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ABSTRACT Correlation analysis is of great significance for exploring the multivariate data sets as it helps
researchers toward an in-depth understanding of the complex interactions and relationships among variables.
In this paper, we propose a correlation analysis method that identifies salient scalars for multivariate
data exploration. We exploit specific mutual information metric to measure the information overlap and
analyze the relationships between one scalar and other variables. Moreover, we define the information flow
and introduce another metric, influence to quantify the associations among scalars of different variables.
Furthermore, we integrate these two information metrics and construct a surprise-influence map for users’
interaction to identify the salient scalars. By investigating the relationships among these salient scalars,
we analyze the correlations among variables. We demonstrate the applicability and effectiveness of our
proposed method by applying it to different data sets.

INDEX TERMS Multivariate data, correlation analysis, specific mutual information, information overlap,
information flow.

I. INTRODUCTION
Multivariate data sets are widely produced in scientific and
engineering domains such as computational fluid dynamics,
climate, and aerodynamics, and exploration of these data is of
great significance in understanding the intrinsic mechanisms
of these physical and simulation phenomena [1]. Generally,
there exist complex and heterogeneous interactions among
different variables, which make the understanding of the
multifaceted data difficult. Hence, the correlations among
variables needs to be thoroughly investigated and analyzed
to get an in-depth comprehension of the multivariate data
sets. Traditional voxel-level analysis methods are tedious
and challenging because of high resolution and unprece-
dented sizes of the data, however, it is more effective to
discretize and bin the data into scalar values as the amount
of the scalar-level data to be processed largely decreases.
By identifying the most representative scalars of variables,
researchers could understand the relationships among them
and then analyze the correlations among variables for explor-
ing the multivariate data. Nonetheless, it is still diffi-
cult to identify the salient scalars without sufficient prior
knowledge [2].

In this paper, we propose a correlation analysis method
that identifies salient scalars to explore the multivariate
data sets. We exploit two information metrics, surprise and
influence to help towards in-depth identification of the

representative scalars. Since mutual information measures
the information overlap among variables, we decompose
it into specific mutual information (SMI) to quantify the
shared information between one scalar and other variables
(i.e. surprise), which facilitates the identification of represen-
tative scalars with high surprise. On the other hand, we define
the information flow by using conditional probability and
quantify the associations among scalars of different variables
(i.e. influence) based on an influence-passivity model, which
provides another metric to enhance the ability of identifica-
tion. By integrating the surprise with influence, we construct
a surprise-influencemap to guide users in the identification of
the representative scalars of different variables, and further,
we present how to explore the multivariate data by analyzing
the interactions among these salient scalars. Experiments
demonstrate the applicability and effectiveness of our pro-
posed method.

Our main contributions are threefold:
1) We consider the information overlap and measure the

relationships between one scalar and other variables by
exploiting SMI, which facilitate the identification of
salient scalars.

2) We take the information flow into account and quantify
the associations among scalars of different variables,
which enhance the ability of identification by integrat-
ing surprise.
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3) We propose a correlation analysis method in which we
explore the correlations among variables by analyzing
the relationships among salient scalars.

This paper is organized as follows. In Section 2, we review
the related work. In Section 3, we give a brief overview of
our method. Section 4 discusses the two information metrics,
surprise and influence and proposes the correlation analysis
method in detail. Section 5 presents the experimental results
on several data sets. In Section 6, we provide the discussion
and future work. Section 7 demonstrates the conclusion.

II. RELATED WORK
In this section, wemainly review the works which are directly
related to our research: correlation analysis methods, visual
exploration applications, and information theory in data
analysis.

