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ABSTRACT In this paper, a multi-objective resource allocation algorithm in a novel density-aware design
of virtualized software-defined cloud radio access network (C-RAN) is proposed. We consider two design
modes based on the average density of users: 1) high-density mode when a large number of low-cost remote
radio heads (RRHs) without baseband processing capability are controlled by one single base station and
2) low-density mode when a small number of RRHs with baseband processing capability are deployed.
In high-density mode, the challenge of front-haul capacity limitation is tackled via separating control plane
and data plane in a heterogeneous structure. Besides, the fully centralized processing and management, and
energy-efficient use of infrastructure in low traffic time by turning off RRHs are achieved. In the low-density
mode, the transmission delay due to the large distance between the sparse RRHs and cloud unit, is more
critical. This practical issue is handled by sharing the baseband processing and resource management among
these units in a hierarchical structure. This resulting heterogeneous /hierarchical virtualized software-defined
cloud-RAN (HVSD-CRAN) offers various tradeoffs in resource management objectives such as throughput
and delay versus power and cost. Consequently, we resort to multi-objective optimization theory to propose
a resource allocation framework in HVSD-CRAN.

INDEX TERMS Density-aware RAN design, function splitting, multi-objective resource management.

I. INTRODUCTION
Fifth generation wireless networks (5G) objects to support
three different types of services: mobile broadband (MBB),
mission-critical machine communication (MCC) andmassive
machine-type communication (mMTC) [1] where ultra high
throughput, considerably low delay and massive connection
of users are their three distinguishable goals, respectively.
To attain them, all parts of 5G architecture and specially a
radio access network (RAN) should be revolutionized where
5G leverages Cloud-RAN (C-RAN), a software-defined and
virtualized structure to reach this objective.

C-RAN is a promising structure for 5G RAN proposed to
decrease capital expenditure (CAPEX) an operating expenses
(OPEX) and achieve higher quality of service (QoS) for
users [2]. In C-RAN, all base-station (BS) baseband pro-
cessing functions are deployed in a centralized baseband
unit (BBU) and connected to the remote radio-heads (RRHs)
through a front-haul link. On the other hand, to support
the expansion of new applications and different utilization
patterns of users, 5G needs a flexible structure adapted to the

different users’ requirements and services. A software-
defined structure is a promising approach to design the
flexible RAN [3]. High infrastructure utilization is another
important design object in 5G from the network efficiency
perspective, which can be addressed via a virtualization con-
cept where the infrastructure of one operator can be shared
between different service providers (SPs) with the aim to
decrease costs of new 5G services [4]. In a virtualized
wireless networks, the cloud, transmission and infrastructure
resources, are sliced into multiple SPs. However, the preserv-
ing isolation between slices, i.e., the activity of users of one
slice does not affect the QoS of users of the other slices,
is necessary for virtualization. Consequently, the structure
of new RAN in 5G can be considered as a combination of
these three techniques [5]–[11]. However, disadvantages of
each approach should be concurred to reach an appropriate
structure.

5G is obligated to provide the various services for a large
number of users with diverse QoS requirements, e.g., min-
imum required rate and maximum tolerable delay. On the
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other hand, to reach the appropriate profit of SPs, 5G should
be deployed with the minimum cost while considering the
maximum energy efficiency and network utilization. To reach
these conflicting goals in 5GRANdesign, the density of users
should be considered as one of the important parameters here.
In this paper, we propose a density-aware C-RAN design,
called the heterogeneous/hierarchical virtualized software-
defined cloud RAN (HVSD-CRAN) for 5G where there exist
a mixture of high-density and low-density regions.

In a high-density region with many RRHs, due to existence
of high interference between RRHs, the resource manage-
ment should be deployed in a centralized manner. On the
other hand, due to the high data traffic, the front-haul capacity
limitation is more critical, which can be tackled by decou-
pling the control-traffic and considering one control BS and a
set of Data RRHs (D-RRHs). By this topology, in the low data
traffic time, a subset of D-RRHs can be turned off to decrease
energy consumption without disturbing the coverage. Also,
the resource management is deployed in centralized manner
via information gathered in the control BS. This topology is
heterogeneous due to the use of control BS and D-RRHs.

In low-density region where RRHs are deployed in a
sparse manner, using a centralized BBU cloud leads to high
transmission delay due to the large distance between RRHs
and cloud. To overcome this challenge, the function split-
ting between cloud and RRHs is proposed where RRHs
should have processing capability called remote radio sys-
tems (RRSs) [12], [13]. However, this approach increases
the cost of RRHs, which should be considered as one
of the criteria to design RAN in 5G. Also, in this case,
the fully centralized resource management is not an appro-
priate approach due to the large delay to report the channel
state information (CSI) to the BBU cloud. However, due
to the existence of virtualization isolation constraints for
each slice, the fully distributed resource allocation cannot be
attained. To hold this type of constraints while reaching to
the distributed resource allocation algorithm to the maximum
extend, we apply the Lagrange dual decomposition algorithm
and propose the semi-distributed resource management for
low-density region. As a result, RANs of low-density region
have a hierarchical processing and management structure.

Another important aspect of RAN design in 5G is that
there exists a large set of trade-off parameters and objectives
related to the three mentioned categories of services. There-
fore, the resource allocation problems are dealing with multi
conflicting objective functions [14], [15]. Thus, a framework
of the multi-objective resource allocation (MORA) problem
is investigated in this paper to propose MORA algorithm
in HVSD-CRAN. In a high-density mode, supporting all
users by higher throughput and lower power consumption is
critical. Therefore, maximizing throughput and minimizing
number of active RRHs to reduce the consumed power are
selected as two objective functions of MORA problem and
a centralized D-RRHs, sub-carrier and power assignment
algorithm is proposed. In a low-density mode, the delay and
the cost of baseband processing at RRSs in the hierarchical

processing topology are considered as the objective func-
tions of MORA problem. As mentioned earlier, delay is a
very limiting criteria, which is overcome by hierarchically
processing in low-density mode of proposed system model.
However, the processing at RRSs is costly due to their limited
available resources e.g., processing units and power supply.
As a result, these two objectives are conflicting. In this case,
a semi-distributed resource allocation algorithm is proposed
in which determining the level of splitting baseband process-
ing of each RRS, sub-carrier and power allocation between
users are performed. The weighted sum method is used to
solve the multi-objective optimization (MOO) problems for
both cases [16]. By changing the weights of objective func-
tions or equivalently their priorities, a set of Pareto optimal
solutions is derived.

