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ABSTRACT Failures of rolling element bearings are amongst the main causes of machines breakdowns.
To prevent such breakdowns, bearing health monitoring is performed by collecting data from rotating
machines, extracting features from the collected data, and applying a classifier to classify faults. To avoid
the burden of much storage requirements and processing time of a tremendously large amount of vibration
data, the present paper proposes a combined compressive sampling (CS)-based on multiple measurement
vector (MMV) and feature ranking framework to learn optimally fewer features from a large amount of
vibration data from which bearing health conditions can be classified. The CS-based on the MMV model is
the first step in this framework and provides compressively sampled signals based on compressed sampling
rates. In the second step, the search for the most important features of these compressively sampled signals
is performed using the feature ranking and selection techniques. For that purpose, we have investigated the
following: 1) two compressible representations of vibration signals that can be used within CS framework,
namely, fast Fourier transform-based coefficients and thresholded Wavelet transform-based coefficients
and 2) several feature ranking and selection techniques, namely, three similarity-based techniques, fisher
score, Laplacian score, Relief-F; one correlation-based technique, Pearson correlation coefficients; and
one independence test technique, Chi-Square (Chi-2) to select fewer features that can sufficiently rep-
resent the original vibration signals. These selected features, in combination with three of the popular
classifiers–multinomial logistic regression classifier, artificial neural networks, and support vector machines,
have been evaluated for the classification of bearing faults. Results show that the proposed framework
achieves high classification accuracies with a limited amount of data using various combinations of methods,
which outperform recently published results.

INDEX TERMS Bearing fault classification, multiple measurement vector, compressive sampling, feature
ranking, classification. algorithms.

I. INTRODUCTION
Rotatingmachines are at the core of most engineering process
in industry and are used to accomplish numerous tasks. Unex-
pected machine failures or breakdowns will affect production
plans, product quality, and production costs. For that reason,
it is essential for industrialists to monitor machine health
condition to avoid machine breakdowns. Rolling element
bearings are critical components in rotatingmachine and their
failures are amongst the main causes of machine breakdowns.
Bearing vibration levels, coolant temperatures, line currents,

and voltages are among the most quantities measured and
used for rotating machine Condition Monitoring (CM) [1].
Of these measurements, bearing vibration signals provide
various features that make it one of the most widely used
techniques for fault diagnosis [2].

The aim of vibration based CM is to classify the acquired
vibration signal into the matching condition correctly by
means of a classification algorithm which is usually a
multi-class classification problem [3]. To monitor machine
health condition using vibration signals the following
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procedure is commonly used. First, typical vibration signals
need to be collected from an operating machine of interest
through vibration sensors, e.g., displacement sensors, veloc-
ity sensors, and accelerometers. Second, the characteristics
of the vibration signals need to be examined by using sig-
nal processing techniques. However, in most of the modern
industrial rotating machines, the acquired vibration signal
represents a large amount of time series data that make the
processing to become extremely difficult. Accordingly, rather
than processing a large amount of vibration data, the common
methodology is to extract certain features of the raw vibration
signals that are able to adequately describe the signal of the
machine health condition. Also, depending on the number
of the extracted features, previous research has established
that one may possibly want to implement more filtering to
select a minimum subset of features using a feature selection
algorithm. Finally, with these features, the presence of a fault
in the machine can be detected in advance before the machine
breakdown happens using a classification algorithm that has
the ability to classify the health condition of the machine of
interest. The overall framework of machine CM using this
methodology is presented in Fig. 1.

FIGURE 1. The overall framework of vibration based machine condition
monitoring.

Features from the raw vibration signal can be extracted
using various techniques that based in three main domains.
First, time domain based techniques, that extract features
utilizing some statistical factors, e.g., Impulse factor, skew-
ness, kurtosis, peak-to-peak value, crest factor, root mean
square, etc. Second, frequency-domain based techniques
that can be used to observe frequency features, e.g., base-
band auto-spectral density, linear frequency spectrum, and
phase-averaged linear spectra, which can be generated using
Fourier Transform (FT) [4]. Third, time-frequency based
techniques that have been used for the non-stationary signal
type that is very common once fault takes place in a rotat-
ing machine. The literature on time-frequency based tech-
niques has highlighted several techniques including, Short
Time Fourier Transform (STFT), Wavelet Transform (WT),
Hilbert-Huang Transform (HHT), Local Mean Decomposi-
tion (LMD), Winger-Ville Distribution, etc. [5]. Based on the
time-frequency domain, Spectral Kurtosis (SK) based tech-
niques that have the ability to automatically identify which
frequency bands of a vibration signal have larger impulsivity
have been widely used in fault diagnosis [6]–[8].

As previously stated, the modern large-scale rotating
machines in industry generate large amounts of vibra-
tion signals for the purpose of CM. As a result, various
dimensionality reduction techniques of features extraction

and features selection have been proposed and effectively
used in machine fault diagnosis. For instance, Principal
Component Analysis (PCA), Independent Component Anal-
ysis (ICA), and Linear Discriminant Analysis (LDA) are
amongst the most frequently utilised techniques. For exam-
ple, Malhi and Gao [9] developed a PCA-based approach to
select the most representative features for classification of
faults in three types of roller bearings. Jin et al. [10] intro-
duced trace ratio LDA to deal with high-dimensional non-
Gaussian fault data of roller bearings. Ciabattoni et al. [11]
introduce a novel LDA based algorithm to deal with fault
data dimension reduction and fault detection problems.
Widodo et al. [12] developed a method that combined ICA
and SVM for fault diagnosis of induction motors. In a sim-
ilar way, Chang and Jiao [13] also found a combination of
Neural Network (NN) and ICA can achieve a considerable
classification accuracy of rotating machinery fault diagnosis.
Ahmed et al. [14] conducted a series of trials in which Deep
Neural Network (DNN) is employed to extract features from
vibration signals in order to classify bearing faults.

