme leaks the comparison result between
ciphertexts of a single client, but the EORE scheme does not
leak any information before the comparison key is revealed.

2) MULTI-CLIENT ORE
Now we construct an enhanced MC-ORE scheme by com-
posing any ORE scheme with reduced leakage and the above
EORE scheme. As mentioned before, the ciphertext of the
enhanced MC-ORE scheme consists of two parts such that
the first part is created from the ORE scheme and the second
part is created from the EORE scheme.

Let LOREj be the leakage function of the underlying ORE
scheme corresponding to the client index j and LEORES be the
leakage function of our EORE scheme. A leakage function
LMC-ORES is defined as follows:

LMC-ORES
(
(j1,m1), · · · , (jq,mq)

)
=
{
LOREj (mi1 , · · · ,miρ ) ∪ L

EORE
S : j = ji1 = · · · = jiρ

}
.

where the sequence setsMj = {mi1 , · · · ,miρ } satisfy
⋂
Mj =

∅ and
⋃
Mj = {m1, · · · ,mq}. Here, if S = ∅, meaning that

VOLUME 6, 2018 45467



J. Eom et al.: MC-ORE

any comparison key is not revealed, then LMC-ORES becomes
equal to the reduced leakage functions {LOREj } for each j.
Otherwise, if S 6= ∅, to achieve reducing the leakage,
the ORE scheme is restricted from having no leakage beyond
the leakage of the EORE scheme for the same client. That
is, LMC-ORES will be at most LEORES . Our MC-ORE scheme
with leakage LMC-ORES that combines an ORE scheme and
our EORE scheme is described as follows:

MC-ORE.Setup(1λ,N ). It obtains MKEORE and PPEORE
by running EORE.Setup(1λ,N ) and outputs MK =
MKEORE and PP = PPEORE .

MC-ORE.GenKey(j,MK ,PP). It runs ORE.Setup
(1λ) andEORE.GenKey(j,MK ,PP) to obtain SKORE,j
and SKEORE,j, respectively. It outputs a secret key
SKj = (SKORE,j, SKEORE,j).

MC-ORE.Encrypt(m, SKj,PP). Let SKj = (SKORE,j,
SKEORE,j). It first obtains OCj and ECj by run-
ning ORE.Encrypt(m, SKORE,j) and EORE.Encrypt
(m, SKEORE,j,PP) respectively. It outputs a ciphertext
CTj = (OCj,ECj).

MC-ORE.Compare(CTj,CT ′j ,PP). Let CTj = (OCj,ECj)
and CT ′j = (OC ′j ,EC

′
j ) for the same client index j.

It returns ORE.Compare(OCj,OC ′j ).
MC-ORE.GenCmpKey(j, k,MK ,PP). Let SKj and SKk

be the secret keys for the client indices j and k .
It outputs the comparison key CKj,k by running
EORE.GenCmpKey(j, k,MK ,PP).

MC-ORE.CompareMC(CTj,CT ′k ,CKj,k ,PP). Let CTj =
(OCj,ECj) andCT ′k = (OC ′k ,EC

′
k ). It returns the result

of EORE.CompareMC(ECj,EC ′k , CKj,k ,PP).

B. CORRECTNESS
For the ciphertext comparisons in a single client, the correct-
ness follows from that of the underlying ORE scheme. For
the ciphertext comparisons between different clients, the cor-
rectness is shown as follows. Let SKj = sj and SKk = sk
be the secret keys of client indices j and k , and CKj,k =
(K0,0,K0,1,K1,0,K1,1) = (ĝrsj , ĥ

rsj
k , ĝ

rsk , ĥrskj ) be the com-
parison key of (j, k). Let ECj =

(
{Ci,b,0,Ci,b,1}i∈[n],b∈{0,1}

)
and EC ′k =

(
{C ′i,b,0,C

′

i,b,1}i∈[n],b∈{0,1}
)
be ciphertexts on

messages m and m′. If m < m′, there must be a smallest
index i∗ such that xi = x ′i for all i < i∗ and xi∗ 6= x ′i∗ . Then
we have that

e(Ci,0,0,K1,0)/e(Ci,0,1,K1,1)