This paper is organized as follows. In Section II, the pre-
vious works in 5G RAN design and MORA problems
are surveyed. Section III describes the proposed HVSD-
CRAN model. Two MORA problems related to the two
modes of HVSD-CRAN are represented in Section IV.
In Section V, via simulation results, the performance of the
proposed resource allocation algorithms is studied. Conclud-
ing remarks are given in Section VI.

II. C-RAN & MULTI-OBJECTIVE OPTIMIZATION
PROBLEMS: A BRIEF LITERATURE REVIEW
Since we propose density-aware C-RAN structure in 5G,
we initialize our discussion with reviewing proposed C-RAN
structures in this context. Since we develop MORA algo-
rithms for two modes of HVSD-CRAN, the MOO problems
in the literatures are reviewed in the second subsection II-B.

A. OVERVIEW OF RAN STRUCTURE IN 5G
There exists a surge of research to revolutionize RAN struc-
ture in order to attain QoS requirements of 5G services.
Although it is not easy to overview all these proposed
structures and categorize them [17], it is obvious that for
RAN structure three main promising proposed techniques are
C-RAN, software-defined and virtualized structures. Fig. 1
presents a time-line of proposed RAN structures.

The concept of C-RAN is first proposed in 2011 [2] where
each BS consists of three parts: 1) RRH which only receives
and sends RF signals to users without any baseband process-
ing ability, 2) cloud unit which is responsible to process the
baseband functions throughRF signals, and 3) Front-haul link
which is an interface between RRH and cloud unit. One of
the major implementation challenges in C-RAN is to develop
the high capacity and low-delay front-haul links [17]. In later
years, different RAN structures are proposed to overcome this
challenge, e.g., [7], [9].

Next, the software-defined structure for RAN is proposed
in [3]. Basically, the flexible programable structure can be
achieved by the software-defined approach in which the con-
trol plane and data plane are decoupled [18]. This concept is
borrowed from core network to provide a centralizedmanage-
ment layer in the software-defined network controller entity
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FIGURE 1. Time line of proposed RAN structures.

in order to utilize the network resources in a more efficient
manner. Consequently, the OpenRAN is proposed in which
the software-defined structure and vitualization (borrows
from network function virtualization [19]) are considered in
the cloud infrastructure [5].

One of the approaches to overcome the front-haul capacity
limitation of C-RAN is the idea of ‘‘physical decoupling’’
which is a separation of the signals required for full coverage
from those needed to support high data rate transmission
with control-traffic decoupled air interface. This idea is first
proposed in [20] and [21] for the forth generation wireless
networks to overcome disadvantage of local resource man-
agement. However, due to the high interconnection between
data and control signals, implementation of this approach is
not straightforward [22], [23]. Decreasing the overhead signal
is another advantage of physical decoupling [24] which can
decrease the front-haul link data traffic. In [7], this approach
is applied to overcome the front-haul capacity limitation of
C-RAN where one BS has processing capabilities and only
receives the control signal of all users. This BS is refereed to
a control BS. Other simple and low financial cost RRHs only
receive the data signal of assigned users and send data to the
cloud for processing. This structure is called heterogeneous-
RAN (H-RAN) since there exists one control BS and RRHs
in RAN to provide the coverage. Afterwards, this idea is used
in the software-defined RAN to achieve the flexible control
for system [25].

Another approach to overcome the front-haul link capac-
ity limitation is ‘‘function splitting’’ which is splitting the
baseband processing tasks between RRHs and cloud BBU.
This idea leads to the lower data volume to transmit in the
front-haul link [12]. In [26], the required rates of the front-
haul link for different levels of splitting are studied. The RRH
with the processing ability is called RRS [13]. This method
can overcome the additional transmission delay of the front-
haul link specially where the distance between RRH and
cloud center is large, e.g., low-density region where RRHs
are implemented sparsely. However, the disadvantage of this

solution is RRS financial cost increment since each RRS
should have the processing capability.

In [9], the two approaches to overcome the front-haul
capacity limitation are combined. In fact, it is assumed that
one control BS is responsible to the coverage and D-RRHs
have capability of function splitting and process part of
the required processing functions. Although the front-haul
rate limitation is completely removed in this system model,
the full use of benefits of centralized processing cannot be
achieved which is very important in high-density region due
to the high interference of RRHs to each other. On the other
hand, assuming the processing capability for D-RRHs in
dense region contradicts by idea of C-RAN which is using
a large number of very simple and low financial cost RRHs
in the system.

Another RAN structure is SoftAir [27] where the soft-
ware approach is used in both RAN and core of commu-
nication systems. Accordingly, the first open, flexible and
programmable platform for the software-defined RAN is pro-
posed in [28].

Afterwards, in [6], a cloud-based software-defined RAN
with physical decoupling is proposed. Via this approach,
the load of the front-haul link decreases and RAN becomes
efficient from the energy consumption perspective due to the
ability of turning off a set of RRHs in the low traffic time.
Note that considering one control BS and D-RRHs cannot
be implemented in low-density region since deploying less
number of RRHs is sufficient to provide the coverage and
capacity for users. Thus, the effects of RRHs on each other
are negligible in this situation and a central high power BS
to manage all resources is not necessary. In another RAN,
proposed in 2016, the concept of fog in C-RAN called fog
RAN (F-RAN) [8] is proposed in which RRHs are equipped
with caching capability to decrease the latency of popular
contents.

The hierarchical software-defined RAN is another RAN
structure in which the management is split between the
central unit and RRHs [10]. This RAN is not suitable for
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TABLE 1. Advantages and disadvantages of different proposed RAN.

dense region due to the high financial cost of RRHs with the
processing ability. Another topology for RAN is a software-
defined virtualized RAN with fog computing [11].