Also, feature selection techniques that have the ability to
remove the irrelevant or redundant features that may slow
the learning process can play an important role in machine
fault diagnosis. In most cases, feature selection techniques
are performed after the feature extraction step. For example,
Van and Kang [15] proposed a method comprises three main
steps, first, a feature extraction technique based on non-local-
means denoising and EMD is used for feature extraction.
Second, a feature selection technique combining Distance
Evaluation Technique (DET) and Particle Swarm Optimiza-
tion (PSO) is employed to select the superior feature subset.
Jack and Nandi [16] apply Genetic Algorithm (GA) to select
features from different feature sets using different forms of
preprocessing.

In recent years, there has been an increasing amount
of literature on roller bearings fault diagnosis using vibra-
tion signals. For example, Amar et al. [17] suggested a
novel bearing fault classification approach combining Vibra-
tion Spectrum Imaging (VSI) and Artificial Neural Net-
work (ANN). In another study, Li et al. [18] presented
a semi-supervised diagnosis method based on a distance-
preserving Self-Organizing Map (SOM) for classifying
different bearing faults. Soualhi et al. [19] examined the com-
bination of Hilbert-Huang Transform (HHT), SVM, and Sup-
port Vector Regression (SVR), and showed its efficiency for
the condition monitoring of ball bearing. In a different study,
Chen and Li [20] proposed a multisensory feature fusion
method for bearing fault using Sparse Autoencoder (SAE)
and Deep Belief Network (DBN) that outperform some
other feature fusion methods. Zhang et al. [21] presented a
hybrid intelligent fault diagnosis method integrating Permu-
tation Entropy (PE), Ensemble Empirical Mode Decomposi-
tion (EEMD), and optimized SVM. Lei et al. [22] proposed a
two-stage learning method based on sparse filtering to learn
features from mechanical vibration signals for machine fault
diagnosis.
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More recently, Zhang et al. [23] proposed a transfer learn-
ing method based on neural networks for fault diagnosis
of roller bearings. Yu et al. [24] presented a procedure
for bearing fault conditions classification using Empirical
Mode Decomposition (EMD), Feature Selection by Adjusted
Index and Standard Deviation Ratio (FSASR), Support Mar-
gin Local Fisher Discriminant Analysis (SM-LFDA) as
feature dimensionality reduction technique, and SVM for
fault classification. Nayana and Geethanjali [25] investigated
several statistical time domain features including mean abso-
lute value (MAV), simple sign integral (SSI), waveform
length (WL),Wilson amplitude (WAMP), zero crossing (ZC),
slope sign changes (SSC) for bearing faults identification
using LDA, NB, and SVM classifiers.

All the above methods use data that have been col-
lected satisfying the Shannon/Nyquist sampling theorem,
in which the sampling rate must be at least twice the
maximum frequency present in the signal. It is clear that
collecting a large amount of data requires large storage
and time for signal processing and this also may limit
the number of machines that can be monitored remotely
across wireless sensor networks (WSNs) due to bandwidth
and power constraints. A reasonable approach to tackle
the challenges involved in dealing with a large amount of
data could be to compress the data. Recently, Compres-
sive Sampling [26] has been developed for sensing and
compression.

The efficiency of CS in machine fault diagnosis has
been validated in a number of studies. For instance,
Wong et al. [27] studied the effects of CS on the classification
of bearing faults and found a small performance degradation
when using entropic features computed fromCS based recov-
ered signal. Xinpeng et al. [28] developed a bearing fault
detection method based on CS and Matching Pursuit (MP)
reconstructing algorithm. Tang et al. [29] proposed an inter-
esting approach in which authors attempted to observe the
characteristic harmonics from sparse measurements through
a compressive matching pursuit strategy during the process
of incomplete reconstruction. Zhang et al. [30] developed a
technique based on compressed vibration signal by using
several over-complete dictionaries that can be effective in
sparse signal decomposition for a specific bearing condition.
Tang et al. [31] proposed a sparse classification strategy that
sampled the original characteristics of a vibration signal by
applying a small number of random projections and then con-
structed a learning redundant dictionary to sparsely represent
the vibration signal. Moreover, in the literature on CS based
fault diagnosis methods, several attempts have been made to
learn directly from compressed measurements without recon-
structing the original signal. For example, in [32] an intelli-
gent condition monitoring method for bearing faults based on
CS and sparse over-complete feature learning algorithm using
SAE was proposed. In a recent paper by Ahmed et al. [33],
three approaches to process compressed vibration measure-
ments were proposed for classification of bearing faults,
using the compressed measurements directly as the input to

the classifier and extracting features from these compressed
measurements using PCA and LDA.

Even though the aforementioned studies reported many
interesting results, there are two main problems with these
studies: (1) CS-based sparse signal reconstruction is a com-
plex computational problem that depends on the sparsity of
the measured vibration signal. Therefore, CS-based signal
recovery methods may not be useful in reducing computa-
tional complexity for condition monitoring of rolling bear-
ings, and (2) most of the methods that are based on learning
directly from the compressed measurements achieved good
classification accuracy but by increasing the sampling rate,
thereby requiring higher computational complexity.

In this work, we argue that despite the fact that the obtained
CS-based compressed measurements are able to recover the
original signal, they may not provide the best bearing fault
classification. Moreover, these compressed measurements
may still represent a large amount of data collected in real
operating condition. In our earlier work [55] and [56] where
FFT-based CS is combined with LS and FS, and the clas-
sification is achieved using SVM. This paper proposes a
combined CS based on MMV model and Feature Rank-
ing (FR) framework to classify bearing health conditions.
In this framework, CS is used to reduce the amount of the
original signal by obtaining compressively-sampled signals
that possess the quality of the original signal. Then, a feature
ranking technique is employed to further filter the obtained
compressively-sampled signals by ranking their features and
select a subset of fewer most significant features. In this man-
ner, we are able to reduce the large amount of the collected
vibration signals and avoid spending much time on comput-
ing eigenvalues that are included in most feature extraction
algorithms, e.g., PCA and LDA.