= e(H (E0(i,m))sjhtj , ĝ
rsk )/e(gt , ĥrskj )

= e(H (E0(i,m′))skht
′

k , ĝ
rsj )/e(gt

′

, ĥ
rsj
k )

= e(C ′i,0,0,K0,0)/e(C ′i,0,1,K0,1) ∀i < i∗,

× e(Ci∗,1,0,K1,0)/e(Ci∗,1,1,K1,1)

= e(H (E1(i∗,m))sjhtj , ĝ
rsk )/e(gt , ĥrskj )

= e(H (E0(i∗,m′))skht
′

k , ĝ
rsj )/e(gt

′

, ĥ
rsj
k )

= e(C ′i∗,0,0,K0,0)/e(C ′i∗,0,1,K0,1).

C. SECURITY ANALYSIS
We now prove the security of the enhanced MC-ORE scheme
with the leakage function LMC-ORES in the ST-SIM security
model. We begin by giving a high-level overview of the
security proof. We define a sequence of experiments from
H0 corresponding to the real experiment to H4 correspond-
ing to the ideal experiment and show that the outputs of
two experiments are indistinguishable. Since the ciphertext
is divided into two parts: the ORE ciphertext OC , and the
EORE ciphertext EC , the hybrid experiments are also defined
separately. At first, the ORE ciphertexts are simulated only
with the leakage functions LOREj . In the next experiment,
the EORE ciphertexts of clients whose comparison keys
are not exposed are randomly generated. Then, in the next
experiment, the EORE ciphertexts of clients whose compar-
ison keys are exposed are generated with random values.
Finally, in the last experiment H4, the EORE ciphertexts of
clients whose comparison keys are exposed are simulated
with respect to the leakage functionLEORES , and consequently
H4 corresponds to the ideal experiment. The details are given
as follows.
Theorem 12: The enhanced MC-ORE scheme is ST-SIM

secure with the leakage functionLMC-ORES in the random ora-
cle model if the ORE scheme is SIM secure with the leakage
function LORE , the basic MC-ORE scheme is ST-SIM secure
with the leakage functionLS , and the XDH assumption holds.

Proof: We prove the security of our enhanced MC-ORE
scheme through a sequence of hybrid experiments. The first
experiment is defined as the real MC-ORE security experi-
ment and the last one is defined as the ideal experiment with
the leakage function LMC-ORES in which the adversary has no
advantage. The hybrid experiments H0,H1,H2,H3, and H4
are defined as follows:
H0: This experiment corresponds to the real world experi-

ment.
H1: In this experiment, the ORE ciphertexts OCj are gener-

ated with the leakage function LOREj and the rest are
same to H0. We have that H0 and H1 are indistin-
guishable if the underlying ORE scheme is secure with
respect to the leakage function LORE .

H2: This experiment is similar to H1 except that the EORE
ciphertext ECj such that (j, j′) 6∈ S for any client index
j′ is generated by using random elements.

H3: This experiment is similar to H2 except that the
EORE ciphertext ECj such that (j, j′) ∈ S for
some client indices j′ is generated by using random
elements.

H4: In this experiment, the EORE ciphertext ECji such that
(ji, j) ∈ S for some client indices j is generated with
the leakage function LEORES and the rest are same to
H3. This experiment corresponds to the ideal world
experiment.

From the following Lemmas 13, 14, 15, and 16 that claim
the indistinguishability of the experiments, we have that H0
and H4 are computationally indistinguishable.

45468 VOLUME 6, 2018



J. Eom et al.: MC-ORE

Lemma 13: The hybrid experiments H0 and H1 are
computationally indistinguishable to the polynomial-time
adversary if the underlying ORE scheme is SIM secure with
the leakage function LORE .

Proof: The proof of this lemma is simple since a
ciphertext CTj consists of two independent partOCj and ECj.
A simulator can use the simulator of the ORE scheme for
the generation of OCj and it can generate other elements
in ECj by the randomly chosen master key of an EORE
scheme.
Lemma 14: The hybrid experiments H1 and H2 are com-

putationally indistinguishable to the polynomial-time adver-
sary assuming that the mXDH assumption holds.