A. CORRELATION ANALYSIS FOR MULTIVARIATE DATA
Correlation analysis is to comprehend the interactions and
underlying relationships among variables. Plenty of previous
works have been reviewed in [3] and [4]. Yang et al. [5]
introduced a Nugget Management System (NMS) for explo-
ration and analysis of multivariate data. Jänicke et al. [6]
analyzed the multivariate data in a 2D attribute space by
transforming the high dimensional data into point clouds.
Turkay et al. [7] linked the items space and dimensions space
and proposed a multidimensional data exploration model.
Lee and Shen [8] studied the temporal trend relationships
among the variables based on dynamic time warping by their
SUBDTW algorithm. Zhang et al. [9] arranged the variables
into a 2D layout and generated an interactive correlation
map with spatial representations for analyzing the relation-
ships of variables. Chen et al. [10] devised a sampling-based
approach to correlation classification for time-varying mul-
tivariate data. Zhang et al. [11] analyzed the correlation of
time-varying patterns for multivariate data by a dissimilarity-
preserving cluster algorithm. Gosink et al. [12] studied the
variable interactions with a third variable by defining a corre-
lation field as the normalized dot product between two gradi-
ent fields from two variables. Romero et al. [13] took people
in a social network as variables and devised an influence-
passivity model to evaluate their influence and passivity.
In this paper, we discretize the data into scalars and introduce
two information metrics for identifying salient scalars, and
then we analyze the interactions among these scalars and
correlations among variables.

B. VISUAL EXPLORATION FOR MULTIVARIATE DATA
Visual exploration is to depict the relationships among vari-
ables by visualization technologies. Parallel coordinates plot
(PCP) [14]–[16] is widely used for multivariate analysis,
in which variables are represented as parallel axes. However,
the ordering of the axes in PCP affects the visual exploration
process, and inevitable clutter in PCP also poses another
problem towards the analysis of relationships between neigh-
boring axes [17]–[19]. Traditional scatter plot [20] is another

widely used method for its ability to indicate the trend
between two variables, but it is generally difficult to explore
the data with huge sizes because of heavy overlap. Scatter plot
matrices (SPLOM) [21] extended the traditional scatter plot
by simultaneously plotting all pairs of scatter plots for all the
variables, but it also tends to be cluttered with the increased
number of variables. Guo et al. [22] created a novel transfer
function design interface by integrating PCP andmultidimen-
sional scaling (MDS) plots for visualization of multivariate
data. Nagaraj et al. [23] proposed a gradient-based measure
that reveals the relationships among variables for the purpose
of comparative visualization. Sauber et al. [24] introduced
local correlation coefficients to analyze the relationships
among variables. Tatu et al. [25] explored the interesting sub-
spaces of high-dimensional multivariate data by proposing an
interactive visualization system. In this paper, we construct a
scatter plot by mapping scalars to a surprise-influence space
to guide users in the identification of salient scalars, and then
we visualize the multivariate data for further visual analysis.

C. INFORMATION THEORY IN DATA EXPLORATION
Information theory [26] which can represent the relation-
ships among objects is also widely used in data analysis.
Wang et al. [27] introduced information entropy and for-
mulated a complete graph to study the causal relationships
among the variables of a time-varying multivariate data set.
Haidacher et al. [28] analyzed multimodal surface similar-
ities by extending mutual information (MI) to multimodal
domains. Dutta et al. [29] explored the time-varying multi-
variate data by pointwise MI. Biswas et al. [30] measured
the information overlap between one scalar and a variable by
surprise and predictability metrics, which mainly focused on
one-way interactions between two variables and left out infor-
mation propagation. Viola et al. [31] used MI to identify the
best visualization view. Bruckner and Möller [32] explored
isosurfaces of univariate data by using MI. Feixas et al. [33]
used specific MI to fuse multimodal data sets. In this paper,
we exploit MI metric to measure the information overlap for
identifying salient scalars.

III. OVERVIEW
Our main goal is to identify the salient scalars of different
variables and analyze how these variables interact with each
other for exploring the multivariate data sets. To do this work,
we first discretize the variables into scalars and select a refer-
ence variable. We quantify the information overlap between
one scalar and other variables (i.e. surprise) by introducing
the specific mutual information (SMI). To allow for more
effective analysis of correlation, we define the information
flow and incorporate another informationmetric named influ-
ence to quantify the associations among scalars of different
variables. By integrating the surprise with influence, we con-
struct a surprise-influence map to provide an interface for the
users to identify the representative scalars of the reference
variable, and then the strongly associated scalars of other
variables are identified. Further, we visualize these salient
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scalars together for correlation visualization and analyze the
correlations among variables. Fig. 1 is a workflow of our
proposed method.