Fig. 1 affirms that all proposed RANs in 5G are devel-
oped based on six main techniques. As mentioned earlier,
the first three main technologies are software-defined, cloud
and virtualized structures. Three complementary techniques
are physical decoupling, function splitting, and applying
caching at RRHs. The advantages and disadvantages of the
proposed RANs based on these six techniques are summa-
rized in Table 1. At first, the software-defined structure lead-
ing to the centralized management increases delay. By virtu-
alization, the network efficiency can be earned in the network
infrastructure units. The cloud structure leads to the central
processing and management. Again, this method suffers from
delay due to the centralized processing and needs the high-
capacity front-haul links. The physical decoupling leads to
the ability of more efficient usage of energy by turning off
the subset of D-RRHs. The function splitting can overcome
the challenge of delay and front-haul link capacity limita-
tions. However, here, RRHs should be capable of processing
which increases their costs. Finally, considering caching for
RRHs leads to decrease of the front-haul link load and delay

for popular contents. However, using caching for all RRHs
increments their costs. Obviously, non of the previous works
considers the density of users to design RAN in 5G to over-
come the mentioned drawbacks. In this paper, to cover this
point, we propose our HVSD-CRAN and compare our system
model with the existing proposed approaches.

B. MULTI-OBJECTIVE RESOURCE ALLOCATION PROBLEMS
Optimal dynamic resource allocation is critical in wireless
networks to attain high utilization while satisfy QoS of users
and other network considerations [29]. During the past three
decades, there exists a surge of research in this context,
e.g., [30], and obviously, it is not easy to provide the com-
prehensive survey and unified taxonomy here [30]. However,
one important point is that in the resource allocation problems
before 5G, usually, one performance metric is considered as
an objective function of optimization problem called a single-
objective optimization problem [31]. The single-objective
resource allocation problem has one global optimal objective
function value which earns by at least one solution in the
feasible region. However, achieving this point is not guaran-
teed due to the high computational complexity. As a result,
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sub-optimal solutions with reasonable complexity are pro-
posed in many papers which can be implemented in practical
systems. The robustness and scalability are other important
issues to be studied in the resource allocation strategies [29].
Another important aspect of single-objective resource allo-
cation problem is how to solve the optimization problem in
either the centralized or distributed manner. In the centralized
approach, although the comprehensive optimization problem
is solved, the extra load of the exchanged signals between the
centralized unit and BSs is a practical implementation issue.
The distributed approach is scalable and reduces this extra
message passing between nodes, while the global optimal
solution cannot be guaranteed here.

Furthermore, in 5G, the resource allocation encounters
new perspective: Diverse services of 5G lead to the different
objectives for system design, e.g., throughput, latency, and
number of connections. There are trade-offs between these
objectives and their priories in addition of dynamic behavior
of users in three mentioned categories of services should
be highly considered. Therefore, single-objective resource
allocation is not sufficient and 5G should resort to more
mature framework such as a MORA.

For instance, the trade-off between the spectral efficiency
(SE) and energy efficiency (EE) is studied in [14], [15],
and [32]–[36]. Also, MORA with coverage besides SE and
EE is investigated in [15] for Internet of Things (IoT) ser-
vices. However, there exist other conflicting objectives in 5G
such as delay and cost which are very critical in 5G compared
to the previous generation of wireless networks. To highlight
this point, we propose two MOO problems in the proposed
system model as examples.

For dense region, to provide high throughput and full
coverage, there exist a large number of RRHs. Supporting all
users in a dense region by very high throughput is one of the
requirements of 5G in this region. Consequently, the through-
put is an important object for MOO here. On the other hand,
by considering one control BS in topology of the proposed
system model for dense region, there is an ability to turn off
the subset of D-RRHs to minimize the power consumption in
low data traffic times [36]. Therefore, there exists a capability
to manage the power consumption of 5G in more appropri-
ate manner which is highly desirable to the efficient use of
energy. Therefore, maximizing total network throughput and
minimizing its power consumption by turning off the subset
of D-RRHs are suitable objectives of the resource allocation
problem in a dense region, which have an inherent conflict
for resource allocation problem.

In a low-density region, we consider other two objective
functions, e.g., delay and the cost of processing in RRSs.
Here, we define the cost of processing as a function related to
the amount of baseband functions that RRSs should process.
We consider this function as a new utility for MORA since
RRSs have a limited resources and when the processing
capabilities are increased, the cost of using limited resources
of RRSs are increased accordingly. These two objects have
conflicting goals, since to decrease the delay, we need RRSs

via more processing capabilities and vice versa. To cover this
point, in this paper, we propose the new model for cost of
RRSs based on their capabilities of function processing.1

Up to our knowledge, there exists no other relatedwork that
considers the resource allocation problem with MOO in 5G
based on our objective functions. Therefore, definitions of
objectives and sets of variables in MORA of this paper, are
novelties of resource allocation in this work.

III. HVSD-CRAN SYSTEM MODEL
HVSD-CRAN is a proposed density-aware RAN in 5G in
which cloud, virtualization and software-defined structure
are considered. For considering density in the system model,
we categorize the coverage area of 5G into the high and low-
density regions. As a result, first, we explain the challenges
in two types of regions and the solutions to overcome them.
Next, the proposed HVSD-CRAN structure is explained.

A. HIGH-DENSITY REGION ASPECTS
To provide high data transmission rate for users in high-
density region, densification is a promising approach where
large number of RRHs are deployed in one specific area.
On the other hand, due to the high interference of each RRH
on the neighboring ones, the resource management should be
deployed in one central unit, e.g., BBU cloud in our setup.
However, for decreasing the front-haul load of C-RAN and
energy efficiency in low traffic times, a high power BS is
used as the control BS and receives control signals of users
and allocates resources of the network. Other simple and
low financial cost RRHs receive the data signals. Although
the design of system is according to the peak traffic time,
the D-RRHs can be turned off because the control BS is
responsible for coverage in the system [36].

B. LOW-DENSITY REGION ASPECTS
In low-density region, the RRSs are implemented in a sparse
manner, and distances between RRSs and central BBU cloud
are high which lead to the high latency in this link. To over-
come this challenge, the function splitting between RRSs and
BBU cloud is a suitable approach [12]. Here we propose that
the level of function splitting can be changed according to the
instantaneous conditions and system requirements which is
enabled via the software-defined structure of HVSD-CRAN.
When more functions are processed by RRSs, the delay
decreases accordingly while RRS’s cost is increased since
more processing capabilities should be used in each RRS.
On the other hand, in low-density region, the interference
between RRSs is low, and thus, the distributed resource
allocation is more appropriate to reduce the extra message
passing between RRSs and the BBU cloud. However, due
to the virtualization in 5G, isolation between SPs should be
guaranteed which requires the centralized management.

