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ABSTRACT The automatic analysis of images acquired by cameras mounted on board of drones (flying
cameras) is attracting many scientists working in the field of computer vision; the interest is related to
the increasing need of algorithms able to understand the scenes acquired by flying cameras, by detecting
the moving objects, calculating their trajectories, and finally understanding their activities. The problem is
made challenging by the fact that, in the most general case, the drone flies without any awareness of the
environment; thus, no initial set-up configuration based on the appearance of the area of interest can be used
for simplifying the task, as it generally happens when working with fixed cameras. Moreover, the apparent
movements of the objects in the images are superimposed to that generated by the camera, associated with
the flight of the drone (varying in the altitude, speed, and the angles of yaw and pitch). Finally, it has to
be considered that the algorithm should involve simple visual computational models as the drone can only
host embedded computers having limited computing resources. This paper proposes a detection and tracking
algorithm based on a novel paradigm suitably combining a forward tracking based on local data association
with a backward chain, aimed at automatically tuning the operating parameters frame by frame, so as to
be totally independent on the visual appearance of the flying area. This also definitively drops any time-
consuming manual configuration procedure by a human operator. Although the method is self-configured
and requires low-computational resources, its accuracy on a wide data set of real videos demonstrates its
applicability in real contexts, even running over embedded platforms. Experimental results are given on a
set of 53 videos and more than 60 000 frames.

INDEX TERMS Multi-object tracking, drones, flying cameras, test and set, feedforward tracking.

I. INTRODUCTION
Understanding what is currently done by the objects moving
inside a scene can be reconducted to the analysis of their
trajectories over time; in fact, trajectories include spatial and
temporal information and, once suitably analized with respect
to the structure of the environment, it is possible to infer
behavioral aspects. For example, if a car is moving in a lane at
a speed of 80 mph, we think at a normal situation; viceversa,
if the speed is exactly the same but the lane is the one used in
case of emergencies, and even more in the wrong direction,
we are in presence of a clear alarming situation. Trajectories’
analysis of moving objects is currently the paradigm used in
many systems for detecting anomalous events [1]–[4].

For several years, the efforts of the scientific community
have been mainly addressed at algorithms working with fixed
mounted camera [5]–[11]; anyway, the recent availability
of low cost drones used for video-surveillance purposes is

launching the challenge of addressing the same problem but
in the much more complex case of flying cameras. Such
new trend adds a great complexity at the problem due to the
vibrations and sudden changes of the speed and orientation
of the drone during its flight, with consequent huge impacts
on the stability and quality of the obtained images.

As a matter of facts, the plenty of algorithms based on
background subtraction, currently widely used with fixed
cameras, are no more usable; they are in fact based on the
hypothesis of a still background (as the camera does not
move) and hence on the consideration that, if something
appears as moving, it really moves. Viceversa, when dealing
with moving cameras, we have two different movements to
be taken into account: the one of the objects moving in the
scene and the other one, the so called ego-motion, generated
by the apparent movement of scene due to the fact that the
camera itself is moving.
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Indeed, the problem of tracking moving objects in videos
took by moving cameras has been already faced in the lit-
erature, but effective solutions are given only in the special
case of tracking a single moving object at a time [12]–[14]: in
particular, they are based on the assumption that, in the first
frame of the stream, the object of interest is manually indi-
cated by a human operator, so making the overall system not
autonomous. Moreover, no any other object can be tracked
until the human operator explicitly passes to the identification
of a new object to be tracked. It can be noted that these
algorithms can be used on systems mounted on drones, but,
even after the initial manual indication of the object to be
tracked, do not allow to track simultaneously the multitude of
moving objects in the scene. In practice, their use is limited
to implement the so called follow me drone, where the latter
is able to chase a target, explicitly selected at a starting time.

Multiple objects tracking aims at a much more general
task, i.e. the detection of all the moving objects present in
the scene and at the extraction of their trajectories, possibly
without using any a priori knowledge about them. This prob-
lem requires the two phases of detection and tracking; the
order in which the methods generally proceed is intuitive:
the tracking-by-detection paradigm works by preliminarily
detecting in each frame all the moving objects; then the
latter are tracked, so as to obtain their trajectories. The main
goal pursued by this class of methods is the so called drone
explorer : the scene is analysed in terms of the extracted tra-
jectories of the moving objects and these are used to discover
potentially abnormal behaviors [15].

It is worth noting that single vs multiple objects tracking
are often confused under the common name of tracking, but
the working assumptions, as said, are significantly different.
In the last years some contributions at the multiple object
tracking problem have been proposed. Although a strict clas-
sification is not trivial, two main strategies for solving this
problem emerge: (i) the use of suitably extracted salient
points by the sequence of frames, processed so as to separate
the ones belonging to moving objects from the ones belong-
ing to the background (the latter appearing as moving as a
consequence of the camera motion) and (ii) the generation of
a foreground mask obtained by separating background from
moving objects pixel by pixel.

The first typology of algorithms is based on the introduc-
tion and use of the so called particle trajectories extracted by
the optical flow [16] [17] [18] [19]; this approach reveals
to be significantly robust as for the characterisation of the
movement of the objects (foreground) with respect to the
ego motion (background). For instance, in [19], optical flow
and particle advection are combined by evaluating multiple
frames so as to compute the particle trajectories. Epipolar
constraints are thus applied over the particle trajectories so
as to isolate those trajectories violating the constraints since
corresponding to moving objects. Although the experimen-
tations conducted by the authors highlights that the above
methods are very accurate, the main issue lies in the poor
quality of the obtained boundaries between the moving object

(foreground) and background; indeed, the results are partic-
ularly critical especially when the size of the moving objects
is very small, since the number of salient points could be not
sufficient enough to properly represent the moving object.

The second typology of approaches is based on the extrac-
tion of the foreground, starting from the assumption that all
the pixels of a moving object have approximately the same
value of the motion vector as well as those belonging to the
background. Operatively, these methods use clustering crite-
ria for grouping pixels having similar motion, so separating
moving objects from the background. For instance, in [20]
a Structure from motion (SFM) methodology is applied to
hand-held cameras and allows to estimate camera parameters,
sparse 3D points and depth map. It is important to note that
this strategy generates accurate boundaries of the moving
objects, but under the assumption that the image is charac-
terised by a large depth difference between foreground and
background. In practice, such methods are particularly suited
for those cases in which the drones fly at a low altitude, but
not otherwise.