Based on our proposed framework, we considered two
techniques of feature selection to select fewer features of the
compressively sampled signals. These are:
(1) Similarity based methods: that assign similar values

to the compressively sampled signals that are close
to each other. Three algorithms (LS, FS, and Relief-F
algorithms) were investigated to select fewer features
based on similarity.

(2) Statistical based methods: that measure the importance
of feature of the compressively sampled signals using
different statisticalmeasures. Two algorithms, PCC and
Chi-2 were investigated to select fewer features based
on correlation and independence test respectively.

Various experiments were conducted to: (1) validate our
proposed framework by investigating different scenarios of
combinations of CS, feature ranking techniques, and classi-
fiers. These are, a) FFT-based CS and thresholded WT-based
CS to obtain compressively sampled measurements, b) sev-
eral feature ranking techniques with different feature selec-
tion criterion, namely, FS, LS, Relief-F, PCC, and Chi-2 to
rank and select fewer features from the compressively sam-
pled measurements, and c) LRC, ANN, and SVM classifiers
to deal with the classification problem, and (2) observe the
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best combinations of MVM based-CS, feature ranking and
selecting techniques, and classifiers with reduced complexity
and improved classification accuracy.

The remainder of this paper is organised as follows.
Section II describes briefly the theoretical background of CS,
different feature ranking methods, and different classification
algorithms used in this study. Section III is devoted to a
description of the proposed framework. The experiments on
two case studies of bearing faults classification is presented
in section IV, with the corresponding results and compar-
isons with recently published results using the same datasets.
Finally, section V draws some conclusions.

II. METHODS
A. COMPRESSIVE SAMPLING (CS)
Compressive sampling, also named ‘‘compressed sens-
ing’’ or ‘‘compressed sampling’’ [26], [34], is an extension
of sparse representation. The simple idea of CS is based
on the fact that many real-world signals have sparse rep-
resentations in some domain, e.g., Fourier Transform (FT),
and can be recovered from a small number of samples in
certain conditions. CS is based on two concepts: (1) sparsity
of the signals, and (2) the measurements matrix to be used
for compression of the original signals based on their sparse
representations. This measurement matrix must satisfy the
data minimal information loss, i.e., satisfy Restricted Isom-
etry Property (RIP) to ensure the signal recovery from the
compressed measurements. Briefly, we describe the standard
CS framework as follows. Assume that we have the original
signal vector (x) where xεRnx1. To compute a set of sparse
representations of x we need to apply a sparsifying transform
ψ such that

x = ψs (1)

Here s is a n × 1 column vector that has a small number of
nonzero coefficients and means the sparse features. Based on
CS theory, the signal x can be recovered from its compressed
samples yεRmx1 (m � n) that can be computed using the
following equation:

y = φψs (2)

Here φ is the measurement matrix that has to be incoherent
with the sparsifying transformψ , i.e., satisfy Restricted Isom-
etry Property (RIP).
Definition 1: The measurement matrix φ satisfies the

Restricted Isometry Property (RIP) if there be existent a
parameter δ ∈ (0, 1) such that

(1− δ) ‖s‖22 ≤ ‖φs‖
2
2 ≤ (1+ δ) ‖s‖

2
2 (3)

The measurement matrix size is (mxn) and is based on
the compressive sampling rate (α) (i.e., m = α∗n). The
estimation of s can be performed by solving an optimization
problem using L1-norm such that

ŝ = min
s∈RN

1
2
‖φψs− y‖

2

l2
+ γ ‖s‖l1 (4)

With ‖φψs− y‖2l2 ≤ ε > 0, and γ > 0 is a regularization
parameter. Hence, the original vector x can be recovered by
applying the inverse of the sparsifying transform ψ−1 to ŝ
such that

x̂ = ψ−1ŝ (5)

This model of CS is based on Single Measurement Vector
Compressive sampling (SMV) that recovers one vector from
its corresponding compressed measurement vector.

On the other hand, Multiple Measurement Vectors Com-
pressive Sampling (MMV) model is considered where the
data can be represented as a matrix with a set of jointly
sparse vectors. Thus, CS based on MMV can be computed
as follows:

Y = DS (6)

where Y ∈ RmxL is multiple measurement vectors, D ∈ Rmxn

is a dictionary, and S ∈ RnxL is a sparse representation matrix.
Furthermore, matrices Y and S can be represented as follows:
Y = {y1, y2, . . . , yL}, and S = [s1, s2, . . . , sl], where 1 ≤
l ≤ L, yl’s and sl’s are column vectors. Several studies
have been conducted to reconstruct jointly sparse signals (S)
given multiple compressed measurement vectors [35], [36].
Similarly, the original signal matrix X can be recovered
utilising the inverse of the sparsifying transform and Ŝ such
that

X̂ = ψ−1Ŝ (7)

Here X̂ and Ŝ is the estimation of X and S respectively.
In this study, we used CS based on MMV model since the

measured vibration signals is a mixture of vibrations from
several rotating components or from different positions with
one rotating part. Besides, the signal recovery in both types of
CS models indicate that the compressed measurements have
enough information of the original signal, i.e., possess the
quality of the original signal.