1Note that, in this paper, only transmission delay of the front-haul link is
considered due to the large distance between RRSs and BBU cloud in low-
density region and processing delay is neglected due to high capacity BBUs
in the cloud.
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FIGURE 2. HVSD-CRAN system model.

C. HVSD-CRAN STRUCTURE AND RESOURCE
MANAGEMENT
To cover different aspects of low and high-density regions,
we propose a new system model depicted in Fig. 2 where
there exist two modes:

• High-density mode: where there exist two types of BSs,
i.e., control BS and D-RRHs in radio access of RAN
layer in Fig. 2. The heterogeneity of this mode comes
from these two types of BSs. In this topology, the end
devices in Fig. 2 should have two connections for control
and data messages due to the physical decoupling. The
coverage is guaranteed by control BS, called coverage
layer. However, there is a capability to turn off the subset
of D-RRHs in traffic layer of Fig. 2 in low traffic time.
The data signal of end device is sent to D-RRHs and all
their baseband processing functions are deployed in a
BBU cloud of RAN layer. According to the virtualoiza-
tion feature of our system model, the radio resources
can be sliced to use by different SPs to support various
services for users.

• Low-density mode: where there exists hierarchical pro-
cessing between cloud and RRSs in RAN layer of
Fig. 2. In this mode, the baseband function splitting is
used to overcome the high delay of large distance of
front-haul link. In this topology, each RRS processes
part of the baseband processing functions which can

be dynamically determined to improve desired perfor-
mance according to the instantaneous conditions of
system. According to the virtualization characteristics,
the radio resources are sliced in BBU cloud of RAN
layer to have view of whole network. As a result, the iso-
lation constrains between slices should be guaranteed in
a centralized manner.

For both modes, the flexibility for designed system is
achieved by software-defined structure. The resource slicing,
for both modes, can be categorized as [37]

• Transmission resources e.g., power and bandwidth
• Cloud resources e.g., processing and memory units of
BBUs

• Infrastructure resources e.g., RRHs, front-haul link,
switches

The resource management structure of HVSD-CRAN is
illustrated in Fig. 3. In this topology, two resource manage-
ment units are considered. In centralized radio management
(CRM), a subset of parameters, e.g., power and spectrum, that
should be allocated by view of whole network, are assigned.
Also, by considering virtualization, all the radio resources are
sliced between SPs. When the effects of resource allocation
in one RRS on the other RRSs are negligible, it is more con-
venient to implement local radiomanagement (LRM) in radio
access of RAN layer in Fig. 3. The resource management
policy of these two modes of HVSD-CRAN are
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FIGURE 3. Management structure of HVSD-CRAN system model.

• High-density mode: In this mode due to the high effects
of dense D-RRHs on each other and the lack of pro-
cessing ability in D-RRHs, all resources are allocated in
CRM in BBU cloud in Fig. 3. The resource management
in this mode is fully centralized.

• Low-density mode: The parameters which are related
to isolation requirements of virtulization as guaranteing
QoS for SPs, aremanaged in CRM.Other parameters are
allocated in LRM in Fig. 3 since in this mode, the effects
of RRS’s parameters on each other can be neglected
due to the large distance of RRSs. Thus, the resource
management is semi-distributed in this mode.

IV. MULTI-OBJECTIVE RESOURCE MANAGEMENT
DESIGN IN HVSD-CRAN
In this section, two examples of resource allocation problem
for the high and low-density modes with different objective
functions are proposed. In each problem, two objective func-
tions are applied for resource allocation optimization problem
based on the network conditions.

Assume that the coverage area of specific region is pro-
vided via a set of M = {1, · · ·M} RRHs which are either
D-RRHs in high-density mode or RRSs in low-density mode.
The total bandwidth is divided into a set of N = {1, · · ·N }.
Also, there are Z SPs where the users of SP z are in a set Zz.
The minimum required rate of SP z is represented by Rz. The
variance of additive white Gaussian noise is N0. The RRH m
has the maximum power limit pmax

m . The channel gain from
RRH m to the user k on sub-carrier n is represented by hn,k,m
and hmn,k in high and low-density modes, respectively. Also,
pn,k,m or pmn,k is the allocated power to user k on sub-carrier
n by RRH m in high and low-density modes, respectively.

In this paper, for high and low-density modes, we apply
two models of subscripts. Since the interference between
RRHs in high-density mode is high, we consider the RRH
assignment parameter for this case, and consequently, index

m is in the subscript of parameters for this case. However,
for low-density mode, users are assigned to RRS based on
their received signal strength due to the sparsity of RRSs.
Therefore, we deploy m as a superscript of each parameter
for this case.

A. HIGH-DENSITY MODE RESOURCE MANAGEMENT
Assume a network with K users in a set K. Due to the dense
deployment of D-RRHs and assuming their capabilities to
be turned off, the assignment of users to the M D-RRHs is
optimized in the resource allocation problem. Also, the sub-
carrier assignment and transmit power allocation are the other
variables which should be determined. Note that due to the
having dense region, the resource should be centrally allo-
cated by considering the interference of D-RRHs on each
other. The rate of user k ∈ K on sub-carrier n ∈ N by
assigning to the D-RRH m ∈M is

Rn.k,m = xn,k,m log(1+
pn,k,mhn,k,m
N0 + In,k,m

), (1)

where xn,k,m is equal to one if sub-carrier n of D-RRH m is
assigned to the user k and otherwise is zero, and In,k,m =∑
m′∈M
m′ 6=m

∑
k ′∈K

pn,k ′,m′hn,k,m′xn,k ′,m′ .

As explained before, in high-density mode there exists an
ability of turning off D-RRH m expressed by bm. The bm is
equal to zero where D-RRH m is turned off and otherwise is
one. When at least one user is assigned to one D-RRH, this
D-RRH is active and the variable bm should be equal to one.
This fact can be considered in the resource allocation problem
as

CH
1 : xk,n,m ≤ bm, ∀k, n,m.