In [21] an adaptive backgroundmodel is built bymodelling
the camera motion by affine transformation. The main limita-
tion is due to the fact that the model is not general enough for
estimating any scene geometry, which is an important and not
negligible feature when dealing with flying cameras. More
recently, homography has been successfully used in order to
estimate the motion of the camera: a frame is transformed in
the previous one and the differences between them are con-
sidered [22]–[24]. Although being in general very accurate,
the moving objects detected were not compact enough in all
the environments.

In order to increase the effectiveness of the algorithms,
in some cases the two typologies of approaches are com-
bined so as to achieve higher accuracy [25]–[28]. In [28],
for instance, keypoints tracking based on pyramidal Lucas-
Kanade is combined with foreground segmentation based
on local motion history. The temporal interval between two
consecutive frames (the so called detection interval) is not
fixed a priori, but instead is dynamically adjusted by con-
sidering some parameters related to the movement of the
drone (its speed and its flying altitude), as well as some
parameters related to the algorithm (the computational com-
plexity of the algorithm and the frame rate of acquisition of
the video). Thanks to this approach, the algorithm is stable
enough to deal with both slow and fast motion of the mov-
ing objects. However, except the detection interval, all the
configuration parameters are fixed a priori. This property,
commonly adopted in the tracking literature, is somehow
inherited from the tracking algorithms designed for working
with cameras mounted on board of ground platforms, such as
robots or vehicles [5], [29]–[33], where the scene is acquired
by a frontal view camera, producing a more stable image if
compared with top view camera mounted on board of the
drones [3], [28], [34], [35].

However, when dealing with flying cameras the configu-
ration parameters can not be fixed a priori, since they need
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FIGURE 1. An example of the effects of different configuration
parameters (identified as Setup #1 and #2) on the foreground mask
extraction and on the detection.

to be dynamically adjusted during the flight, depending on
the movement of the drone (both in terms of altitude and
speed) and on the environment where the drone is moving,
which determines the size and the typology of the objects
to be tracked, as well as the noise to be filtered out. Indeed,
a drone is not constrained to move on the road, but instead can
fly over a street, over some buildings or over a wood, and with
different flying altitudes, thus implying that the properties of
the objects may dynamically varies, as well as the ones of the
noise. Furthermore, the objects taken by the camera are not
a priori known, thus the algorithm needs to be general enough
to deal with different and unknown typologies of objects.

As a consequence, the setup of the operating parameters
is a very difficult and time consuming task for a human
operator: even in the same flight and in the same environment,
a configuration setup can be good for a couple of seconds
but not for the successive ones. It is important to highlight
that a wrong configuration setup of the parameters may be
among the main causes of the errors during the detection
step, and then during the tracking step as well. An example
is shown in Figure 1, where two situations (one per row)
are reported: the first column shows the images processed;
in the first image there is a vehicle, while in the second
image the same vehicle is close to a person. Second and third
columns represent the foreground mask obtained by using
two different configuration setups (identified in the figure as
Configuration Setup #1 and #2, respectively). As we can note,
the same setup (for instance, in terms of the radius values for
erosion and dilation or other morphological operators, as well
as on minimum and maximum size for the filtering) is not
good for processing both the frames, even if acquired in the
same environment and within a couple of seconds between
each other.

In general, the following errors may arise: false nega-
tives, corresponding to undetected objects; false positives,
corresponding to spurious objects, namely something in the
backgroundwhich is wrongly considered as an object moving
in the scene; splits, corresponding to an object erroneously
divided into multiple parts (see an example in Figure 1, where

a car is partitioned into two parts in the first row, second
image); merges, corresponding to multiple object wrongly
joined in a single part (see an example in Figure 1, where the
car and the person, close each other, are merged in a single
box in the second row, third image). Concerning the merge
errors, it is also important to note that one of the typical
causes is related to the occlusions, namely to some objects
which are partially or totally hidden behind other objects (or
behind background objects). Considering that we will focus
on cameras mounted on board of a drone, this situation should
not happen, thus the only reason of the merge is related to the
fact that two objects are very close each other and are not
well distinguished during the detection step, due to a wrong
configuration setup.

Let us remember that the aim of the tracking module is
to perform the best possible association between the output
of the detection at the current frame and the output of the
tracking at the previous frame, so as to draw (even in case
of errors of the detection step) the trajectory of the object
frame by frame and to solve the above mentioned errors
of the detection step. In the literature, two main strategies
for performing such association can be identified, namely
local and global association. Most of the methods per-
form the association locally, using a tracking-by-detection
approach: given the position of an object in the scene at
the current frame, a tracking algorithm properly evaluates
the results of the detection step (at the current frame) and
the ones of the tracking algorithm (at the previous frame)
[28], [36], [37] in order to update the position of an object
frame by frame. Anyway, an error during the detection step
can not be discovered since the detection, for its nature, only
evaluates spatial information and not temporal one, that could
help in the configuration parameters adjustment and thus in
the results improvement.

Viceversa, for those algorithms based on global data asso-
ciation, the association is not performed locally, namely
frame by frame, but instead all the objects detected in all the
frames are taken into account and the association problem is
formulated as an optimization problem [38], [39]. The advan-
tage is evident: a large amount of information is available
for taking the decision, thus the results are more accurate.
Anyway, the main limitation deriving from these approaches
is that they can not work in real time but only off-line, in the
sense that the whole sequence of images needs to be collected
and then processed to generate the objects trajectories.

A somehow hybrid solution has been exploited in those
methods based on the so called D&T (Detection and Track-
ing) [40]; the main idea is to jointly perform detection and
tracking by using a convolutional network fed with multiple
frames (instead than a single one, typically employed in
objects detectors): indeed, the idea is to compute the con-
volutional cross-correlation between the features responses
of adjacent frames, used to feed both a RoI-pooling layer
(which evaluates the spatial information) and a RoI-tracking
layer (which evaluates the temporal information). Thus, the
RoI-tracking layer combines such responses with the ones
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of the RoI-pooling layer so as to extract the tracks of the
considered frames. The set of the tracks are finally linked to
extract the whole trajectories.