B. FEATURE RANKING AND SELECTION
Feature selection techniques are used to select a subset of
features that can sufficiently represent the characteristic of
the original features. In view of that, this will reduce the
computational cost, andmay remove irrelevant and redundant
features. Feature selection methods can be categorised into
three groups, supervised, unsupervised, and semi-supervised
feature selection techniques. Also, it can be further grouped
into filter models, wrapper models, embedded models, and
hybrid models. Of these models, filter-based techniques are
fast and require low computational complexity. The filtering
can be performed using univariate feature filters that rank
each single feature or using multivariate feature filters which
evaluate a feature subset [37], [38]. This section gives brief
descriptions of the feature ranking methods that used to rank
the compressively-sampled signals features in this study.
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1) FISHER SCORE
Fisher score (FS) [39] is a filter-based feature selection
method and one of the commonly used supervised feature
selection methods. The main idea of FS is to compute a
subset of features with a large distance between data points in
different classes and small distance between data points in the
same class. To describe briefly FS method, assume the input
matrix Y ∈ RmxL reduces to Z ∈ RdxL matrix. The FS of the
i-th feature can be computed by the following equation:

FS(Y i) =

∑C
c=1 Lc(µ

i
c − µ

i)2

(σ i)2
(8)

where Y i ∈ R1 xL , Lc is the size of the c-th class, (σ i)2 =∑C
c=1 Lc(σ

i
c)
2,µic and σ

i
c are the mean and standard deviation

of c-th class corresponding to the i-th feature; µi and σ i

are the mean and standard deviation of the entire dataset
corresponding to the i-th feature.
Usually, FS of each feature is computed independently.

As shown in [36] to generalise FS to select features jointly
that maximize the lower bound of FS, the following optimiza-
tion problem is introduced,

FS (W , p) = tr
{
(W T diag (p) Sbdiag (p)W )

(W T diag (p) (St + γ I ) diag (p)W )
−1
}
,

s.t., p ∈ {0, 1}m, pT 1 = d

(9)

where p is the feature selection vector, and d is the number of
features to be selected. Also, the optimal p that maximizes
Eq. (9) is the same as the optimal p that minimizes the
following problem

min
p,W

1
2

∥∥∥W T diag (p)Y − G
∥∥∥2
F
+ γ ‖W‖2F

s.t., p ∈ {0, 1}m, pT 1 = d (10)

Here G is a specific class indicator matrix such that

G(i, c) =


√
L
Lc
−

√
Lc
L

if Yi ∈ c

−

√
Lc
L

otherwise

(11)

2) LAPLACIAN SCORE
Laplacian Score (LS) is an unsupervised filter based tech-
nique that rank features depending on their locality pre-
serving power. In fact, LS is mainly based on Laplacian
Eigenmaps and Locality Preserving Projection, and can be
briefly described as follows [40].

Given a dataset Y = [y1, y2, . . . , yn], where Y ∈ Rmxn,
suppose the Laplacian Score of the r-th feature is Lr and
fri represent the i-th sample of the r-th feature where i =
1, . . . ,m and r = 1, . . . , n. First LS algorithm constructs
the nearest neighbour graph G with m nodes, where the
i-th node corresponds to yi. Next, an edge between nodes i

and j is placed, if yi is among k nearest neighbors of yj or vice
versa, then i and j are connected. The elements of weight
matrix of graph G is Sij and can be defined as follows:

Sij =

e−‖
xi−xj‖

2

t , yi = yj
0, otherwise

(12)

The Laplacian score Lr for each sample can be computed as
follows:

Lr =
f̃r
T
Lf̃r

f̃r
T
Df̃r

(13)

where D = diag (S1) is the identity matrix, 1 =

[1, . . . , 1]T ,L = D − S is the graph Laplacian matrix, and
f̃r can be calculated using the following equation:

f̃r = fr −
f Tr D1
1TD1

(14)

More details of the mathematical formulation of LS for fea-
ture selection can be found in [40].

3) RELIEF-F
Relief-F is a supervised feature ranking algorithm that com-
monly used as a pre-processing technique for a feature subset
selection. Relief-F is an extension of the traditional Relief
algorithm [41] that has the ability to deal with noisy, incom-
plete, and multi-class datasets. It uses a statistical approach
to select the important features based on their weightW . The
main idea of Relief-F is to randomly compute examples from
the training data and then calculate their nearest neighbours
from the same class, also called the nearest hit, and the other
nearest neighbours from different class, also called the near-
est miss. The procedure of Relief-F algorithm is summarized
below in algorithm 1 [41].

Further explanation of the mathematical formulation of the
Relief-F algorithm can be found in [41].

4) PEARSON CORRELATION COEFFICIENT
Pearson Correlation Coefficient (PCC) [41] is a supervised
filter-based ranking technique that examines the relationship
between two variables according to their correlation coeffi-
cient (r), -1≤ r≤ 1. Here the negative values indicate inverse
relations, the positive values indicate a correlated relation,
and the value 0 indicates no relation. PCC can be computed
as follows:

r (i) =
cov(xi, y)

√
var(xi)∗var(y)

(15)

Here xi is the ith variable, y is the class labels.

5) CHI-SQUARED
Feature ranking and selection using chi-square (chi-2) is
based on the χ2 test statistics [42]. Chi-2 evaluate the impor-
tance of a feature by calculating the χ2 test with respect to the
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Algorithm 1 Relief-F
Input: ` learning instances, m features and c classes;
Probabilities of classes py; Sampling parameter a; Number
of nearest instances from each class d ;
Output: for each feature fi a feature weight −1 ≤ W [i] ≤ 1;

1 for i = 1 to m do W [i] = 0.0; end for;
2 for h = 1 to a do
3 randomly compute an instance xk with class yk ;
4 for y = 1 to c do
5 find d nearest instances x[j, y] from class y, j = 1 . . . d ;
6 for i = 1 to m do
7 for j = 1 to d do
8 if y = yk {nearest hit}
9 then W [i] = W [i] – diff (i, xk , x[j, y])/ (a∗d);
10 elseW [i] = W [i]+ py/(1−pyk )∗ diff(i, xk , x[ j, y])/ (a∗d);

11 end if;
12 end for; {j} end for; {i}
13 end for; {y} end for; {h}
14 return (W );

class labels. The χ2 value for each feature f in a class labels
group c can be computed using the following equation:

χ2 (f , c) =
L(Ec,f E − EcEf )2

(Ec,f + Ec)(Ef + E)(Ec,f + Ef )(Ec + E)
(16)

where L is the total number of examples, Ec,f is the number
of times f and c co-occur, Ef is the number of time the
feature f occurs without c, Ec is the number of times c occurs
without f , and E is the number of times neither f nor c occurs.
The bigger value of χ2 indicates that the features are highly
related.