By considering Z number of SPs in the system, the qual-
ity of them should be satisfied in the resource allocation.
We assume that the total rate of users of each SP should be
higher than a defined threshold Rz. Thus, we have

CH
2 :
∑
m∈M

∑
k∈Zz

∑
n∈N

xn,k,m log(1+
pn,k,mhn,k,m
N0 + In,k,m

)≥Rz, ∀z.

Also, each D-RRH has the maximum transmit power limita-
tion as

CH
3 :

∑
k∈K

∑
n∈N

xn,k,mpn,k,m 6 Pmmax, ∀m.

Each sub-carrier in each D-RRH should be assigned to only
one user which can be mathematically represented by

CH
4 :

∑
k∈K

xn,k,m ≤ 1, ∀n,m.

In 5G, one of design criteria is maximization of total rate of
network which is considered as one of the objective functions
in our MORA problem. According to (1), the total rate of
network can be defined as

RT =
∑
m∈M

∑
k∈K

∑
n∈N

xn,k,m log(1+
pn,k,mhn,k,m
N0 + In,k,m

). (2)
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On the other hand, the consumed power of each D-RRH is
composed of two elements which are transmission and circuit
power. If no user is assigned to one D-RRH, it is turned
off and circuit power should be set to zero, otherwise its
circuit power is PC . Therefore, the total power consumption
of network is

PT =
∑
m∈M

∑
k∈K

∑
n∈N

xn,k,mpn,k,m +
∑
m∈M

PC (bm), (3)

where PC is a constant value equal to the circuit power
consumption of each D-RRH in active state.

Finally, the MORA problem is

max
X ,P,b
{RT ,−PT }

subject to : CH
1 − CH

4 . (4)

According to the Appendix, these two objective func-
tions can be encapsuled in one single-objective function by
weighted sum method as

UH(X ,P, b) = α
RT
Rmax
T
− (1− α)

PT
Pmin
T

, (5)

where α, Rmax
T and Pmin

T are parameters of weighted sum
rate method for MOO problem explained in the Appendix.
Also, X is a three dimensions matrix of D-RRH and sub-
carrier assignments of users, P is a matrix of power allocation
between users and b is a vector of binary values which
indicate the ON and OFF states of D-RRHs.

Thus, the final MORA problem in high-density mode may
be

max
X ,P,b

UH(X ,P, b)

subject to : CH
1 − CH

4 . (6)

The proposed problem is nonconvex by considering all
variables jointly. To reach an efficient algorithm, the itera-
tive algorithm is proposed that contains two steps: 1) when
it is assumed that P is known and solved (6) for finding
the optimal user and sub-carrier assigning (X ) and D-RRHs
activity(b), 2) according to the derived result of the first step
assignment of this iteration, the power allocation problem
is solved. The problem of each step is nonconvex due to
the interference term in the rate formula. To overcome this
challenge, we introduce the predefined threshold for tolerate
interference and add a new constraint for the optimization
problem as

CH
0 : In,k,m =

∑
m′∈M
m′ 6=m

∑
k ′∈K

pn,k ′,m′hn,k,m′xn,k ′,m′ ≤ Ith, ∀n,m, k,

where Ith is the tolerable level of interference of all users in
the network. Then, Ith is used in the first objective function
and the first constraint instead of In,k,m which leads to the
lower limit of network rate. The problem of the first step
is still nonconvex due to the integer variables. By relaxing
integer variables as continuous ones, the problem in this step,

is transformed to a convex one and can be solved by CVX
tool. The problem of the second step is convex too and can be
solved byCVX tool. The overal resource allocation procedure
is presented in Algorithm 1.

Algorithm 1 Resource Allocation Algorithm for High-
Density Mode
for α = 0 : 0.2 : 1
Initialization: Set t := 1 and initialize P∗(0) = Pmax/N

Repeat
Step 1: Derive X∗(t) and b∗(t) to maximize
(5) with constraints CH0 ,C

H
1 ,C

H
2 ,C

H
4 by

considering fixed value of P∗(t − 1)
Step 2: For fixed value b∗(t) and X∗(t − 1),
find P∗(t) to maximize (5) with constraints
CH0 ,C

H
2 ,C

H
3

Step 3: if |P∗(t)− P∗(t − 1)| ≤ ε
Set Pα = P∗(t), Xα = X∗(t), and
bα = b∗(t)
Stop repeat.

else
set t := t + 1 and go to Step 1.

end

B. LOW-DENSITY MODE RESOURCE MANAGEMENT
Assume a network with M RRSs. In low-density mode,
the RRSs are sparsely distributed. Thus, the distance of
each user to one RRS is much lower than the distance to
the other RRSs. Therefore, the users are assigned to RRSs
by considering the minimum distance to the RRSs where
Km, m ∈ {1, . . . ,M} defined sets of user assigned to RRS
m, respectively. Each RRS uses all sub-carriers. The user of
SP z are distributed in the whole coverage region ofM RRSs.
The total transmission rate of RRS m ∈ M in downlink is
equal to

Rm =
∑
k∈Km

∑
n∈N

xmn,k log(1+
pmn,kh

m
n,k

N0 + σ
2
I

), (7)

where σ 2
I is an interference variance on each RRS from other

RRSs which is low value due to the large distance between
RRSs and it is in order of additive wight Gaussian noise
variance N0. Thus, the summation of these two values is
expressed by N0I = N0 + σ

2
I . Other parameters are defined

before.
Assume a set Zm

z containing the users of SP z assigned to
the RRS m where Zm

z ⊂ Zz and
⋃

m∈M
Zm
z = Zz. By con-

sidering virtualization, due to the slice isolation constraint,
the minimum sum rate of all users belonging to each SP,
should be guaranteed which is represented as

CL
1 :

∑
m∈M

∑
k∈Zm

z

∑
n∈N

xmn,k log(1+
pmn,kh

m
n,k

N0I
) ≥ Rz, ∀z.
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FIGURE 4. Level of function splitting in C-RAN [26].

One practical implementation is that each sub-carrier of
each RRS should be allocated to only one user as

CL
2 :

∑
k∈Km

xmn,k ≤ 1, ∀n,m.

Each RRS has a maximum transmission power limitation as

CL
3 :

∑
k∈Km

∑
n∈N

xmn,kp
m
n,k 6 Pmmax ∀m.