FIGURE 1. A workflow of our correlation analysis method.

IV. CORRELATION ANALYSIS FOR MULTIVARIATE
DATA SETS
Given two variables X and Y , we discretize them into scalars
xi, i ∈ [1,M ] and yj, j ∈ [1,N ], and then the relationships
between X and Y can be reflected in two aspects.
First, from the standpoint of information theory [34],

as seen in Fig. 2(a), there exists information overlap between
two associated variables, so we could gain some information
about Y by observing X . The shared information is repre-
sented by joint probability p(xi, yj) and quantified by mutual
information (MI). The higher the MI is, the more information
that X and Y shares.

FIGURE 2. A schematic diagram of the information overlap and flow.
(a) Information overlap. (b) Information flow, arrows represent the
direction.

Second, from the perspective of probability theory, as seen
in Fig. 2(b), there exists information flow between two asso-
ciated scalars xi and yj represented by conditional probability
p(yj|xi) and p(xi|yj). Higher p(yj|xi) indicates that yj depends
on xi more heavily and xi is more likely to infer the existence
of yj, and more information flows from xi to yj.
In our paper, we exploit the information overlap as well as

the information flow for analyzing the relationships between
X and Y . Variables are discretized with histograms, and joint
probability p(xi, yj) is computed by 2D joint histogram and
p(xi) is computed by 1D histogram, and conditional proba-
bility is computed as p(yj|xi) = p(xi, yj)/p(xi).

A. INFORMATION OVERLAP AND SURPRISE
In information theory [34], MI measures the shared or over-
lapped information among variables, and it also quantifies
how much the uncertainty of one variable is reduced after
given other variables. For two variables X and Y , MI is
defined as:

I (X;Y ) =
∑
xi∈X

∑
yj∈Y

p(xi, yj) log
p(xi, yj)
p(xi)p(yj)

(1)

where p(xi) is the probability of xi ∈ X , p(yj) is the probability
of yj ∈ Y and, p(xi, yj) is their joint probability.

Since MI specifies the shared information on average over
all (xi, yj) combinations, we decompose MI into SMI to mea-
sure the shared information between one scalar xi ∈ X and the
variable Y , which quantifies how much the uncertainty of Y
is reduced after given the scalar xi. In this case, variable X
is called the reference variable, which can be selected by
domain knowledge or other metrics (e.g. entropy). There are
several ways to calculate the SMI and the expression of SMI
is not unique, but it must fulfill

∑
xi∈X

p(xi)I (xi;Y ) = I (X;Y ).

An expression of SMI named surprise [26] is:

I (xi;Y ) =
∑
yj∈Y

p(yj|xi) log
p(yj|xi)
p(yj)

(2)

where p(yj|xi) is the conditional probability.
The surprise value is strictly nonnegative because it rep-

resents the Kullback-Leibler distance [35] between p(Y ) and
p(Y |x), so it is particularly large when p(yj|xi) dominates in
regions of X where p(yj) is small, in that case, the obser-
vation of xi has moved our estimate of yj towards values
that seemed very unlikely prior to the observation xi [26].
In other words, higher surprise value indicates that some
infrequent occurrences yj have become more probable due to
the observation of xi. On the other hand, higher surprise value
means that the xi shares more information with Y and reduces
more uncertainty of Y , since the total shared information
between X and Y is a constant I (X;Y ), it also denotes that
other scalars share less information with Y and reduce less
uncertainty of Y . Above all, the scalars xi ∈ X , for which
the surprise value is higher, are more representative of the
reference variable X , and we should take these scalars into
more account for further analysis.