A strict cooperation between detection and tracking mod-
ule has been also explored in [41], where a cooperative detec-
tion and tracking (CDT) algorithm has been designed: the
main idea is that the detector is configured to have a low sen-
sitivity, and then a very low number of false positives, but also
a potentially high number of misses. In order to recover such
misses, a backward tracking module is added with respect
to the traditional forward one. In practice, a detection-by-
tracking approach (given by the forwardmodule) is combined
with a tracking-by-detection one (added by the backward
module), where this last module allows to solve most of the
errors introduced during the detection step. The main issue
deriving from this algorithm is that it is able to track only
a single object per time and can work on-line only if the
backward module is suppressed.

In conclusion, it is evident that including temporal infor-
mation in the detection step (indirectly, as it happens in
global data association, or directly as in D&T and in CDT
methods), allows to make the system more robust and then
reliable since being based on a larger amount of information.
Anyway, this is typically paid back in terms of impossibility
to work in real time. Starting from these considerations,
we propose a novel detection and tracking algorithm based on
a Forward-Backward Interaction (FBI) between the detection
and tracking modules: indeed, detection and tracking are
not performed one shot (only with a forward chain, as in
most of the algorithms available in the literature) but instead
the operating parameters are dynamically and automatically
adjusted and optimized by means of a backward chain.
In more details, the proposed approach acts in two steps:
• Forward Chain: (i) given a frame, the detection is
performed by combining salient points and foreground
mask based methodologies; (ii) a tracking based on local
association is performed; (iii) in case the achieved result
is reliable enough, then the next frame can be processed.
Otherwise, the backward chain is also put in the loop.

• BackwardChain: the confidence about data association
is evaluated in order to automatically adjust the oper-
ating parameters. Then, the forward chain is performed
again with the new configuration setup.

It is important to highlight that the on-line and automatic
updating of the operating parameters faces the main issues
typically arising in real environments: the algorithm is robust
enough with respect to the high variability of the environment
and of the objects populating it, since the configuration setup
is adjusted online and automatically. The typical errors of
the detection step are identified and solved by means of
the backward chain. Furthermore, a heavy fine tuning of
the human operator is not required, since his task becomes
to choose the parameters at the startup, thus making the
system particularly suited for being used in real applications.
Finally, even being inspired by global data association and
hybrid association frameworks, differently from state of the

art methodologies our FBI based tracking algorithm is able to
run in real time since it takes the decision about association
only by evaluating the current frame (and the history of the
objects), without requiring the whole set of objects appearing
in a sequence of frames.

More generally, another important and not negligible
aspect that has been taken into account pertains the efficiency.
Indeed, the proposed algorithm has been devised so as to be
used over low-cost embedded devices, small and low-energy
enough to be mounted on board of a drone, without any
external server for the processing.

Finally, a new dataset has been proposed and made pub-
licly available for benchmarking purposes, provided with
both videos and ground truth for multiple object tracking.
Considering that most of the available datasets focuses on
single object tracking (and thus provide the ground truth of a
single target object), this can be considered another important
contribution of this work. In order to prove the effectiveness
of the proposed approach, 53 different videos, belonging
to four different datasets publicly available and acquired in
different scenarios have been used.

The paper is organised as follows: in Section II the pro-
posed method is detailed; Section III describes the datasets
used for the experimentation and the obtained results. Finally,
conclusions are drawn in Section IV.

II. THE PROPOSED METHOD
The architecture of the proposedmethod is shown in Figure 2:
two different processing chains can be identified, namely a
forward chain and a backward chain.

In more details, the forward chain (in the upper part of
the figure) combines a detection stage (in orange) with a
tracking based on local data association (in blue). The detec-
tion module aims at identifying, for each frame, the objects
moving in the scene at the current frame, the so called blobs
(see Section II-A). In order to separate the ego motion from
the movement of the objects, we exploit preliminary camera
compensation algorithm, aiming at estimating the direction
and themagnitude of the cameramovement between two con-
secutive frames (details in Subsection II-A.1). Thus, the two
approaches based respectively on the extraction of the fore-
ground mask and on the extraction of some salient points
are combined (details in Subsections II-A.2 and II-A.3). This
approach, sometimes adopted in the literature as mentioned
before, has been proved to increase the overall accuracy of
the detection step.

The tracking is based on a local data association, which
performs the best possible association between the set of
blobs (output of the detection at the current frame) and the
set of objects tracked until the previous frame (output of the
tracking at the previous frame). Algorithms available in the
literature typically differ each other for the way in which
such association is performed. Anyway, differently from state
of the art approaches, the proposed method combines this
forward tracking which a backward tracking, which is acti-
vated only in those cases in which the local data association
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FIGURE 2. Overview of the proposed approach: forward and backward chains are in top and in the bottom part of the image,
respectively. Detection modules have an orange border, while tracking ones have a blue border.

FIGURE 3. An example of the interaction between forward and backward chain: the forward chain is repeated until the local association
between blobs and objects reaches a sufficiently high confidence.

is not reliable enough. Indeed, in such a situation, a backward
chain (in the lower part in Figure 2) is also put in the loop,
aiming at refining the operating parameters to be used for
repeating (with these new parameters) the detection at the
current frame. In other words, the forward chain is performed
starting from a startup settings and is iteratively repeated with
refined settings (automatically generated by the backward
chain) until the confidence in the local data association is
high enough. More details about the tracking module will be
presented in Section II-B.

An example showing an interaction between forward and
backward chain is shown in Figure 3: starting from the current
state, namely from the objects tracked until the previous
frame t − 1 (see box 0. State), the forward chain is acti-
vated with the startup settings. The confidence in the local
data association is low (see box 1. Forward Chain), thus,
the backward chain is activated so as to refine configuration

parameters, with the aim to improve the detection step and
thus increasing the reliability in the local data association (see
box 2. Backward Chain). Given the new set of parameters,
the forward chain is activated again and again until the confi-
dence is not sufficient enough (see box 3. Forward Chain).
The main advantage deriving from the introduction of the
backward chain is that the tracking module does not need
to perform its choice blindly, but instead is guided by the
detection, which in turns is not blindly but instead is guided
by the tracking itself. In other words, the introduction of the
backward chain allows to merge in our approach a tracking-
by-detection with a detection-by-tracking.