Proof: To prove this lemma, we define a sequence of
hybrid experiments H1 = H1,0,H1,1, · · · ,H1,q = H2 as
follows.

H1,µ: In this experiment, we change the generation of the
µ-th ciphertext if (jµ, ∗) /∈ S. If i ≤ µ and (ji, ∗) /∈ S,
the i-th EORE ciphertext ECji is generated by using
random elements. Otherwise, the i-th EORE ciphertext
ECji is generated by running the normal encryption
algorithm. Note that H1,µ−1 and H1,µ are trivially
equal if (ji, ∗) ∈ S.

Without loss of generality, we assume that (jµ, ∗) /∈ S. Sup-
pose there exists an adversary A that distinguishes H1,µ−1
fromH1,µ with non-negligible advantage. A simulator B that
solves the mXDH assumption using A is given: a challenge
tuple D =

(
(p,G, Ĝ,GT , e), g, ĝ, ga, gb1 , · · · , gb2n )

)
and

T = (X1, · · · ,X2n). B interacts with A as follows.
Let (stA, S, ((j1,m1), · · · , (jq,mq))) be the output of A.

The simulator B first sets the public parameters correspond-
ing to the client index. For each j ∈ [N ], if j 6= jµ, S chooses
a random exponent αj ∈ Zp and computes hj = gαj . For the
target client jµ, it sets hjµ = ga. Next, for each j ∈ [N ], B
chooses a random exponent sj ∈ Zp and sets the secret key
SKj = sj. It can generate the comparison key CKj,k for any
tuple (j, k) ∈ S since it knows secret keys sj and sk .
Let (ji,mi) be the i-th ciphertext query for a client index

ji. Let E0(k,m) = prefix(m, k)‖0xk and E1(k,m) =
prefix(m, k)‖(0xk + 1) be encoded messages where m =
x1 · · · xn ∈ {0, 1}n. If (ji, ∗) ∈ S, then B simply creates a
ciphertext by running the EORE.Encrypt algorithm since it
know the secret key sji . If (ji, ∗) /∈ S, then B creates the i-th
EORE ciphertext ECji as follows:

• Case i < µ: It chooses random elements Rk,0 =
(Rk,0,0,Rk,1,0),Rk,1 = (Rk,0,1,Rk,1,1) ∈ G × G for all
k ∈ [n] and creates ECji = ({Rk,0,Rk,1}k∈[n]).

• Case i = µ: For each β ∈ {0, 1}, it computes Fk,β =
H (Eβ (k,mi))sji for all k ∈ [n]. For each Fk,0 and Fk,1,
it sets Ck,0 = (Fk,0 · X2k−1, gb2k−1 ) and Ck,1 = (Fk,1 ·
X2k , gb2k ) and creates ECji = ({Ck,0,Ck,1}k∈[n]).

• Case i > µ: It creates the EORE ciphertext ECji by
running the EORE.Encrypt algorithm.

If T = (gab1 , · · · , gab2n ), then ECjµ is a ciphertext inH1,µ−1.
Otherwise, ECjµ is a ciphertext in H1,µ. By the mXDH

assumption, two experiments H1,µ−1 and H1,µ are compu-
tationally indistinguishable.
Lemma 15: The hybrid experiments H2 and H3 are com-

putationally indistinguishable to the polynomial-time adver-
sary assuming that the mXDH assumption holds.

Proof: We additionally define a sequence of hybrid
experiments H2 = H2,0,H2,1, · · · ,H2,q̃ = H3 for some q̃
as follows.

H2,µ: Let I = (j1, · · · , jq) be a tuple of challenge client index
and RIµ = {i ∈ [q] : jis are co-related indices} be an
index set of co-related client indices where µ ∈ [q̃].
In this experiment, we change the generation of the µ-
th EORE ciphertext set with the index set RIµ. If ` ≤
µ, the EORE ciphertexts in the `-th ciphertext set with
RI` are changed to be random elements. Otherwise,
the ciphertexts in the `-th ciphertext set with RI` are
generated by running the normal encryption algorithm.
Note that the ciphertexts with the client index ji such
that (ji, ∗) /∈ S in H2,µ−1 and H2,µ are equally gener-
ated by using random elements.