B. INFORMATION FLOW AND INFLUENCE
In probability theory, variables are not isolated and informa-
tion is not static. There exists information propagation among
variables in amultivariate data set, and each scalar is transmit-
ting as well as receiving information simultaneously. Based
on this consideration, we define the information flow that
from scalar xi to yj as conditional probability p(yj|xi) which
measures the information content that yj accepts from xi.
Then, the acceptance rate [13] of yj with respect to xi can be
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defined as:

axiyj =
p(yj|xi)∑

xk∈X
p(yj|xk )

(3)

The acceptance rate measures the information content that yj
accepts from xi normalized by the total information content
that yj accepts from all its associated xi. Similarly, the accep-
tance rate of xi with respect to yj is:

ayjxi =
p(xi|yj)∑

yk∈Y
p(xi|yk )

(4)

On the other hand, 1 − p(yj|xi) measures the information
content that yj rejects from xi, and the rejection rate of yj with
respect to xi is defined as:

rxiyj =
1− p(yj|xi)∑

yk∈Y
(1− p(yk |xi))

(5)

The rejection rate measures the information content that yj
rejects from xi normalized by the total information content
that rejected from xi by all associated yj. Similarly, the rejec-
tion rate of xi with respect to yj is:

ryjxi =
1− p(xi|yj)∑

xk∈X
(1− p(xk |yj))

(6)

Reference [13] devised an influence-passivity model
(IPmodel) based on two important conceptions, influence and
passivity to explore the social network. Similarly, we redefine
the influence and passivity for our multivariate data analysis.
• Influence: influence indicates how actively one scalar
interacts with others, and higher influence value repre-
sents more active interactions.

• Passivity: passivity indicates how dully one scalar
responds to others, and higher passivity value denotes
more dull responses.

Next, based on the IP model, we iteratively calculate the
influence and passivity values for each scalar as:

Ixi =
∑
yj∈Y

axiyjPyj

Pxi =
∑
yj∈Y

ryjxi Iyj
(7)

where Ixi and Pxi are the influence and passivity values of
xi ∈ X , respectively.
In (7), we find that the influence value of xi is high in three

cases: first, the amount of scalars yj ∈ Y that interacts with
xi is large; second, axiyj is large which indicates that some
yj have highly accepted xi; third, passivity Pyj is high which
means that some dull yj have responded to xi and accepted
information from xi. Hence, the scalars xi ∈ X , for which
the influence value is higher, are more representative of the
reference variable X , and we should take these scalars into
more account for further analysis.

Unlike the surprise which represents the relationships
between one scalar and other variables, the influence quan-
tifies the associations among scalars of different variables.

By integrating these two metrics, we could identify the repre-
sentative scalars xi of the reference variableX in the following
part.

C. CORRELATION ANALYSIS BASED ON SURPRISE
AND INFLUENCE
1) SURPRISE-INFLUENCE MAP
Based on (2) and (7), each scalar xi ∈ X corresponds
to two values, the surprise and influence. We map each xi
to the surprise-influence space and construct a scatter plot,
in which each point represents one specific scalar xi, and the
x-axis represents the surprise and the y-axis represents the
influence. Specifically, in the surprise-influence map, each
point is colored by its scalar value which makes it intuitive
for us to explore the distribution patterns of these scalars.
Compared with traditional scatter plot, this surprise-influence
map alleviates overlap and clutter because the number of
points is greatly lower than the sizes of the original data sets
by discretization.

2) IDENTIFICATION OF SALIENT SCALARS
As discussed above, the scalars xi, for which the surprise
value or influence value is higher, are more representative
of the reference variable X , and we should pay more atten-
tion to them. With this guideline, we interactively select
points or regions from the surprise-influence map where the
surprise or influence is higher or both are higher, then the
corresponding salient scalars xi are identified. Specifically,
considering the importance of domain knowledge in multi-
variate data exploration, we incorporate it into our method to
help users with the identification.