The transmitted data for all users of RRS m in the access
link (RRS to users) is proportional to the Rm. Note that
this transmitted data is the received data at RRS m from
cloud unit via front-haul link. Thus, the transmitted data
of RRS m in front-haul link is proportional to Rm. In the
literatures, the baseband processing functions can be split
between RRS and BBU cloud in four levels which are demon-
strated in Fig. 4 [26]. By applying the less baseband pro-
cessing functions on data in cloud unit, the required rate for
transmission in front-haul link decreases [26] or equivalently,
the transmitted data load decreases. As a result, if the pro-
cessing splitting indicator of RRS m (sm) becomes high (low
baseband processing in cloud unit), the transmitted data in
front-haul link decreases. For modeling this inverse relation
between transmitted data load and function splitting level,
one can assume that the transmitted data in front-haul link is
equal to the transmitted data fromRRS in access link which is
divided by function splitting level. As a result, the transmitted
data on front-haul link by considering function splitting level
of sm is

DFm =
Rm
sm
, ∀m, (8)

which is a transmitted data load on the front-haul link m.
When the capacity of front-haul link between RRS m and
cloud is limited to Um bits per second, there is a limitation on
the transmitted data load on this link per second. Therefore,
the constraint of front-haul data transmission is written as

CL
4 :

∑
k∈Km

∑
n∈N

xmn,k log(1+
pmn,kh

m
n,k

N0I
)

sm
≤ Um, ∀m.

By considering maximum capacity limitation of front-haul
link Um, when there exists Dm bit data load, the transmission
delay is τm =

Dm
Um

. Now, via (8), the transmission delay of
RRS m (τm) is

τm =
DFm
Um

, ∀m. (9)

As delay is one of the critical measurements in 5G, delay of
front-haul link is an appropriate choice for objective function
in resource allocation problem. Thus, to consider front-haul
transmission delay of all RRSs by assuming same priority for
them, τT =

∑
m∈M

τm should be minimized.

Although delay of system decreases by increasing the
processing level of RRSs, the cost of processing at RRSs
increases due to the limited resources (power or processing
units) in it. Thus, we can assume the relation between data
splitting level and cost of processing is monotonic increasing
function which is expressed by function F(sm). Therefore,
the total cost of network is a summation of cost of all RRSs
as

G =
∑
m∈M

F(sm). (10)

For simplicity, we consider F(sm) = C×sm whereC is a cost
coefficient. Therefore, we have

G = C
∑
m∈M

sm. (11)

These two objectives τ and G are conflicting with each other.
In fact, although increasing the value of sm increases the cost
function, it decreases the delay according to (8), accordingly.
As a result, the MORA problem is

min
X ,P,s
{τ,G}

subject to : CL
1 − CL

4 . (12)

Again, the weighted sum rate is deployed to formulate
multi-objective optimization as a single-objective problem
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as

min
X ,P,s

α
τ

τmin + (1− α)
G

Gmin

subject to: CL1 − CL4 , (13)

where α, τmin and Gmin are the parameters of weighted sum
approach forMOO problem explained in the Appendix. Also,
X and P are the matrices of sub-carrier and power allocation,
respectively, and, s is a vector of function splitting levels of
RRSs.

In distributed resource allocation approach, there is not any
data exchanging between centralized manager and local ele-
ments and it is scalable. However, in the new structure of 5G,
there are a subset of requirements which should be managed
in the centralized unit and guaranteed in whole system like
virtulization constraints. Therefor, a subset of the variables
should be allocated in the centralized manner. By consider-
ing the mentioned points, the semi-distributed management
which is the compound of distributed and centralized meth-
ods, is the best choice for this setup. In semi-distributed
approach, the subset of the variables are centrally assigned
and the other ones are allocated in the distributed manner.
Also, in semi-distributed resource allocation approach the
data exchange between a centralized manager and local ele-
ments significantly decreases compared to the fully central-
izedmanner. On the other word, the semi-distributed resource
allocation method is one approach to overcome the need of
high capacity requirement of front-haul link. This method is
a suitable choice in low-density mode due to the low effects
of sparse RRSs on each other.

One of the methods for proposing semi-distributed
resource allocation is decomposition methods [38]. Note that,
in our resource allocation problem, only C1 is the constraint
that couples the optimization problems of all RRSs. Thus,
by omitting it, the problem can be decomposed in to m dif-
ferent problems. For this purpose, by relaxing this constraint
via the Lagrangian method [38], we transform (13) into

min
x,p,s,λ

α
τ

τmin + (1− α)
G

Gmin

+

∑
z∈Z

λz

Rz −∑
m∈M

∑
k∈Zm

z

∑
n∈N

xmn,k log(1+
pmn,kh

m
n,k

N0I
)

,
(14)

where λ is a vector of λz for all z ∈ {1, . . . ,Z } which are
Lagrangian multipliers. This problem can be separated into
two level optimization problems in which all problems of low
level are solved in distributed manner, and high level problem
is solved in centralized manner. The centralized problem in
high level is

min
λ

∑
z∈Z

λz

(
Rz −

∑
m∈M

∑
k∈Zm

z

∑
n∈N

xmn,k
t−1 log(1+

pmn,k
t−1hmn,k
N0I

)
)
. (15)

This problem can be solved by subgradient method as

λz(t) =
[
Rz − λz(t − 1)

−β
∑
m∈M

∑
k∈Zm

z

∑
n∈N

xmn,k
t−1 log(1+

pmn,k
t−1hmn,k
N0I

)
]+
∀z.