Suppose there exists an adversary A that distinguishes
H2,µ−1 from H2,µ with non-negligible advantage. A simu-
lator B that solves the mXDH assumption usingA is given: a
challenge tuple D =

(
(p,G, Ĝ,GT , e), g, ĝ, ga, {gbi,1 , · · · ,

gbi,2n}i∈[t]
)
and T =

(
{Xi,1, · · · ,Xi,2n}i∈[t]

)
. B runs the

simulator BbMC-ORE of the Lemma 9 as a subsimulator by
submitting the challenge tuple of the mXDH assumption.
Then B that interacts with A is described as follows.

Let (stA, S, ((j1,m1), · · · , (jq,mq))) be the output of A.
The simulator B first sets the public parameters correspond-
ing to the client index. For each j ∈ [N ], S chooses a
random exponent αj ∈ Zp and computes hj = gαj . For
each tuple (j, k) ∈ S, B obtains CK ′j,k = (K0,K1) by run-
ning BbMC-ORE and computes the comparison key CKj,k =
(K0,K0

αk ,K1,K
αj
1 ).

For the creation of the EORE ciphertexts with the client
index ji for i ∈ RI`, B first runs BbMC-ORE and obtains
CT ′ji = ({Fk,0,Fk,1}k∈[n]). For each Fk,b, it chooses a random
exponent t ∈ Zp and computes Ck,b = (Fk,b · hji

t , gt ) where
b ∈ {0, 1}. It creates ECji = ({Ck,0,Ck,1}k∈[n]) and hence
creates the EORE ciphertext set ECRI` = ({ECji}i∈RI` )

By the Lemma 9, two experiments H2,µ−1 and H2,µ are
computationally indistinguishable.
Lemma 16: The hybrid experiments H3 and H4 are indis-

tinguishable to the polynomial-time adversary with the leak-
age function LEORES in the random oracle model.

Proof: Suppose there exists an adversary A that
distinguishes H3 from H4 with non-negligible advantage.
We construct an efficient simulator B for which the two
distributions H3 and H4 are statistically indistinguishable.
B runs the simulator BbMC-ORE of the Lemma 10 as a
subsimulator.

Let (stA, S, ((j1,m1), · · · , (jq,mq))) be the output of A.
The simulator B first sets the public parameters correspond-
ing to the client index. For each j ∈ [N ], B chooses a

VOLUME 6, 2018 45469



J. Eom et al.: MC-ORE

TABLE 1. Performance comparison between our MC-ORE schemes.

random exponent αj ∈ Zp and computes hj = gαj . For
each tuple (j, k) ∈ S, B obtains CK ′j,k = (K0,K1) by run-
ning BbMC-ORE and computes the comparison key CKj,k =
(K0,K0

αk ,K1,K
αj
1 ).

For the generation of the i-th EORE ciphertext ECji
with the client index ji, B first runs BbMC-ORE and obtains
CT ′ji = ({Fk,0,Fk,1}k∈[n]). For each Fk,b, it chooses a random
exponent t ∈ Zp and computes Ck,b = (Fk,b · hji

t , gt ) where
b ∈ {0, 1}. It creates ECji = ({Ck,0,Ck,1}k∈[n]).

By the Lemma 10, the distributions (CT ′j1 , . . . ,CT
′
jq ) and

(CT ′j1 , . . . ,CT ′jq ) of the basic MC-ORE ciphertexts output
in H2 and H3 of the Theorem 6 are indistinguishable. Thus,
it can be easily derived that the distributions (ECj1 , . . . ,ECjq )
and (EC j1 , . . . ,EC jq ) in H3 and H4 are also indistinguish-
able. Since OCj and ECj have been generated with respect to
LOREj and LEORES ,H4 corresponds to the ideal experiment.