After the representative scalars xi are identified, the next
task is to identify the associated yj ∈ Y for correlation
analysis. We must realize that only the strongly associated
scalars are identified, we can obtain a confident analysis
result. Since conditional probability p(yj|xi) represents the
information content that flows from xi to yj, we define the
strongly associated yj as those with higher p(yj|xi) than a
preset threshold. Higher p(yj|xi) means that yj accepts more
information from xi, which may lead to higher acceptance
rate axiyj and influence value Ixi in (7). Furthermore, higher
p(yj|xi) implicates that it is more likely to generate a higher
surprise value in (2). Hence, the strongly associated yj in turn
corroborate that the identified xi are indeed representative of
the reference variable X .

3) CORRELATION VISUALIZATION AND
CORRELATION ANALYSIS
We visualize the representative scalars xi ∈ X and associated
yj ∈ Y together for correlation visualization. By exploring
the relationships between these identified scalars, we analyze
the correlations between variables X and Y . Though the iden-
tification of salient scalars is discussed and derived based on
two variables, it can be easily extended to multiple variables.
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For three variables X , Y , and Z , (2) is expressed as:

I (xi;Y ,Z ) = I (xi;Y )+ I (xi;Z |Y )

=

∑
yj∈Y

∑
zk∈Z

p(yj, zk |xi) log
p(yj, zk |xi)
p(yj, zk )

(8)

and (7) is expressed as
Ixi =

∑
yj∈Y

axiyjPyj +
∑
zk∈Z

axizkPzk

Pxi =
∑
yj∈Y

ryjxi Iyj +
∑
zk∈Z

rzkxi Izk
(9)

For more variables, and so on.
To sum up, we propose our correlation analysis method and

the complete process is presented in Algorithm 1.

Algorithm 1 Correlation Analysis for Multivariate Data Sets
Input: Multivariate data set, the number of histogram bins.
Output: Salient scalars and correlation results.
1: Discretize the variables into scalars, and compute proba-

bility for each scalar and joint probability for every pair
of scalars.

2: Select the reference variable X .
3: Calculate the surprise value for each xi. (equation 2)
4: Compute the influence value for each xi. (equation 7)
5: Construct the surprise-influence map.
6: Incorporate domain knowledge, interactively identify the

representative xi of the reference variable X with higher
surprise or influence value.

7: Identify the strongly associated scalars of all variables
based on conditional probability.

8: Visualize the identified scalars together for correlation
visualization.

9: Analyze the correlations between or among variables.

V. EXPERIMENTS
In this section, we demonstrate the applicability and effec-
tiveness of our method on two data sets: Hurricane Isabel
data set and Ionization Front Instability data set. Experiments
were performed on a Windows 7 desktop computer with an
Intel core i5-6500 CPU and 8 GB of RAM. All data sets
were discretized with 256 histogram bins for calculating the
probabilities, and the threshold for identifying the strongly
associated scalars was 5%. The visualizations were generated
by using ParaView [36].

A. HURRICANE ISABEL DATA SET
Hurricane Isabel data set [37] was produced by the Weather
Research and Forecast (WRF) model, courtesy of NCAR and
the U.S. National Science Foundation (NSF). This data set
is an atmospheric simulation data with 13 variables and a
resolution of 500×500×100. To investigate the relationships
among pressure, wind speed, and humidity, we selected the
pressure (PRE), wind velocity (VEL), and water vapor (QVA)
for exploring the data with PRE as the reference variable.

Fig. 3 analyzed the correlations between PRE and VEL.
Fig. 3(a) presented the surprise-influence map, and the red
rectangular identified the hurricane eyewall in Fig. 3(b) and
the black rectangular identified the hurricane eye in Fig. 3(d).
As seen in Fig. 3(c) and 3(e), the global VEL was associated
with both hurricane eyewall and eye, and the VEL values
around the hurricane center (red regions) were strikingly
high. However, a majority of the VEL values in Fig. 3(c) was
much higher than Fig. 3(e), particularly in the white regions
as shown by red circles. It highlights that the hurricane eye
mainly resulted in strong wind around the center, while the
hurricane eyewall could generate strong wind in much vaster
areas as well as around the center. Hence, we can conclude
that the hurricane eyewall is more representative in terms of
strong wind, which corroborates the identification that the
hurricane eyewall was more salient with higher surprise and
influence than the hurricane eye. In addition, we also find that
the VEL values were approximately zero at the center of the
hurricane, which is consistent with our daily experience that
it is clear blue skies at the center of the typhoon.