(16)

The new value of vector λ is transmitted to the RRSs.
On the lower level, the optimization problem of RRS m is

min
X ,P,s

FD = α

∑
k∈Km

∑
n∈N

xmn,k log(1+
pmn,k h

m
n,k

N0I
)

sm

Um
+ (1− α)Csm

+

∑
z∈Z

λtz

− ∑
k∈Zm

z

∑
n∈N

xmn,k log(1+
pmn,kh

m
n,k

N0I
)


subject to : CL

1 − CL
4 . (17)

This problem is nonconvex. Thus, we propose iterative algo-
rithm to solve it. In each iteration, three types of variables
(X ,P, s) are solved separately by assuming fixed values for
other two types of variables. The problem of finding X by
given values of P, s of RRS m is

min
X
FD

subject to: CL1 − CL4 . (18)

This problem is convex and can be solved by CVX tool.
The second problem is power allocation problem which is

min
P
FD

subject to: CL
1 ,C

L
3 ,C

L
4 . (19)

The objective function is nonconvex. Also, CL
4 is nonconvex

too. Thus, we use the successive convex approximation to
convert the problem to the convex one. As can be seen,
in (17) two logarithmic functions of p are subtracted. Thus,
our problem is difference of convex function. To convert the
problem to the convex one, the difference of convex (DC)
approximation method [39] is applied and the problem is
solved iteratively. Also, this approximation is used to convert
the nonconvex constraint (CL

4 ). By considering parameter t1
as the iteration index of finding the optimum power alloca-
tion, we have

min
p
α

( ∑
k∈Km

∑
n∈N

xmn,k log(1+
pmn,k

t1−1hmn,k
N0I

)

Umsm

+

∑
k∈Km

∑
n∈N

xmn,k
hmn,k

N0I+pmn,k
t1−1hmn,k

Umsm
(pmn,k − p

m
n,k

t1−1)
)

+

∑
z∈Z

λz

(
−

∑
k∈Zm

z

∑
n∈N

xmn,k log(1+
pmn,kh

m
n,k

N0I
)
)

subject to: CL
1 ,C

L
3 ,
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∑
k∈Km

∑
n∈N

xmn,k log(1+
pmn,k

t1−1hmn,k
N0I

)

sm

+

∑
k∈Km

∑
n∈N

xmn,k
hmn,k

N0I+pmn,k
t1−1hmn,k

sm
(pmn,k − p

m
n,k

t1−1)) 6 Um.

(20)

Finally, by relaxing the value of s to the real value in [0 4],
the convex problem for assigning sm is

min
s
FD,

subject to: CL
4 . (21)

Similarly, this problem can be solved by CVX. These three
optimization problems are solved iteratively until the differ-
ence of derived optimumvalue of variables of two iterations is
lower than defined threshold ε. The overal resource allocation
procedure is presented in Algorithm 2.

C. CONVERGENCE AND COMPLEXITY ANALYSIS
The proposed resource allocation algorithms are based on
block coordinate descent (BCD) method where one group of
variables is optimized by assuming fix value for other groups
of variables. In [40], it is proved that the convergence of BCD
is guaranteed when the optimization problem of each step
is convex. Thus, the convergence of algorithms to the local
optimum, not necessarily the global optimum, are guaranteed.

As the interior point method is used in CVX tool for
solving convex problems, the number of required iterations is
log(c/(tκ))
log(ϕ) [41] where c, t and κ are the number of constraints

of convex optimization problem, the initial point to approxi-
mate the accuracy of interior point method, and the stopping
criterion for interior point method, respectively. Also, ϕ is
used for updating the accuracy of interior point method.
Thus, the complexity of each resource allocation algorithm
is the summation of the complexity of all steps. Note that,
the convergence of DC algorithm is achieved by complexity
ofO(log(1/ε)) where ε is the stopping criterion [42]. By these
two complexity formulas, the complexity of each of the pro-
posed resource allocation algorithm can be achieved.

V. SIMULATION RESULTS
As mentioned earlier, the solution of MOO problem is a
set of Pareto optimal solutions. As a result, in this section,
the outputs of Pareto optimal set (Pareto frontier set) of the
proposed resource allocation algorithms are demonstrated.
These points are derived by changing the priority scale of
objective functions (α, 1 − α) in weighted sum method. The
results of two different resource allocation problems based on
the two proposed modes are investigated in the two following
subsections.

A. HIGH-DENSITY MODE
For this mode, we consider a network ofM = 4 D-RRHs and
K = 80 users with N = 20 sub-carriers. The users belong

Algorithm 2 Resource Allocation Algorithm for Low-
Density Mode
for α = 0 : 0.2 : 1
Initialization: Set t := 1 and initialize
P∗(0) = Pmax/N , S∗(0) = 1, and λ∗(0) = 1

Repeat
For each RRS
Step 1: Derive X∗(t) to maximize (18)

considering fixed value of P∗(t − 1),
s∗(t − 1), and λ∗(t − 1)

Step 2: For fixed value X∗(t), s∗(t − 1) and
λ∗(t − 1),
Set t1 := 1, P(t1 − 1) = P∗(t − 1)
Repeat

Step I:Solve (20) to find P(t1)
if |P∗(t1)− P∗(t1 − 1)| ≤ ε
Set P(t) = P∗(t1) and
Stop Repeat

else
set t1 := t1 + 1 and go to Step I

Step 3:Derive s∗(t) to maximize (21)
considering fixed value of P∗(t), X∗(t),
and λ∗(t − 1)

End For each RRS
Step 4: Update λ∗(t) according to (16)

considering fixed value of P∗(t), X∗(t)
s∗(t)

Step 5: if |λ∗(t)− λ∗(t − 1)| ≤ ε and
|P∗(t)− P∗(t − 1)| ≤ ε
Set Xα = X (t), Pα = P(t), and
sα = s(t)
Stop repeat

else
set t := t + 1 and go to Step 1

end

to two different SPs. The maximum power Pmmax, maximum
interference tolerance Ith and additive wight Gaussian noise
variance N0 are 50W , 10W and 1W , respectively. The users
are uniformly distributed in 2× 2 square region. By dividing
the whole region into 4 same square, the D-RRHs are in the
center of these small squares. The channel gain is modeled
as hmn,k = (dmk )

−φβmn,k where dmk is a distance between user
k and D-RRH m, a path loss exponent (φ) is 3 and the small
scale fading gain βmn,k has the exponential distribution with
unit variance.

The Pareto frontier sets by assuming different values for
Pc and Rz are derived via Algorithm 1, and the results are
depicted in Fig. 5. By moving from left to right of the
curves, the value of α in the weighted multi-objective prob-
lem increases by step 0.2 from zero to one. As expected,
by increasing α and decreasing the priority of power con-
sumption objective, more D-RRHs becomes active, which
leads to the more power consumption. On the other hand,
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FIGURE 5. Power versus rate via Algorithm 1 for various values of
α ∈ [0 1], Pc and Rz .

the priority of rate objective increases and higher rate are
achieved with high value of α. When α = 0, the rate in
the objective function is not considered and the minimum
required rate of each SP is guaranteed, which leads to the total
of 6 and 12 for minimum rate bound of 3 and 6, respectively.
On the other hand, when α = 1, all D-RRHs are active
to increase the rate since their power consumption is not
important in MOO problem.