V. IMPLEMENTATION
In this section, we measure the performance of our MC-ORE
schemes and compare various ciphertext comparison meth-
ods. Our implementation is entirely written in C and employs
a 224-bit MNT curves from the PBC library for pairing oper-
ations. We run our implementation on a laptop with 4GHz
Intel Core i7-6700K CPU and 16GB RAM.

A. PERFORMANCE OF MC-ORE
We evaluate the runtime of Encrypt, Compare, and Com-
pareMC algorithms for 32-bit integers and the benchmarks
averaged over 100 iterations are given in Table 1. Compared
to the basic MC-ORE scheme, the encrypted ORE scheme
takes more time to run each algorithm and the size of the
ciphertext and the comparison key is about twice as large.
The reason why the encrypted ORE scheme is less efficient
is that its Encrypt algorithm runs the Encrypt algorithm of
the basic MC-ORE scheme as a subalgorithm and the Com-
pareMC algorithm requires twice as many pairing operations
as the basic MC-ORE scheme. This shows that although the
security of the MC-ORE scheme is improved by reducing
the leakage, at the same time, the efficiency is decreased.
We note that the runtime of the Compare algorithm and
the accurate size of the ciphertext of the enhanced MC-ORE
scheme depend on the underlying ORE scheme.

B. RANGE QUERY METHODS
One possible application of MC-ORE is a range query for
an encrypted database, in which case a database server must
perform the multi-client comparison algorithm many times

to find a subset of database that satisfies the range query.
Suppose that a database sever keeps each client databaseDj ∈
[R]M that store ciphertexts generated by a client with index j
where the database consists of maximum M values each in
the range [R]. A client with an index k may request a range
query by giving CT ′ on a plaintext m′ encrypted with SKk to
find a subset of ciphertexts in Dj less than m′. If the server
has a comparison key CKj,k , then it can answer the query
by simply running the multi-client comparison algorithm M
times. However, this naive method is very slow since M
multi-client comparison operations are required. Therefore,
we need better methods to handle range queries by using
comparison operations more efficiently.

We present two additional methods and compare
these methods with the simple method described before.
The detailed explanation of each method is given as
follows.
• Simple Method. The simple method simply runs the
CompareMC algorithmM times. Recall that the Com-
pareMC algorithm tries to find the MSDB from the
higher bit to the lower bit sequentially. If the MSDB is
located in higher bits, then the comparison operation is
considerably efficient. On the other hand (if the MSDB
is located in lower bits), the comparison operation is
relatively slow.

• BinSearch Method. The binary search method uses
a modification of the CompareMC algorithm that
finds the MSDB more efficiently by using binary
searching instead of sequential searching. Let CT =
{Ci,0,Ci,1}i∈[n] be one ciphertext in a database Dj
and CT ′ = {C ′i,0,C

′

i,1}i∈[n] be a ciphertext created
by a client with k . A server with a comparison key
CKj,k = (K0,K1) first checks whether e(Cn/2,0,K1) and
e(C ′n/2,0,K0) are equal or not. If the values are equal,
it checks againwhether e(C3n/4,0,K1) and e(C ′3n/4,0,K0)
are equal since the MSDB is in the range [n/2 + 1, n].
On the other hand, if the values are not equal, it checks
whether e(Cn/4,0,K1) and e(C ′n/4,0,K0) are equal since
the MSDB is in the range [1, n/2]. By repeating this
process log n times, the server can find theMSDB. Since
the database contains at most M entries, it runs this
modified comparison algorithm M times.

• Hybrid Method. The hybrid method uses the Com-
pareMC algorithm and the Compare algorithm
together since the Compare algorithm is fast and it can
compare the order of ciphertexts in a database which are
created by a single client. Let CTi be a ciphertext on a
message mi in a database Dj and CT ′ be a ciphertext

45470 VOLUME 6, 2018



J. Eom et al.: MC-ORE

TABLE 2. Performance comparison between range query methods.

on a message m′ given by a client in a range query. To
answer the range query of the client, a server should find
a subset S of ciphertexts in Dj such that mi < m′. The
server first comparesCT ′ with one specificCTi∗ ∈ Dj by
running the CompareMC algorithm, and then it divides
all other CTi ∈ Dj into two groups L and R by running
the Compare algorithm on input CTi and CTi∗ where
L contains ciphertexts of mi < mi∗ and R contains
ciphertexts of mi∗ ≤ mi. If mi∗ < m′, then the server
adds L to the subset S and repeats the above process by
settingDj = R. Ifm′ < mi∗ , the sever repeasts the above
process by setting Dj = L.