In this study, we applied the cross-tabulation function [43]
that returns the chi-square statistic, and its p-value. The
obtained values of chi-2 are sorted in descending order to
create a new feature vector with ranked features.

C. CLASSIFICATION ALGORITHMS
In this study, we applied three supervised classifiers (LRC,
ANN, and SVM) to classify between c classes based on an
input vector of selected fewer feature x = [x1, . . . , xk]. The
details are as follows.

1) MULTINOMIAL LOGISTIC REGRESSION CLASSIFIER (LRC)
Multinomial logistic regression [44], also called Softmax
regression in ANN, is a linear supervised regression model
that generalizes the logistic regression where labels are
binary, i.e., c(i) ∈ {0, 1} to multi-classification problems that
have labels {1. . . c}c(i) ∈ {1, . . . ,K } where c is the number
of classes. Briefly, we present the simplified multinomial
logistic regression model as follows:

Let there be a training set {(x(1), c(1)), . . . , (x(L), c(L))} of
L labeled examples and input features x(i) ∈ Rnx(i) ∈ Rk .

In logistic regression with binary labels,c(i) ∈ {0, 1}, our
hypothesis can be written as follows:

h0 (x) =
1

1+ exp(−θT x)
(17)

Here θ are model parameters that are trained to minimize the
cost function J (θ ) defined by the following equation

J (θ) = −
[∑L

i=1
c(i) log hθ

(
x i
)
+

(
1− c(i)

)
× log

(
1− hθ

(
x i
))]

(18)

In multinomial logistic regression with multi-labels c(i) ∈
{1, . . . , c}c(i) ∈ {1, . . . ,K } the aim is to estimate the prob-
ability P(c = c(i)|x) P(c = k|x) for each value of c(i) = 1
to c, such that

hθ (x) =


P (c = 1 | x; θ)
P (c = 2 | x; θ)

.

.

.

P(c = K |x; θ )



=
1∑K

j=1 exp
(
θ (j)T x

)

exp

(
θ (1)T x

)
exp

(
θ (2)T x

)
.

.

.

exp
(
θ (K )T x

)

 (19)

where θ (1), θ (2),. . . , θ (K ) ∈ Rn are the parameters of the
multinomial logistic regression model.

2) ARTIFICIAL NEURAL NETWORK (ANN)
ANN is a supervised learning algorithm that has the ability
to learn real, discrete, and vector-valued target function [2].
It has been used successfully in bearing fault diagnosis,
e.g., [45]–[48]. There are different types of ANN, e.g., Radial
Basis Function (RBF), Probabilistic Neural Network (PNN),
Multi-Layer Perceptron (MLP), etc. The MLP ANN (Fig. 2)
is one of the most commonly used methods. As shown
in Fig. 2, it involves an input layer, one to several hidden
layers, and an output layer. Each layer consists of a number of
neurons. The neuron receive inputs, multiply it by the weights

FIGURE 2. A Multilayer Perceptron Model for ANN.
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of each input and combine the results of the multiplication.
Then, the combinedmultiplications of the signals andweights
are then passed to a transfer function to generate the output
of the neuron (Fig. 3).

FIGURE 3. Model of an artificial neuron.

In this study, we used pattern recognition networks that are
feedforward networks with one hidden layer and 10 neurons
that trained using Scaled Conjugate Gradient (SCG) back-
propagation function [49].

3) SUPPORT VECTOR MACHINE (SVM)
SVM is a supervised machine learning method that was first
proposed for binary classification problem [50]. The basic
idea of SVM is that it can find the best hyperplane(s) to
separate the two classes. Based on the features of the data,
SVM can make linear or non-linear classifications by using
different kernel functions, e.g., Radial basis function (RBF),
Polynomial function (PF), and Sigmoid function (SF) [51].
This is illustrated in Fig. 4.

FIGURE 4. (a) Linear classifier, (b) Non-linear classifier.

For multiclass classification problems, several SVM clas-
sifiers can together deal with the multiclass problems. For
example, one-against-all and one-against-one methods based
on binary classification are commonly used in multiclass
classification problems. A comparison of methods for mul-
ticlass SVMs can be found in [52].

In this study, we applied ‘‘fitcecoc’’ function [53] on
the selected features using the aforementioned feature

selection methods. The ‘‘fitcecoc’’ function uses
c(c-1)/2 binary SVM models using one-versus-one coding
design, where c is the number of unique class labels. This will
return a fully trained error-correcting output code (ECOC)
multiclass model that is cross-validated using 10-fold
cross-validation.

III. PROPOSED FRAMEWORK
In this study, we propose an original CS and feature rank-
ing methods framework for bearing fault classification using
vibration signals. Vibration signals are usually collected
through vibration sensors. The three main types of vibra-
tion sensors are displacement sensors, velocity sensors, and
accelerometers. As shown in Fig. 5, the proposed framework
first compress the vibration data and then rank the features of
the compressed data from which the most significant features
can be selected to be used for classification. The details are
as follows:

FIGURE 5. The proposed framework.

(1) Vibration data compression: CS based on MMVmodel
is employed to produce compressively-sampled sig-
nals, i.e., compressed data Y = {y1, y2, . . . , yL} ∈ Rm

that have enough information of the original bearing
raw data X = {x1, x2, . . . , xL} ∈ Rn. Here m� n.

(2) Feature ranking and selection: as long as the
compressively-sampled signals produced by CS
model have enough information about the orig-
inal vibration signals, we may further filter the
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compressively-sampled signals using feature ranking
and selection techniques to rank and select fewer fea-
tures from the compressively-sampled signals that can
sufficiently represent characteristics of bearing health
conditions.

(3) Fault classification: with these fewer selected features
a classifier is used to classify bearing health condition.

FIGURE 6. Illustration of the data compression and feature selection.

Fig. 6 shows an illustration of the data compression and
feature selection process in the proposed framework.