FIGURE 3. Correlation analysis between PRE and VEL. (a) Surprise-
influence map, red rectangular identified the hurricane eyewall with
higher surprise and influence, black rectangular identified the hurricane
eye with lower surprise and influence. (b) The hurricane eyewall with
PRE = −2200. (c) VEL associated with the hurricane eyewall. (d) The
hurricane eye with PRE = −4600. (e) VEL associated with the
hurricane eye.
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Fig. 4 analyzed the correlations between PRE and QVA.
Fig. 4(a) presented the surprise-influence map, and the red
rectangular identified the hurricane eyewall in Fig. 4(b) and
the black rectangular identified the hurricane eye in Fig. 4(d).
As seen in Fig. 4(c) and 4(e), the global QVA was related
to hurricane eyewall and eye, and long bands of rain clouds
spiraled inward to the hurricane center. In Fig. 4(c), the QVA
values associated with the hurricane eyewall were distributed
between 0-1444, while in Fig. 4(e), the QVA values asso-
ciated with the hurricane eye were 0-2317, and the QVA
values in Fig. 4(e) were much higher than that in Fig. 4(c)
almost everywhere. Particularly, the QVA values were the
highest at the center of the hurricane (red regions). It indicates
that compared with the hurricane eyewall, the hurricane eye
was more representative in terms of QVA, which corrob-
orated the identification that the hurricane eye was more
salient with higher surprise than the hurricane eyewall. In this
sense, we conclude that hurricane eye is with strong spiral
rainbands.

FIGURE 4. Correlation analysis between PRE and QVA. (a) Surprise-
influence map, black rectangular identified the hurricane eye with higher
influence and surprise, red rectangular identified the hurricane eyewall
with higher influence but lower surprise. (b) The hurricane eyewall with
PRE = −2200. (c) QVA associated with the hurricane eyewall. (d) The
hurricane eye with PRE = −4000. (e) QVA associated with the
hurricane eye.

B. IONIZATION FRONT INSTABILITY DATA SET
Ionization Front Instability data set was produced for explor-
ing the relationships of the ionization front instabilities with
the formation of the first stars of the universe [38]. The
data set has 13 variables and a resolution of 600×248×248.
To investigate that how temperature is related to the tur-
bulence and ionization process, we selected the tempera-
ture (TEM), curl magnitude (MAG), and density of hydrogen
ion (DoH) for exploring the data with TEM as the reference
variable.

Fig. 5 analyzed the correlations between TEM and MAG.
Fig. 5(a) presented the surprise-influence map, and the
red rectangular identified high TEM in Fig. 5(b) and the
black rectangular identified low TEM in Fig. 5(d). As seen
in Fig. 5(c) and 5(e), it indicates that both high and low TEM
impacted on MAG as the whole tail of the turbulence was
related to the identified TEM scalars. Furthermore, compared
Fig. 5(b) and 5(d), the high TEM areas interacting with MAG
were much smaller than the areas with low TEM, while
they related to almost the same results in Fig. 5(c) and 5(e),
it denotes that much more scalars of MAG were associated
with each high TEM scalar, and hence, high TEM is more
representative in terms of MAG which corroborates the iden-
tification that the high TEM was more salient with higher

FIGURE 5. Correlation analysis between TEM and MAG. (a) Surprise-
influence map, red rectangular identified high TEM with higher surprise
but lower influence, black rectangular identified low TEM with higher
surprise but lower influence. (b) High TEM = 20000. (c) MAG associated
with high TEM. (d) Low TEM = 1000. (e) MAG associated with low TEM.
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surprise than the low TEM. Then we draw a conclusion that
high TEM results in the turbulence.