We compared the performance of each method only for the
basic MC-ORE scheme. For the comparison, we set M =
100 and R ∈ {28, 216, 224, 228, 232}. We randomly selected
32-bit integers m1, · · · ,m100 and m′ within a specific range
[0,R], and then we encrypted m1, · · · ,m100 with SK and m′

with SK ′. The running time of the above three range query
methods is given in Table 2. The binary search method exe-
cutes 12 pairing operations per a single ciphertext comparison
whereas the simple method performs executes at least 4 up
to 66 pairing operations depending on the location of the
MSDB. In other words, the binary search method is better
than the simple method if the data are within a small range
and the high-order bits are equal, but it is less efficient if the
data are within a large range and the probability that the high-
order bits are equal is lower. The hybrid method is always
more efficient than the simple method and the binary search
method, since some comparisons are performed by using
the Compare algorithm instead of using the CompareMC
algorithm. That is, the performance of the hybrid method
is far superior because the CompareMC algorithm is per-
formed for comparisons on the specific ciphertexts and the
Compare algorithm is executed for the remaining ciphertext
comparisons.

It is important to improve the performance of the algo-
rithm, but our results show that efficiency can be improved
in an appropriate way depending on the application environ-
ment. If our MC-ORE scheme is applied to an environment
other than a database range query, we can consider another
way to improve its performance or its security.

VI. CONCLUSION
We introduced the concept of multi-client order-revealing
encryption (MC-ORE) that supports comparisons on

ciphertexts generated by multiple clients as well as generated
by one client. We also defined the simulation-based security
model for MC-ORE with respect to a leakage function.
We then proposed two practical MC-ORE schemes with
different leakage functions and proved their security in the
defined security model. The first scheme leaks more infor-
mation, namely the most significant differing bit, and the
second scheme is the enhanced scheme with reduced leakage.
We implemented our schemes to measure the performance of
each algorithm and provided additional range query methods
to improve the performance in a database range query.

APPENDIX
PROOF OF THE LEMMA III.6
CORRECTNESS OF THE SIMULATION
To complete the proof of the Lemma 10, we have to show that
the following condition holds.
• ∀` ∈ [q̃1],∀`′ ∈ [q̃2], CTSI` ≡ CTSI` and CTRI`′ ≡
CTRI`′ .
Proof: We use induction as follows.

• For each ` ∈ [q̃1], let CTSI` = (CT1, · · · ,CTt ) and
CTSI` = (CT 1, · · · ,CT t ). Obviously, the statement is
true for i = 1. Assume that it is true for i − 1 and we
must prove that (CT1, . . . ,CTi) ≡ (CT 1, . . . ,CT i).
Suppose that CTi,CTi′ are the ciphertexts of m,m′

where i′ < i. For the biggest index b = ind(m,m′),
if b = n + 1, then CTi and CTi′ are the ciphertexts
of the same message. In the simulation, B finds the
tuple (−, (c′1,0, c

′

1,1), . . . , (c
′

n,0, c
′

n,1)) from the table TCT
and uses it to simulate the ciphertext CTi by setting
(Ck,0,Ck,1) = (c′k,0, c

′

k,1) for all k ∈ [n]. Then, we have

Ck,0 = ck,0 = c′k,0 = C ′k,0 ∀k ∈ [n].

Otherwise, m and m′ may have the same prefix of the
length b − 1. For k ∈ [b − 1], (Ck,0,Ck,1) has been
simulated as the previous case and for k ∈ [b + 1, n],
(Ck,0,Ck,1) has been simulated by using random ele-
ments. For the remain part (Cb,0,Cb,1), B simulates
cb,1 = c′b,0 if cmp(m,m′) = 1. Then we have

C ′b,0 = c′b,0 = cb,1 = Cb,1.