IV. EXPERIMENTAL STUDY
Owing to the importance of roller bearings (Fig. 7) in rotating
machines, two case studies of vibration signals generated
by different health conditions in roller bearings have been
used to evaluate the efficiency of the proposed framework.
Based on the proposed framework, different scenarios of
methods combinations have been investigated. In order to
obtain compressively-sampled signals from the raw vibra-
tion signals, CS based on MMV model is designed using
two different sparse representations based methods including
thresholded WT and FFT. With regard to feature ranking and
selection, five techniques have investigated including FS, LS,
Relief-F, PCC, and Chi-2. In terms of fault classification,
three classification algorithms have been tested; these include
multinomial LRC, ANN, and SVM.

FIGURE 7. Typical roller bearing.

A. FIRST CASE STUDY
1) DATA DESCRIPTION
The vibration data used in this case study were collected from
experiments on a small test rig. Six conditions of roller bear-
ings status have been recorded and examined. These include,
two normal conditions, namely, a brand new (NO), and aworn
but undamaged condition (NW); and four fault conditions
containing, inner race (IR) fault, an outer race (OR) fault,
rolling element (RE) fault, and cage (CA) fault. As shown
in Table 1, each condition has its corresponding unique
characteristic.

TABLE 1. The characteristics of bearings health conditions in the first
case study bearing dataset.

Data were recorded at 16 different speeds. Fig. 8 depicts
some typical time series plots for the six different afore-
mentioned conditions. Depending on the fault conditions,
the defects modulate the vibration signals with their own
patterns. The inner and outer race fault conditions have a
fairly periodic signal; the rolling element fault may or may
not be periodic, dependent upon several reasons including
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FIGURE 8. Typical time-domain vibration signals for the six different
bearing health conditions.

the level of damage to the rolling element, the loading of the
bearing, and also the track that the ball describes within the
raceway itself. The cage fault generates a random distortion,
which also depends on the degree of damage and the bearing
loading.

FIGURE 9. The test rig used to collect the vibration data of roller bearings.

Fig. 9 shows the test rig to collect the vibration data of
bearings. The test rig consists of a DC motor driving the
shaft through a flexible coupling, with the shaft supported
by two Plummer bearing blocks. A series of damaged bear-
ings were inserted in one of the Plummer blocks, and the
resultant vibrations in the horizontal and vertical planes were
measured using two accelerometers. The output from the
accelerometers was fed back through a charge amplifier to
a Loughborough Sound Images DSP32 ADC card (using a
low-pass filter with a cut-off 18 kHz), and sampled at 48 kHz,
giving a slight oversampling. The machine was run at a series
of 16 different speeds ranging between 25 and 75 rev/s, and

ten-time series were taken at each speed. This gave a total
of 160 examples of each condition, and a total of 960 raw
data files to work with.

2) RESULTS
To apply our proposed framework in this case study, fifty per-
cent of the vibration data is randomly selected for training and
the other 50% are used for testing the performance. To obtain
compressively-sampled signals from the original vibration
signals of roller bearings, MMV based CS model with two
different sparse representations techniques, i.e., thresholded
Haar WT and FFT are used. First, we used the Haar wavelet
basis with five decomposition levels as sparsifying trans-
form where the wavelet coefficients are thresholded using
the penalized hard threshold to obtain wavelet coefficients
based sparse representations of the original vibration signals.
Second, we used the Fast Fourier Transform (FFT) to obtain
the sparse components. Then we applied compressive sam-
pling framework with different sampling rates (α) (0.1, 0.2,
0.3 and 0.4) with 600, 1200, 1800, and 2400 compressedmea-
surements from our original vibration signals using a random
matrix with i.i.d. Gaussian entries which satisfy the RIP.

To ensure that our CS model generates enough sam-
ples for the purpose of bearing fault classification, we used
the generated compressively-sampled signals in each of the
sparse representation methods to reconstruct the original
signal X by applying the Compressive Sampling Matching
Pursuit (CoSaMP) algorithm [54]. The reconstruction errors
measured by Root Mean Squared Error (RMSE). For exam-
ple, by using thresholded WT based CS with α = 0.1 the
RMSE for the six conditions of bearings are 8.5% (NO),
24.6% (NW), 15.23% (IR), 12.71% (OR), 11.87 % (RE),
and 5.29% (CA); this has been studied in details in our
previous work in [29]. While for FFT based CS using the
same sampling rate α = 0.1 the RMSE values are 4.8%
(NO), 8.9% (NW), 6.3% (IR), 5.6% (OR), 4.7 % (RE), and
3.6% (CA), which indicate good signal reconstruction.

Based on the theory of CS these compressively-sampled
signals possess the quality of the original signals. For further
filtering, we applied FS, LS, Relief-F, PCC, and Chi-2 to
select fewer features (k) from these compressively-sampled
signals. Finally, with these selected features, we applied
multinomial LRC, ANN, and SVM with ten-fold cross-
validation to deal with the classification problem. The classi-
fication accuracy levels are obtained by averaging the results
of twenty trials for each classifier and for each experi-
ment. Table 2, Table 3, Table 4 present testing classification
results for LRC, ANN, and SVM respectively using two
different sparsifying transforms, i.e., FFT and WT, to obtain
the compressively-sampled signals using the aforementioned
compressive sampling rates.

It can be seen from the results in Table 2, Table 3, and
Table 4 that among the various proposed combinations of
CS with FFT, feature selection techniques, and classifiers,
most of the combinations with LRC and ANN achieved better
results thanwith SVMwith ‘‘fitcecoc’’ function. In particular,
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TABLE 2. Classification Accuracy of Roller Bearings Health conditions for LRC with different Combinations of MMV-CS and Feature Ranking and Selection
Techniques (all classification accuracies ≥ 99% in bold).