A. DETECTION
The detection module can be decomposed in the follow-
ing four components: 1) camera compensation, 2) detection
based on foreground mask, 3) foreground features extraction
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and clustering and 4) fusion. More details about each of the
components are reported in the following subsections.

1) CAMERA COMPENSATION
The aim of this step is to estimate the movement of the
camera in two consecutive frames, by only analysing the
two images, namely the current frame and the previous one.
Indeed, considering that the movement of the drone can not
be predicted, due to the presence of the wind or of other
weather factors that can move it independently on its flight
planning, we exclude the possibility to exploit any informa-
tion provided by the drone itself. Furthermore, this choice
allows us to be independent on the particular drone to be
used for allowing the movement of the camera, as well as on
the scenario (outdoor or indoor, where GPS signal works in
different way depending on the scenario itself).

Given the two consecutive images, camera compensation
module computes the transformation matrix Ht , which maps
the frame t − 1 on the frame t . In the literature there are two
main strategies for performing camera compensation: affine
transformation and perspective transformation. Affine trans-
formation estimates the displacement of each pixel across
successive frames. It has two main drawbacks: first, it is
not very general since it only allows to map a rectangle to
a parallelogram, thus it is not able to take into account all
the movements performed by a drone; furthermore it is very
expensive from a computational point of view, since working
at pixel level. Thus, we decided to adopt a perspective trans-
formation based on the homography, which is more general
since it allows to map a rectangle to any trapezoid. Moreover,
the mapping is found in terms of features point instead than
pixels, thus it is definitively faster.

In more details, a set of feature points Pt is extracted at
the current frame by using Good Features to Track based
on Shi-Tomasi corner detector [42]. It is important to high-
light that the proposed method is general enough to deal
with any features points. Anyway, we select the above men-
tioned typology since it is invariant to rotation and translation
and it has been proved to provide a very reliable motion
estimation. Before computing the feature points, a gaussian
filter is applied on the image. In this way, we avoid to
associate feature points to the noise instead than to interest
points.

The matching between the feature points detected in two
consecutive frames (namely Pt−1 and Pt ) is computed by
Lucas-Kanade algorithm [43]: given the two sets of feature
points, Lucas-Kanade computes the optical flow vectors of
such points; these vectors can belong to two sets of fea-
ture points, namely the ones that could be inliers and the
ones that could be outliers. The inliers Int are the points
associated to the background (and then deriving from the
ego motion), whose vectors describe the movement of the
camera between two consecutive frames. The outliers Outt
represent the movement of the objects; as evident, the outliers
vectors should represent a different movement, both in terms
of direction and intensity, if compared with inliers.

As evident, the homography should be computed by only
considering inliers feature points, so excluding from the anal-
ysis the outliers. For achieving this aim, a common approach
in the scientific literature is to use the RANdom SAmple
Consensus (RANSAC) algorithm (see for instance [28]), able
to produce a reliable estimation of the model parameters of
the image transformation even in presence of a high number
of outlier salient points. RANSAC works in the following
two steps that are iteratively repeated: (1) a set of vectors
is randomly chosen and the best fitting model is computed
by evaluating the minimum squared error; (2) the number of
vectors fitting this model (which are considered inliers for
this particular iteration) is counted. The set of such vectors is
called consensus set. The fitting model corresponding to the
highest cardinality of the consensus set is finally selected.

The proposed approach uses a slightly different strategy,
based on the Least Median of Squares (LMedS) [44]: the
main difference between RANSAC and LMedS is that the
latter evaluates each solution in terms of the median Sym-
metric Epipolar Distances of the data set and chooses the one
whichminimises themedian error emed , while RANSAC aims
at maximizing the number of inliers. Once chosen the set,
we evaluate the error e for each optical flow matching and we
compare it with the median error emed : the points pi,t ∈ Pt
having an error ei,t higher than the median error emed are
considered outliers, while the remaining ones are considered
as inliers:

pi,t ∈

{
Outt if ei,t ≥ emed
Int otherwise

(1)

LMedS has been proved to be a better choice than
RANSAC in case the number of outliers is lower than 50%.
This assumption holds, since in our case most of the motion
is related on the ego-motion to be compensated, while the
movement of the objects moving in the scene cover only a
small portion of the image (surely lower than 50%).

2) DETECTION USING FOREGROUND MASK
An overview of the proposed approach is shown in Figure 4:
as already mentioned, two different approaches are fused: the
detection based on the foreground mask (in the upper part
of the figure) and the detection based on the features points
(in the lower part).

As for the first approach, we perform a frame difference
between the previous frame Ft−1 and the current frame Ft ,
which is transformed in the coordinate system of the previous
frame; in more details, the homography Ht is applied to the
current frame:

Ft = Ht (Ft ) (2)

and the foreground mask FMt is computed by a frame dif-
ference, according to a given threshold M ; the generic pixel
(x, y) of the foreground mask is computed as follows:

FMt (x, y) =

{
1 if Ft (x, y)− Ft−1(x, y) ≥ M
0 otherwise

(3)
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FIGURE 4. Moving objects detection algorithm.

Morphological operators are then applied to the foreground
mask. The erosion is used to remove the noise, while the
dilation is applied to merge blobs potentially belonging to
the same moving object. The operating parameters (namely,
the threshold value M and the kernel’s size of the mor-
phological operator K ) are not fixed a priori, but instead
are dynamically and automatically chosen. Indeed, given a
starting configuration settings chosen by the human operator
at the startup of the system, M and K are updated as fol-
lows: in case the backward chain has been activated at the
current frame at least once, the new configuration setup is
imposed by the backward chain itself. It implies that both
the checking condition and the fine tuning modules are not
activated. Viceversa, in case the backward chain has not yet
been activated at the current frame t , the parameters are
updated by a Test and Set procedure, thus including in the
processing chain both the checking condition and the fine
tuning modules. In more details, the number of moving pixels
of the foregroundmask (st ) is computed and is compared with
the average value of the last N frames (st−1). In case of a
small variation (lower than ε), the operating parameters are no
more updated and the connected components are computed.
Otherwise, a fine tuning is applied: if st > st−1,M increases
whileK decreases; viceversa, if st < st−1,M decreases while
K increases. The pseudocode of this procedure is shown in
Algorithm 1.