Since we assumed that CTi′ and CT i′ are identically
distributed, by induction, CTi and CT i are identically
distributed.

VOLUME 6, 2018 45471



J. Eom et al.: MC-ORE

• For each ` ∈ [q̃2], let CTRI` = (CT1, · · · ,CTt ) and
CTRI` = (CT 1, · · · ,CT t ). Obviously, the statement is
true for i = 1. Assume that it is true for i − 1 and we
must prove that (CT1, . . . ,CTi) ≡ (CT 1, . . . ,CT i).
Suppose that CTi,CTi′ are the ciphertexts of (j,m),
(j′,m′) where i′ < i. For the biggest index b =
ind(m,m′), if b = n+1, thenCTj andCTj′ are the cipher-
texts of the same message. In the simulation, B finds the
tuple (−, (c′1,0, c

′

1,1), . . . , (c
′

n,0, c
′

n,1)) from the table TCT
and uses it to simulate the ciphertext CTi by computing
(Ck,0,Ck,1) = (c′k,0

sj , c′k,1
sj ) for all k ∈ [n]. LetCKj,j′ =

(K0,K1) and we have

e(Ck,0,K0) = e(ck,0sj ,K0) = e(c′k,0
sj ,K0)

= e(c′k,0
sj′ ,K1) = e(C ′k,0,K1) ∀k ∈ [n].

Otherwise, m and m′ may have the same prefix of the
length b − 1. For k ∈ [b − 1], (Ck,0,Ck,1) has been
simulated as the previous case and for k ∈ [b + 1, n],
(Ck,0,Ck,1) has been simulated by using random ele-
ments. For the remain part (Cb,0,Cb,1), B simulates
cb,1 = c′b,0 if cmp(m,m′) = 1. Then we have

e(Cb,1,K0) = e(cb,1sj ,K0) = e(c′b,0
sj ,K0)

= e(c′b,0
sj′ ,K1) = e(C ′b,0,K1).

Since we assumed that CTi′ and CT i′ are identically
distributed, by induction, CTi and CT i are identically
distributed.

REFERENCES
[1] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,

‘‘Candidate indistinguishability obfuscation and functional encryption
for all circuits,’’ in Proc. IEEE Symp. Found. Comput. Sci., Oct. 2013,
pp. 40–49.

[2] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in Proc.
41st ACM Symp. Theory Comput., 2009, pp. 169–178.

[3] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches
on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy, May 2000,
pp. 44–55.

[4] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, ‘‘Order-preserving encryp-
tion for numeric data,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2004, pp. 563–574.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, ‘‘Order-preserving
symmetric encryption,’’ in Advances in Cryptology—EUROCRYPT.
Berlin, Germany: Springer, 2009, pp. 224–241.

[6] A. Boldyreva, N. Chenette, and A. O’Neill, ‘‘Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions,’’ in
Advances in Cryptology—CRYPTO. Berlin, Germany: Springer, 2011,
pp. 578–595.

[7] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and
J. Zimmerman, ‘‘Semantically secure order-revealing encryption:
Multi-input functional encryption without obfuscation,’’ in Advances
in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 2015,
pp. 563–594.

[8] D. Cash, F. H. Liu, A. O’Neill, and C. Zhang, ‘‘Reducing the leak-
age in practical order-revealing encryption,’’ Cryptol. ePrint Arch.,
Carson City, Nevada, USA, Tech. Rep. 2016/661, 2016. [Online].
Available:http://eprint.iacr.org/2016/661

[9] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, ‘‘Practical order-revealing
encryption with limited leakage,’’ in Proc. 23rd Int. Conf. Fast Softw.
Encryption. Berlin, Germany: Springer, 2016, pp. 474–493.

[10] K. Lewi and D. J. Wu, ‘‘Order-revealing encryption: New constructions,
applications, and lower bounds,’’ in Proc. 23rd ACM Conf. Comput. Com-
mun. Secur., 2016, pp. 1167–1178.

[11] S. Goldwasser et al., ‘‘Multi-input functional encryption,’’ in Advances
in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 2014,
pp. 578–602.