TABLE 3. Classification Accuracy of Roller Bearings Health conditions for ANN with different Combinations of MMV-CS and Feature Ranking and Selection
Techniques (all classification accuracies ≥ 99% in bold).

results from CS-Chi-2 and CS-Relief-F for all values of the
sampling rate (α) and the number of selected features (k)
with both LRC and ANN are better than with SVM. Also,
all the combinations of CS with FFT and the considered
feature selection techniques with LRC and ANN achieved
high classification accuracies (all above 99%) for all values
of α with k = 120. Also, CS-FS, CS-LS, and CS-PCC with
LRC and ANN achieved better results than with SVM for all
values of α with k = 60 and 120. Moreover, all classification
accuracies are above 99% for all the classifiers considered
with CS-FS, CS-Relief-F, CS-PCC, and CS-Chi-2 with both
WT and FFT sparse representations techniques using α = 0.4

and k = 180. For CS-LS all considered classifiers achieved
accuracy results above 99% using α = 0.4 and k = 180 with
FFT only.

SVM achieved good results in several scenarios with the
larger number of selected features, i.e., k = 180: (1) using
CS-FS with FFT, α = 0.2, 0.3, and 0.4, and with thresholded
WT and α = 0.4, (2) using CS-LS with FFT and all values
of α, (3) using CS-Relief-F with WT and α = 0.3 and 0.4,
(4) CS-PCC with FFT, and with WT for α = 0.4, (5) using
CS-Chi-2 with WT and all values of α.

Generally, the classification accuracies of all the proposed
methods, i.e., CS-FS, CS-LS, CS-Relief-F, CS-PCC, and
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TABLE 4. Classification Accuracy of Roller Bearings Health conditions for SVM with different Combinations of MMV-CS and Feature Ranking and Selection
Techniques (all classification accuracies ≥ 99% in bold).

CS-Chi-2 are based on the compressed sampling rate (α),
the feature selection method, and the number of the selected
features (k). However, the features are selected from random
compressed projections of length (m) that do not include
representations of all the attributes in the original data of
length (n), i.e., m 6= n. Therefore, the assumption that when
α gets larger the accuracy gets better may not apply in every
set of selected features. For example, it can be clearly seen
from the results in Table 2 that the classification accuracy
of all the proposed methods with FFT sparsifying method
becomes better when α becomes larger with k = 180. While
with k = 120, only one variation was found using CS-PCC
with accuracy 99.8% and 99.5% for α equal to 0.1 and
0.2 respectively. With k = 60, five variations were found;
one variation using CS-FS with accuracy 98.8% and 98.1%
for α equal to 0.3 and 0.4 respectively; one variation using
CS-LS with accuracy 95.8% and 93.4% for α equal to 0.1 and
0.2 respectively; two variations using CS-Relief-F, first with
accuracy 99.5%, 99.3% for α equal to 0.1 and 0.2, and second
with 99.5% and 99.4% accuracy for 0.3, and 0.4 respectively;
one variation using CS-PCC with 98.8% and 98.4% for 0.3,
and 0.4 respectively.

Taken together, these results show that the proposed frame-
work with various methods studied here has the ability to
classify bearing health conditions with a high classification
accuracy with the following comments:

1) FFT as a sparsifying transform method for our pro-
posed MMV based CS model can achieve better results
than thresholded WT.

2) LRC and ANN have the ability to achieve high classi-
fication accuracy with different values of the sampling
rate (α) and a number of selected features (k) for all
the considered CS and feature selection techniques
combinations.

3) SVM has the ability to achieve good classifica-
tion accuracy with the larger number of selected
features, i.e., k = 180, and larger values of α,
e.g., α = 0.4, for certain combinations. This can be
clearly seen in Table 3 and previously published results
in [55] and [56].

4) With the larger number of selected features, all the pro-
posed methods achieved high classification accuracy.
Thus, for the application of the proposed methods in
fault diagnosis, we recommend selecting a larger num-
ber of features from compressively-sampled signals.

3) COMPARISONS OF RESULTS
For further verification of the efficiency of the proposed
framework, complete comparison results of the classifica-
tion accuracy using the different combinations based on
the proposed framework compared with some recently pub-
lished results using the same vibration dataset, for instance
in [27] results reported for three methods, one method uses
all the original vibration data from which entropic features
are extracted, and the other two uses compressed measure-
ments to recover the original vibration signals and from the
recovered signals entropic features are extracted. With the
extracted features SVM used to classify bearing health con-
ditions. These results reported in [27].

Moreover, three CS based techniques have been used to
classify bearing health conditions, using the compressedmea-
surements as the input to LRC classifier, combining CS and
PCA, CS and LDA to extract features from raw vibration data
and then use LRC to deal with the classification problem.
These results are reported in [33]. Also, a hybrid model
consisting of the Fuzzy Min-Max (FMM) neural network
and Random Forest (RF) with Sample Entropy (SampEn)
and Power Spectrum (PS) features is used to classify bearing
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TABLE 5. A comparison with the classification results from literature on
bearing dataset.

health conditions and the results reported in [57]. In [58] a
Genetic Programming (GP) based approach is proposed for
feature extraction from raw vibration data and with extracted
features SVM and ANN are used to classify bearing health
conditions. Table 5 presents classification results of bearing
health conditions using our proposed methods with α =
0.4, 0.3, and 0.1 and the reported results in [27], [33], [57],
and [58] using the same dataset used in this case study.

It can be clearly seen that the classification results of our
proposed methods are better than those reported in [27], [33],
and [58]. Also, our results are as good as, if not better than
results reported in [57] although we are using only 10%
(α = 0.1) of the original vibration data that is not matched
by the method in [57] using all the raw vibration data.

This section has validated the proposed framework and has
shown that the many combinations of CS and feature ranking
methods achieved high classification accuracies of bearing
faults. The next section of this paper will validate the usage
of our proposed framework using publicly available bearing
vibration dataset. The advantage of the shared dataset is that
we can compare the results of other researchers easily.