Note that Test and Set procedure exploits spatial informa-
tion related to the whole image; thus, a modification of the
parameters during the fine tuning produces the same effect
on the whole image. Viceversa, the refining of the operating
parameters during the backward tracking acts on a small
portion of the image, namely the one where the object lies.
Thus, the former is globally applied on the image, while the
latter is locally applied, being specialised for a single object.

The configuration setup chosen before going on with the
successive frame is used as startup settings for the successive
frame. According to our knowledge, there are not any other
methods available in the literature able to automatically adjust
all the operating parameters. As already mentioned, one of
the main advantages deriving from this choice is related to

Algorithm 1 Detection based on the foreground mask: Test
and Set procedure.

1: procedure TestAndSetDetection(Ft , Ft−1, K , M , back-
wardOn, B)

2: checkCondition← false
3: n← 0
4: FMoriginal

t ← FrameDifference(Ft , Ft−1)
5: repeat
6: FMt ← Thresholding (FMoriginal

t , M )
7: FMt ←MorphologicalOperator (FMt , K )
8: F checking condition
9: St ← numberOfMovingPixels(FMt )
10: if st−1 − st < ε then
11: checkCondition← true
12: else
13: K,M← fineTuning(st−1, st , K , M )
14: update(st−1, st )
15: update(best K , M )
16: n← n+1
17: until backwardOn = false & checkCondition = false

& n < B

the fact that a heavy fine tuning from the human operator
is no more required, and the proposed approach is able to
adapt itself also to different environments. The procedure
is repeated until st−1 − st < ε, or, in order to assure the
convergence of the algorithm, after a certain number B of
attempts. In the latter case, the parameters which assure the
minimum difference are used, since they should provide the
best possible foreground mask.

Given the foreground mask, the connected components are
computed and the corresponding minimum bounding boxes,
BMt , are detected.

3) DETECTION USING FOREGROUND FEATURES
The detection based on the foreground features exploits the
intermediate results of the preliminary camera compensation
algorithm. In particular, it analyzes only the outlier points

VOLUME 6, 2018 43911



V. Carletti et al.: Multi-Object Tracking by Flying Cameras Based on a Forward–Backward Interaction

found at the current frame, Outt , and clusterize them, so that
each cluster corresponds to a moving object. In particular,
we decide to use a density based clustering algorithm. This
choice is due to the fact that the number of clusters is not
a priori known, since the number of objects is not a priori
known; furthermore, in our case the (outlier) points may
belong to two different sets, namely (1) the points belong-
ing to moving objects (hereinafter referred to as foreground
points) and (2) the noise. Thus, some points (corresponding
to the noise) have to be excluded. Such constraints pre-
vent the use of both partitional and hierarchical clustering.
Viceversa, density based algorithms are able to identify the
clusters even when them are irregular or intertwined (as
it commonly happens when dealing with non rigid objects
such as persons), and when noise points to be excluded are
present. The algorithm we decide to use is the well known
DBSCAN (Density-Based Spatial Clustering and Applica-
tionwithNoise) algorithm; the basic idea is that for each point
of a cluster, the neighborhood of a given radius (eps) has to
contain at least a minimum number of points (MinPts). The
only two configuration parameters thus are MinPts and eps,
where MinPts is the minimum number of neighbors within
eps radius.

Although being very effective and efficient, its main limi-
tation is due to the fact that the quality of the results strongly
depends on the typology of clusters; indeed, it works well
only in those cases in which there is not a large difference in
the size of the clusters. This is due to the fact that the size
of the cluster is univocally determined by the combination
{MinPts,eps} and can not be properly chosen in a different
way for each cluster.

As evident, this assumption does not hold in our context,
where the typology of objects populating the scene is not
a priori known and it may happen that the same typology of
objects (having the same dimension) populates the scene (for
instance, some vehicles on the road); but it may also happen
that different typologies of objects populate the scene (for
instance, persons and vehicles), thus the size of the clusters
can not be fixed for all the objects.

This limitation is addressed by the backward chain. Indeed,
in those cases in which the local data association is not
reliable enough, the clustering parameters are dynamically
updated in order to deal with different sized objects.

Finally, the minimum bounding box associated to each
cluster is computed so as to produce the list of the bounding
boxes BFt .

4) FUSION OF THE RESULTS
The sets BMt and BFt resulting from the detection based
respectively on the foreground mask and on the feature points
are finally fused. In particular, the i-th boxBt (i) belongs to the
final set Bt if it has been detected by both the algorithms:

Bt (i) =

{
BMt (i) ∪ BFt (i) if BMt (i) ∩ BFt (i) 6= ∅
∅ otherwise

(4)

FIGURE 5. An example of 1 : 1 association. B0 is associated to the object
O0, while B1 is associated to the object O1.

The main advantage deriving from this choice lies in the
fact that only a reduced number of false positives is detected.
On the other hand, the size of the detected object may be
overestimated due to the fact that we consider the union of
the boxes. Anyway, in case the local data association is not
reliable enough, the algorithm activate the backward chain so
as to improve the reliability in the association.

B. TRACKING ALGORITHM
The aim of the tracking algorithm is to draw, frame by frame,
the trajectories of the objects moving in the scene by perform-
ing the best possible association between the set of boxes
Bt = {B1t , ...,B

|B|
t } (output of the detection at the current

frame) and the set of objectsOt−1 = {O1
t−1, ...,O

|O|
t−1} tracked

until the previous frame t−1. For the sake of readability, in the
following we will omit the subscripts t and t − 1 containing
temporal information. The tracking is performed in two steps,
by combining a forward tracking with a backward one.

1) FORWARD TRACKING
Forward tracking performs a local data association; in more
details, the algorithm computes a similarity matrix S, where
the generic element s(i, j) is a measure of the similarity
between the ith box Bi and the jth objectOj. The computation
of s(i, j) is detailed in Subsection II-B.3.