[12] M. Naor, B. Pinkas, and O. Reingold, ‘‘Distributed pseudo-random func-
tions and KDCs,’’ in Advances in Cryptology—EUROCRYPT. Berlin,
Germany: Springer, 1999, pp. 327–346.

[13] F. Kerschbaum and A. Schröpfer, ‘‘Optimal average-complexity ideal-
security order-preserving encryption,’’ in Proc. 21st ACM Conf. Comput.
Commun. Secur., 2014, pp. 275–286.

[14] R. A. Popa, F. H. Li, and N. Zeldovich, ‘‘An ideal-security protocol
for order-preserving encoding,’’ in Proc. IEEE Symp. Secur. Privacys,
May 2013, pp. 463–477.

[15] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, ‘‘POPE: Partial
order preserving encoding,’’ in Proc. 23rd ACM Conf. Comput. Commun.
Secur., 2016, pp. 1131–1142.

[16] M. Naveed, S. Kamara, and C. V. Wright, ‘‘Inference attacks on property-
preserving encrypted databases,’’ in Proc. 22nd ACM Conf. Comput. Com-
mun. Secur., 2015, pp. 644–655.

[17] F. B. Durak, T. M. DuBuisson, and D. Cash, ‘‘What else is revealed by
order-revealing encryption?’’ in Proc. 23rd ACM Conf. Comput. Commun.
Secur., 2016, pp. 1155–1166.

[18] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and
T. Ristenpart, ‘‘Leakage-abuse attacks against order-revealing encryption,’’
in Proc. IEEE Symp. Secur. Privacy, May 2017, pp. 655–672.

[19] M. Naor and O. Reingold, ‘‘Number-theoretic constructions of efficient
pseudo-random functions,’’ J. ACM, vol. 51, no. 2, pp. 231–262, 2004.

JIEUN EOM received the B.S. degree in mathe-
matics and the M.S. degree in information secu-
rity from Korea University, Seoul, in 2010 and
2012, respectively, where she is currently pursu-
ing the Ph.D. degree in information security. Her
research interests include cryptography and com-
puter security.

DONG HOON LEE (M’06) received the B.S.
degree in economics from Korea University
in 1984, and the M.S. and Ph.D. degrees in
computer science from the University of Okla-
homa in 1988 and 1992, respectively. He is cur-
rently a Full Professor with Korea University. His
research areas include cryptography and informa-
tion security.

KWANGSU LEE received the B.S. degree in
computer science from Yonsei University, South
Korea, the M.S. degree in computer science from
KAIST, South Korea, in 1998 and 2000, respec-
tively, and the Ph.D. degree in information security
from Korea University in 2011. He is currently
an Assistant Professor with Sejong University. His
research interests include cryptography, provable
security, and pairing-based cryptography.

45472 VOLUME 6, 2018


	INTRODUCTION
	OUR RESULTS
	DEFINITION
	BASIC CONSTRUCTION
	ENHANCED CONSTRUCTION
	IMPLEMENTATION

	RELATED WORK
	ORDER-PRESERVING ENCRYPTION
	ORDER-REVEALING ENCRYPTION
	ATTACKS ON ORE


	MULTI-CLIENT ORDER-REVEALING ENCRYPTION
	NOTATION
	ORDER-REVEALING ENCRYPTION
	MULTI-CLIENT ORDER-REVEALING ENCRYPTION

	BASIC MC-ORE CONSTRUCTION
	ASYMMETRIC BILINEAR GROUPS
	CONSTRUCTION
	CORRECTNESS
	SECURITY ANALYSIS
	EXTENSIONS
	REDUCING TRUST ON THE CENTER
	REMOVING THE TRUSTED CENTER


	ENHANCED MC-ORE CONSTRUCTION
	CONSTRUCTION
	ENCRYPTED ORE
	MULTI-CLIENT ORE

	CORRECTNESS
	SECURITY ANALYSIS

	IMPLEMENTATION
	PERFORMANCE OF MC-ORE
	RANGE QUERY METHODS

	CONCLUSION
	REFERENCES
	Biographies
	JIEUN EOM
	DONG HOON LEE
	KWANGSU LEE