Choosing α can be considered as a planning design factor
in resource allocation problem. For instance, in high traf-
fic time, when providing higher throughput is more critical
than decrement of power consumption, in HVSD-CRAN,
we can set α > 0.5. However, in low traffic time, the power
consumption has more priority compared to the throughput
which leads to α < 0.5. As a result, according to the dynamic
behavior of traffic, one of the Pareto optimal solutions can
be selected by adjusting the value of α in the weighted sum
method. For example, IoT services are usually based on sen-
sors with limited battery life-time with low traffic rate. While
virtual and augmented reality services and 3D and ultra-
HD videos require high data rate. By considering the traffic
variations of these types of users per each day, different Pareto
optimal solutions can be selected for the resource allocation
problem in HVSD-CRAN in 5G.

B. LOW-DENSITY MODE
For this mode, again we consider 4 RRSs where each of them
has a 2×2 square coverage area. Each RRS has 20 users in its
coverage area. The same channel model used in the previous
subsection is applied. The minimum required rate of each SP
is set to 150 bps. The imposed cost of processing in RRS is
C = 20. The maximum capacity of front-haul link, i.e., Um
is considered as a ratio of Rz.
The Pareto frontier set derived via Algorithm 2 is demon-

strated in Fig. 6. In this figure, the value of α increases from
0 to 1 with step of 0.2 by moving from right to left of the
curves. As expected, by increasing α, the priority of cost
function decreases and priority of delay increases. Therefore,

FIGURE 6. Cost versus delay via Algorithm 2 for α ∈ [0 1] and different
front-haul link capacity limitations.

the level of splitting increases to reduce the delay for α = 1.
In this case, the solution reaches sm = 4 for all curves
(cost= 80).

Also, by decreasing the maximum front-haul link capacity
(Um), the level of function splitting increases. As can be seen,
for Um = Rs/4 in α = 0 higher average function splitting
level achieved and at least sm is equal to 2 (cost= 40). The
reason is that higher order of sm should be used in the system
to satisfy the front-haul link capacity constraint in low Um.

For this scenario, α can be considered as a planning factor
to distinguish users of different services in 5G. For instance,
when there exists a set of users belonging to autonomous
driving and MCC, e.g., for tactile services, it is better to
set α > 0.5. By increasing the traffic of these users in the
system, the priority of delay function (α) should be increased.
Accordingly, more baseband processing functions should be
done at RRSs to reduce the delay for these types of users.

VI. CONCLUSION
The purpose of this study is twofold. In the first part, new
density-aware RAN structure in 5G is proposed. The virtual-
ized software-defined structure of this system model is dif-
ferent in low and high-density modes. In dense mode, hetero-
geneous RRHs which are one control BS and many D-RRHs,
are implemented. However, in low-density mode, hierarchi-
cal signal processing is considered in which the baseband
processing function is split between RRSs and BBU cloud.
The resource management of these two cases are also imple-
mented in fully centralized and semi-distributed manners,
respectively. In the second fold, the multi-objective resource
allocation framework is proposed for these two cases. In high-
density mode, the rate and power consumption are considered
as two major conflicting objective functions. The sum of the
delay and cost of processing in RRSs are minimized in low-
density mode where the resources of access link and level of
splitting are variables of optimization problem. The weighted
sum method is used to solve multi-objective resource alloca-
tion problems for two scenarios. The Pareto optimal solution
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sets of two problems are derived by varying the weight of
objective functions. The simulation results demonstrate how
Pareto optimal sets are varied under different system settings.

APPENDIX
In MOO problems, comparing the objective functions are not
easy as single-objective problem because there are a vector
of functions. As a result, in multi-objective optimization
problem, there is not only one solution like single-objective
problem. In these problems, there is a set of solutions which
is called Pareto optimal solutions. The Pareto optimal solu-
tion refers to a solution, around which there is no way of
improving any objective without decreasing at least one other
objectives.

The general MOO problem is [16]

min
x
[f1(x), f2(x), . . . , fO(x)],

subject to: gi(x) 6 0, i = 1, . . . ,M ,

hj(x) = 0, j = 1, . . . ,K , (22)

where O, M , and K are the number of objective functions,
inequality constraints and equality constraints, respectively.
Also x is a vector of N independent variables of optimization
problem (22). The feasible region is a set of x in which all
constraints of problem are satisfied. The comparison of two
points from feasible region, in order to find the solution of
optimization, is not very simple in MOO problems because
there is a vector of objective functions. Therefor, to compare
two feasible solutions (xA, xB), it is said that xA is dominate
to xB when we have

fi(xA) ≤ fi(xB), i ∈ {1, . . . ,O},

fj(xA) < fj(xB) ∃j ∈ {1, . . . ,O}. (23)

A feasible solution x is called ‘‘strongly non-dominated’’ if
there is no solution dominated it. The set of non-dominated
solutions is called Pareto optimal set. This set should be
derived via MOO problem. The set of Pareto optimal out-
comes is often called the Pareto frontier.

MOO solution techniques can be categorized in three gen-
eral categories which are scalarization, meta-heuristic and
game theory method [16]. In scalarization based methods,
the objective functions are combined to form single-objective
optimization problem. The simplest and common method
among scalarization based techniques, is weighted sum in
which all objective functions are summed together by con-
sidering different weights for each of them as

min
x

O∑
q=1

wq
fq(x)
Nq

subject to: gi(x) < 0, i = 1, . . . ,M ,

hj(x) = 0, j = 1, . . . ,K ,

where 0 ≤ wq ≤ 1 and
∑O

q=1 wq = 1. In other word,
the values of wq, q = 1, ..,O specify the priority of objective
functions relative to each other. Nq is the normalizing factor

due to the fact that the different objective functions have
different units (e.g. bit per second for throughput and joule for
energy efficiency) and values of objective functions are not
in the same range. Nq can be equal to minimum or maximum
value of fq(x) [43]. It can be derived by solving optimization
problem by considering only fq(x) as an objective function.
In this method, the Pareto optimal solution can be derived by
considering different wq for objective functions. This method
is computationally efficient compared to the other scalariza-
tion methods and do not change the original optimization
problem by not adding any new constraint [16].
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