The maximum value of the matrix S:

sMAX = s(iMAX , jMAX ) (5)

is iteratively searched for. In case sMAX is higher than a given
threshold T1, then the object OjMAX is associated to the blob
BiMAX . The lifecycle of an object after the association to a
blob is detailed in Subsection II-B.4. Note that this condition
(sMAX > T1) only arises when the detection is very accurate,
there are not any errors of split and merge and thus the
confidence is sufficiently high. An example of 1:1 association
is shown in Figure 5: fixed T1 to 0.8, the algorithm compute
S and finds the maximum value, namely s(0, 0) = 0.95; thus,
it associates the box B0 to the object O0. B0 and O0 are now
excluded from the analysis and can not be further associated
to any object and box, respectively. Then, the next maximum
value if found, namely s(1, 1) = 0.93 and the box B1 is asso-
ciated to the object O1. In this situation, no backward chain
needs to be activated since the confidence about the local data
association is sufficiently high in both the associations.

In case the confidence is not sufficiently high (namely,
sMAX < T1), no decision is taken and the backward chain
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is instead activated. More details about the backward chain
are reported in the following Subsection II-B.2.

2) BACKWARD TRACKING
The backward chain is activated mainly in the following three
situations: (1) a split occurs, namely a situation in which
a single object is partitioned in two or more boxes, due to
an error in the detection step; (2) a merge occurs, namely a
situation in which two or more objects are merged in a single
box, due to an error in the detection step; (3) the association
is 1:1, but the confidence is not sufficiently high.

The activation of the forward chain impacts on the fol-
lowing operating parameters: the parameters of the detection
using the foreground mask M and K ; the parameters of the
detection using the foreground features (eps and MinPts).
The refining of such parameters depends of course on the
typology of situation detected. Let us enter in more details
of each situation and on the related refining procedure.

A split is detected in case:
• sMAX = s(iMAX , jMAX ) is lower than T1
• there is at least another couple Bi2MAX ,OjMAX such that
s(i2MAX , jMAX ) < T1

In other words, two boxes (namely BiMAX and Bi2MAX ) are both
similar to a same object OjMAX , but none of them enough
similar (that is with a similarity score higher than T1). The
backward chain is activated trying to merge such boxes.
In order to achieve this aim, the following actions are per-
formed: (1) the threshold M is decreased, trying to include
in the foreground also some pixels between the boxes that
have been wrongly included in the background; (2) the radius
of the dilation kernel K is increased, trying to merge the
blobs; (3) both the radius eps and the minimum number of
neighboursMinPts increases, so as to increase the size of the
cluster to be considered.

In a more formal way, the refining module acts as follow-
ing (Refining1); the updating rates of the i-th variable µi is
expressed as a percentage of the variable itself (µi = µ ∗ i,
being µ the overall updating rate).

MNEW = M − µM (6)

KNEW = K + µK (7)

epsNEW = eps+ µeps (8)

MinPtsNEW = MinPts+ µMinPts (9)

An example is shown in Figure 6: the first row shows the
output of both detection and tracking after the first forward
chain; the similarity matrix on the right show that a split has
been detected: the two boxes B0 and B1 are both similar to the
object O1. Thus, the algorithm backtracks and the backward
chain is activated; operating parameters are modified and the
new forward chain is activated with the new parameters. The
results of the detection with the new operating configuration
are reported in the second row. Only one box is found, and
the similarity value between such box (B0) and the object
O1 is 0.95, higher than T1 = 0.8. Thus, the association is
performed.

FIGURE 6. Resolution of a split error. The first row shows the output of
the detection and of the local data association after the first forward
chain. The second row shows the results of the forward chain after the
first backtrack, with the new operating setup.

A merge is detected in case:
• sMAX = s(iMAX , jMAX ) is lower than T1
• there is at least another couple BiMAX ,Oj2MAX such that
s(iMAX , j2MAX ) < T1

In practice, two objects (namely OiMAX and Oi2MAX ) are both
similar to a same box BjMAX , but none of them enough similar
(that is with a similarity score higher than T1). Differently
from split problem, the backward chain is activated trying to
partition such boxes. Thus, in this case, the following refining
are performed: (1) the threshold M is increased, so as to
try excluding from the foreground those pixels between the
boxes, that should be included in the background; (2) the
radius of the dilation kernelK is decreased; (3) both the radius
eps and theminimum number of neighboursMinPts decrease,
so as to reduce the size of the cluster to be considered.

More formally, the refining module (Refining2) in this case
acts as following:

MNEW = M + µM (10)

KNEW = K − µK (11)

epsNEW = eps− µeps (12)

MinPtsNEW = MinPts− µMinPts (13)

An example is shown in Figure 7: after the first forward
chain, a merge is detected since B0 is similar to both O1

andO2. Thus, the algorithm backtracks, the operating param-
eters are refined and the new setup is fed into the forward
chain; the results are reported in the second row of Figure 7:
two different boxes are identified, namely B0 and B1, and
are associated to the objects O1 and O2, respectively. It is
important to highlight that our approach is based on the
assumption that the merge is not caused by an occlusion (one
object hidden behind another one), but instead by the fact that
two objects are very close each other, but can be still visible
separated. Anyway, this assumption holds in our scenario,
since the images are acquired by a drone, with a head-view
mounted camera.

The third situation the proposed approach is able to deal
with is the improvement in the 1:1 association. Differently
from the previous situations, the algorithm may not know
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FIGURE 7. Resolution of a merge error. The first row shows the output of
the detection and of the local data association after the first forward
chain. The second row shows the results of the forward chain after the
first backtrack, with the new operating setup.

FIGURE 8. An example of 1:1 association, whose similarity value is
improved from 0.66 to 0.96 thanks to the activation of the backward
chain.

a priori how to modify the configuration parameters, namely
if modifying according the rules sets Refining1 or Refining2.
Thus, the algorithm acts as follows: (1) if the area of the box
is lower than the one of the object, then the rules set Refining1
(adopted for solving the split) is applied; otherwise, the rules
set Refining2 (adopted for solving the merge) is employed;
(2) considering that during the step (1) the wrong decision
could have been taken, we evaluate the new similarity and we
compare it with respect to the previous one; indeed, in case
a new iteration is required (since the similarity is lower than
T1) two situations may arise: (i) the similarity value increases,
thus the same refining rule is applied again; (ii) the similarity
value decreases, thus a different refining rule is applied. An
example is shown in Figure 8, where the size of the object is
overestimation during the detection step; the backward chain
is activated and the Refining2 rule is applied, so increasing
the similarity s(0, 0) from 0.66 to 0.96.