B. SECOND CASE STUDY
The bearing vibration data used in this case study is provided
by the Case Western Reserve University (CWRU) Bearing
Data Center [59]. This data is freely available and commonly
used in roller bearings fault diagnosis field. Fig. 10 shows
the test rig that is used to acquire this vibration data. It is
comprised of a 2 horsepower electric motor driving a shaft

that contains a torque transducer and encoder. A dynamome-
ter and electronic control system are used to apply torque
to the shaft. A series of faults with width ranging from
0.18 to 0.71 mm (0.007 to 0.028 in) were seeded on the drive
end bearing (in this case SKF deep-groove ball bearings
6205-2RS JEM were used) of the electric motor utilising
electro-discharger machining.

FIGURE 10. The test rig used to collect the first vibration data of bearings
(CWRU Bearing Data Center).

The seeded faults include rolling elements, inner race, and
outer race faults, and each faulty bearing was run for motor
loads 0 – 3 horsepower at a constant speed in the range
1730 – 1797 rev/m, and the sampling rates used were 12 kHz.
The bearing vibration signals were acquired under normal
NO, IR, OR, and RE conditions for four different speeds.
In this case study, bearing dataset is chosen from the data files
of vibration signals that were sampled at 12 kHz with fault
size (0.18, 0.36, 0.53, and 0.71), load 2-horsepower, and the
number of examples chosen is 60 per condition. This gave
a dataset with 720 total number of examples and 2000 data
points for each signal. The description of the used bearing
vibration dataset is presented in Table 6.

TABLE 6. Description of the bearing health conditions of the used
bearing vibration dataset.
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Of these raw vibration signals, 240 examples are randomly
selected for training and 480 examples are used for test-
ing. We applied the MMV-CS model with FFT to obtain
compressively-sampled signals from the raw vibration sig-
nals using α equal to 0.1 and the same feature selections
methods as in the first case study to select fewer features
of these compressively-sampled signals. With these fewer
selected features, we employed LRC, ANN, and SVM to deal
with the classification problem. The classification accuracies
are achieved by averaging the results of twenty trials for each
classifier and for each experiment. Table 7 shows the accu-
racy of all experiments with a different number of selected
features (k = 25 and 50). Fig. 11 and Fig. 12 show a column
chart representations of the classification results presented
in Table 7.

TABLE 7. Classification Accuracy of Roller Bearings Health conditions of
the second case study with different Combinations of MMV-CS and
Feature Ranking and Selection Techniques (all classification
accuracies ≥ 99% in bold).

As follows from the Table 7, all combinations of CS
and feature ranking and selection techniques with ANN and
a different number of selected features, i.e., k = 25 and
50 achieved high classification accuracies (all over 99%).
As well as achieving high classification accuracy with
ANN using 25 features, all combinations with ANN and
50 selected features are able to achieve even higher classifi-
cation accuracy. In particular, results of CS-FS, CS-Relief-F,
and CS-Chi-2 with ANN and 50 selected features achieved
100% classification accuracy for every single run in our
investigations.

The average classification accuracies of LRC obtained
using 50 selected features using CS-FS, CS-Relief-F,
CS-PCC, and CS-Chi-2 are above 99%. Also, with
25 selected features based on CS-LS, CS-Relief-F, and
CS-PCC, LRC is able to achieve over 99% classification
accuracy. In addition, with SVM and 50 selected features
based on CS-FS, CS-Relief-F, and CS-Chi-2, the average

FIGURE 11. Classification accuracy rates of 25 selected features.

FIGURE 12. Classification accuracy rates of 50 selected features.

classification accuracy rates are generally above 99%. These
observations can be clearly seen in Fig. 11 and 12 below.
However, from Table 7 it can be clearly seen that for k = 25,
the classification accuracies of CS-LS-LRC, CS-LS-SVM,
and CS-PCC-SVM methods are 99.9%, 98.5%, and 97.9%
respectively; while for k=50, the classification accuracies for
the same methods are 97.5%, 98.3%, and 97.5% respectively.
Therefore, for a fixed compressed signal size m, there is
an optimal number of features k that makes the classifi-
cation accuracy higher than other classification accuracies
achieved using a different number of features that may be
bigger or smaller than k .
For further evaluation of the efficiency of the proposed

MMV-CS and feature ranking analysis-based framework.
Table 8 presents the comparisons with some recently pub-
lished results [24] with the same bearing dataset used in this
case study. One method uses Feature Selection by Adjunct
Rand Index and Standard Deviation Ratio (FSAR) to select
features from the original feature set (OFS). Other methods,
use PCA, LDA, Local Fisher Discriminant Analysis (LFDA),
and Support Margin LFDA (SM-LFDA) to reduce the dimen-
sion of selected features using FSAR. With the selected
features, SVM is used for the purpose of classification. The
results for different numbers of selected features are reported
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TABLE 8. A comparison with the classification results from literature on
bearing dataset.

in [24]. It is clear that all the results from our proposed
framework outperforms results reported in [24].

V. CONCLUSION
An original framework based on CS using MMV and feature
ranking has been proposed for bearing fault classification.
In this framework, CS based on MMV is used to reduce
a large amount of bearing vibration signals by producing
compressively-sampled signals from the raw vibration sig-
nals. For further filtering, a feature ranking technique is used
to rank the features of the compressively-sampled signals
from which the most important features are selected. With
these selected features, a classification algorithm has been
used to classify bearing faults. We have investigated dif-
ferent combinations of MMV based CS and feature rank-
ing techniques (CS-FS, CS-LS, CS-Relief-F, CS-PCC, and
CS-Chi-2) with two different bearing fault classification
tasks. Three classification algorithms (LRC,ANN, and SVM)
have been tested to evaluate the proposed framework for the
classification of bearing faults.

The CS and feature ranking framework is able to achieve
high classification accuracy in all of the faults studied
here. Moreover, the various combinations of CS and feature

ranking techniques investigated in this study offer higher
classification accuracies with LRC, ANN, and SVM even
with a limited amount of data compared to recently published
results.
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