Fig. 6 analyzed the correlations between TEM and DoH.
Fig. 6(a) presented the surprise-influence map, the blue
rectangular identified medium TEM in Fig. 6(d) and the
black rectangular identified low TEM in Fig. 6(f), specif-
ically, we identified high TEM in Fig. 6(b) with the
red rectangular based on our prior knowledge. As seen
in Fig. 6(c), 6(e), and 6(g), DoH was greatly affected by high
TEM as the hydrogen ions were spread across the whole areas
and DoH was particularly high at the head of the turbulence,
while medium/low TEM values were mainly related to rel-
atively low DoH in the tail of the turbulence, then we can
conclude that high TEM more greatly affects the ionization
of hydrogen. In addition, we find that high TEM was not

FIGURE 6. Correlation analysis between TEM and DoH. (a) Surprise-
influence map, red rectangular identified high TEM by domain
knowledge, blue rectangular identified medium TEM with higher surprise
and influence, black rectangular identified low TEM with lower surprise
and influence. (b) High TEM = 20000. (c) DoH associated with high TEM.
(d) Medium TEM = 10000. (e) DoH associated with medium TEM. (f) Low
TEM = 3000. (g) DoH associated with low TEM.

with higher surprise or influence in Fig. 6(a), it indicates that
there might be some other variables together with TEM that
resulted in high DoH, andwewill analyze themultiple-to-one
interactions for more in-depth exploration in the future.

VI. DISCUSSION AND FUTURE WORK
Our method has only two parameters, the number of his-
togram bins and the threshold for identifying the strongly
associated scalars. Since the threshold is set for visual anal-
ysis, we try it with different values until we get a relatively
intuitive and succinct visualization result. Hence, we mainly
focus on the selection of the number of bins because it affects
the calculation of probabilities based on the 1D histogram
and 2D joint histogram. Generally, the higher the number
of bins is, the more precise probabilities we get, but it is
meaningless if we increase it to the data size, and using too
many bins even leads to clutter in the surprise-influence map.
In this part, we show the results by using 128 and 512 bins.
Compared with Fig. 3(a), it indicates that the general patterns
of the surprise-influence maps remain the same although
there are some differences and 512 bins lead to slight clutter
in Fig. 7(b).

FIGURE 7. Surprise-influence map of PRE and VEL with different
histogram bins. (a) 128 bins. (b) 512 bins.

Our method analyzes the correlations in a one-to-multiple
way, and we can only analyze how the reference variable
affects other variables. However, without sufficient prior
knowledge or other guides, the reference variable we select
may not be the most representative and significant one that
greatly impacts on other variables, such as the TEM in terms
of DoH, and hence, we cannot get comprehensive analysis
results in these cases. In the future, we will explore the
multiple-to-multiple methods to analyze how multiple vari-
ables impact on one or more variables.

Furthermore, in a multivariate data, there are some regions
of interest (i.e. feature) which are of great significance for fur-
ther exploration (e.g. feature visualization). However, precise
definition of a feature is usually unavailable or we can only
obtain a fuzzy description about it, which makes the extrac-
tion of such features difficult. Since our method identifies the
representative scalars of variables, it provides a preliminary
and rough way to extract these features, a typical case is
the turbulence that hard to be described and defined with
mathematical equations while it is identified by our method,
as seen in Fig. 5 (c) and 5(e). In the future, we will apply
our method to the domain of feature extraction with better
performance.

VOLUME 6, 2018 44241



L. Wang et al.: Correlation Analysis for Exploring Multivariate Data Sets

VII. CONCLUSION
In this paper, we proposed a correlation analysis method
that identified salient scalars to explore the multivariate
data. We measured the information overlap and analyzed
the relationships between scalars and variables by exploiting
SMI metric. We defined the information flow and quanti-
fied the associations among scalars of different variables
by introducing another information metric named influence.
We constructed a surprise-influence map and identified the
representative scalars of the reference variable, and further,
we identified the strongly associated scalars of all other
variables. Finally, we analyzed the correlations among vari-
ables based on these salient scalars. We demonstrated the
applicability and effectiveness of our proposed method by
applying it to different data sets.
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