Independently on the refining rules to be activated,
the backward procedure is repeated until the similarity value
becomes greater than T1, or, in order to assure the conver-
gence of the algorithm, after a certain number A of attempts.
In the latter case, the association with the highest similarity
is carried out, since it is anyway the best possible matching.

We also introduced a second threshold, namely T2. Indeed,
in case the similarity is lower than T2, or there are some blobs
that are not associated to any objects, then a new object is
created; as we will show in Section II-B.4, the state of this

new object will be Unstable. Viceversa, in case an object
is not associated to any blob, then its state is updated to
Ghost or Deleted , depending on its past state. More infor-
mation about the state transitions of the objects is detailed in
Section II-B.4.

3) SIMILARITY SCORE
The similarity between the i-th box Bi and the j-th object Oj

is computed by combining three complementary information,
respectively based on the position (sp), on the shape (sf ) and
on the appearance (sa):

s =
αp · sp + αf · sf + αa · sa√

α2p + α
2
f + α

2
a

(14)

The values of αp, αf and αa have been set to 1, so as to give
the same weight to all the contributions.

In more details, sp evaluates the distance d(i, j) between
the Bi and the Oj, normalized with respect to the maximum
displacement D of the object in two consecutive frames:

sp =

{
1− d(i,j)

D if d(i, j) ≤ D
0 otherwise

(15)

Note that in our experiments D has been set to the diagonal
size of the image, which is the maximum displacement of an
object in two consecutive frames.

The second contribution sf takes into account the areas (in
terms of number of pixels) of Bi and of Oj, as follows:

sf =


area(Bi)
area(Oj)

if area(Bi) ≤ area(Oj)

area(Oj)
area(Bi)

otherwise
(16)

Finally, sa evaluates the appearance, in terms of correlation
between the histogram of the box Bi, namely hB, and the
histogram of the object Oj, namely hO:

sa =

∑
b(hB(b)− h̄B)(hO(b)− h̄O)√∑

b(hB(b)− h̄B)2
∑

b(hO(b)− h̄O)2
. (17)

where

h̄B =
1
N

∑
b

hB(b); h̄O =
1
N

∑
b

hO(b) (18)

N is the number of the total bins and b represents the bth bin
of the histogram.

As shown in [37], the above described features, have been
proved to be as simple as effective even when applied in very
challenging scenarios.

4) LIFE CYCLE OF AN OBJECT
The life cycle of the objects is modelled by the finite-state
machine shown in Figure 9. The first time each object appears
in the scene (namely when a blob is not associated to any
object in the similarity matrix), it is considered unstable.
Such precautionary choice allows to discard all the objects
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FIGURE 9. Finite-state machine which determines the life of the objects
tracked by the proposed approach.

appearing in the scene just for a few frames due to spurious
detection errors.

If an unstable object is tracked for at least K1 consecutive
frames, it becomes stable; otherwise, the algorithm recog-
nises the error and deletes the object from the list. Differently
from unstable objects, if a stable object disappears from the
scene, it is not immediately discarded since it may happen
that is not detected just for a couple of frames, due to the
fact that it stops for a while (and thus is not detected) or it
is more simply missed due to an error in the detection step.
Thus, its state is updated to ghost. Such intermediate state
allows to reduce the number of false negatives due to objects
that disappear only for a few frames. If a ghost object does
not appear within K2 frames, then it becomes deleted and it
is removed from the list; otherwise, in case it reappears in K2
frames, it is considered stable again.

III. EXPERIMENTAL EVALUATION
In this section we provide an extensive analysis of the pro-
posed approach: the dataset used in the experimentation is
detailed in Section III-A, the experimental protocol is pre-
sented in Section III-B and the results are reported and dis-
cussed in Section III-C.

A. DATASETS
In order to carry out an extensive analysis of the proposed
approach, we use four different datasets. Three of them are
publicly available and have been widely used by the scien-
tific community for the evaluation of single object tracking
with moving camera: the Visual Object Tracking (hereinafter
VOT ) [14], the UAV123 [13] and the one made accessible
by the Communication Systems Group of Technische Uni-
versität Berlin (hereinafter Berlin dataset) [45]. The fourth
dataset (hereinafter MIVIA Drone dataset) has been acquired
by the authors of this paper at the University of Salerno
and has been made publicly available for benchmarking pur-
poses. Considering that the ground truth available for VOT,
UAV123 and Berlin is devoted to single object tracking,
we have manually produced a new ground truth (in terms
of bounding boxes and identifiers) for multi-object tracking.
The ground truth of all the videos, together with the new
dataset, is available at the following link: http://mivia.unisa.it.

FIGURE 10. DJI F-450 drone equipped with a Nilox F60 camera, used for
acquiring the MIVIA Drone dataset.

In more details, the VOT dataset [14] is composed by
60 image sequences, acquired with both fixed and moving
camera; we used in our experiments only the subset of videos
recorded with moving cameras.

The Berlin dataset [45] consists of six videos where the
camera, frontal with respect to the targets, follows them in
the scene. It is important to highlight that our method is not
optimized to deal with videos recorded with frontal view (and
then with mobile platforms different by drones, allowing an
head view of the objects acquired by the camera like the ones
available in the VOT and in the Berlin dataset). However,
we decided to use them so as to also verify the behavior of the
proposed approach with a generic scenario of moving camera
as well as to have the possibility to compare it with state of
the art approaches.

The UAV123 [13] is a recent dataset, which consists of
123 videos recorded with flying cameras equipped by
unmanned aerial vehicles. We selected 33 videos, chosen so
as to cover all the scenarios of the dataset. For such videos,
wemanually performed the ground truth, being available only
for single object tracking and not for multi-objects tracking.

Finally, the MIVIA Drone dataset is composed of four
videos recorded with a Nilox F60 camera equipped by a DJI
F-450 drone (see Figure 10). During the acquisition, the drone
flies at a height of about 20 meters, with fast rotational
and translational movements. We collected more than 6, 000
frames divided in 4 videos, considering different challenging
scenarios, in order to test the algorithm in presence of shad-
ows, merge and splits. The most critical point is the fact that,
differently from the videos available in the UAV123 dataset,
the drone does not follow the targets in the scene,
so its movement is completely independent of the moving
objects.

Table 1 reports the details of the above mentioned datasets
in terms of number of frames and videos. Sincewe are dealing
with drones, most of the images belong to the UAV123 and
theMIVIADrone dataset, that have been acquired with flying
cameras. In the whole, we used about 61,000 frames par-
titioned into 53 videos in our experimentation. Moreover it
can be noted that the analysis has been carried out on image
sequences with significantly different resolutions, ranging
from 320× 180 to 1920× 1080.
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TABLE 1. Details about the datasets used for the experimental
evaluation. Min. Res. and Max. Res. are the minimum and the maximum
resolutions of the videos for each dataset.

FIGURE 11. Images extracted from the datasets used for the experiments.
The first two rows depict some frames belonging to VOT and Berlin
dataset, acquired with moving cameras. The last two rows report images
from UAV123 and MIVIA Drone dataset, captured with flying cameras.

Figure 11 points out the variety of scenarios considered for
the experiments, in terms of objects of interest (people, cars
and animals), activities (doing sports, walking, running) and
distances from the targets.

B. EXPERIMENTAL PROTOCOL
The experimental protocol has been defined in order to eval-
uate the quality of the detection and the tracking. The per-
formance of the detection has been evaluated in terms of
Precision (P), Recall (R) and F-Score (F):

P =
TP

TP+ FP
(19)

R =
TP

TP+ FN
(20)

F = 2 ·
P · R
P+ R

(21)

where TP, FP and FN represent, respectively, the num-
ber of True-Positives (TP), False-Positives (FP) and False-
Negatives (FN), computed by evaluating the overlapping
between the boxes associated to the object at the ith frame,
Oi, and the ground truth GTi according to the Pascal Crite-
rion [46]. In more details,Oi is a TP if the following condition
is satisfied:

area(Oi ∩ GTi)
area(Oi ∪ GTi)

≥ 0.5 (22)

otherwise Oi can be considered a FP.
In order to evaluate the performance of the tracking algo-

rithm, we use a pair of the Classification of Events, Activi-
ties and Relationships (CLEAR) metrics, namely the Moving
Objects Tracking Accuracy (MOTA) and the (MOTP).

TABLE 2. Detection and tracking results in terms of Precision (P), Recall
(R), F-Score (F), MOTA and MOTP for each dataset.

The MOTA is an accuracy measure for multi-object tracking
which takes into account the number of missed detections,
false positives and switches for a ground truth object.

MOTA = 1−

∑Nframes
t=1

(
fnt + fpt + log10(imt )

)∑Nframes
t=1 N (t)

G

, (23)

where fnt is the number of false negatives, fpt is the number
of false positives, and imt is the number of ID mismatches in
frame t considering the mapping in frame (t − 1).
The MOTP is a precision measure for multi-object track-
ing which considers the spatiotemporal overlap between the
objects in the ground truth and the system output tracks:

MOTP =

∑Nmapped
i=1

∑N (t)
frames

t=1
|G(t)

i ∩D
(t)
i |

|G(t)
i ∪D

(t)
i |∑Nframes

t=1 N (t)
mapped

. (24)

where G(t)
i and D(t)

i denote the ith ground truth object and the
detected one in frame t.

C. RESULTS
Table 2 reports the results achieved by the proposed algo-
rithm, averaged over all the videos of each dataset.

The average F-score achieved by the algorithm is 0.58,
with a good balance between Precision (0.57) and Recall
(0.62). The performance of the detection is higher on the
VOT and on the Berlin dataset. Such results are not surprising
because these datasets are recorded with moving cameras
controlled by humans, so the moving targets are followed
during the videos and are always in the foreground. Moreover
the movement of the camera is controlled and the motion
blur is very limited. Viceversa, UAV123 and MIVIA Drone
datasets consist of videos acquired using flying cameras,
which suffer any kind of sudden movements. Moreover the
drone used in the MIVIA Drone dataset does not follow the
targets, making the detection even more challenging.

As for the tracking metrics, we can note the same trend.
The average MOTP is 0.6, so confirming the performance
of the detection algorithm. The performance drop between
moving and flying camera in terms of precision is less evi-
dent, because the online learning adapts the parameters in
order to dynamically improve the detection and preserve the
spatiotemporal overlap between the tracked object and the
reference one. The average MOTA, equal to 0.48, is a little
lower. In this case the accuracy drop is significant (about
0.5) because it is harder for the algorithm to follow multiple
targets with sudden translational and rotational movements.
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TABLE 3. Comparison of the detection results in terms of F-score on the
Berlin dataset. NA (Not Available) indicates the absence of published
results for the corresponding video sequence.

TABLE 4. Analysis of the processing frame rate at different resolutions.

Indeed, the best MOTA is achieved on the Berlin dataset,
where in most of the cases the targets are very close to the
camera.

Table 3 reports a comparison of the results, in terms of
F-score, achieved by the proposed algorithm and the methods
described in [25], [26], [45], and [47] on the Berlin dataset.
The comparison points out that our approach is able to sig-
nificantly outperform the others on all the scenarios, exclud-
ing the Allstar video. The latter is characterized by football
players that are not always in movement, so the algorithm
confuses them with the background causing a drop in the
Recall. In the other cases the proposed method identifies
the moving object with a small number of false negatives
and false positives (F-score around 0.9), so confirming its
effectiveness also when compared with the state of the art
approaches.

In order to evaluate the efficiency of the proposed
approach, we carried out an analysis of the processing time.
The tests have been performed over a Intel Joule 570X board,
equipped with a quad core Intel Atom T5700 CPU@1,7 GHz
(max 2,4 GHz) and 4 GB RAM LPDDR4. The idea behind
this choice lies in the fact that the board is a system on mod-
ule, thus can be directly mounted on board of the drone, thus
allowing the system to work in real time. Table 4 reports the
frame rate obtained by varying the resolution of the images.
Note that with a 4CIF resolution (640 × 360) the proposed
algorithm is able to run at 16 fps, thus it is able to run on
board in real time and if necessary to send on the ground, to an
external server, only the result of the elaboration for further
investigation (for instance the detection of events of interest).

D. DISCUSSION
After a quantitative and a qualitative analysis carried out on
53 videos and 61509 frames, a lot of interesting insights on
the proposed method can be discussed.

Indeed, the automatic adjusting of the operating parame-
ters is able to adapt the detection and tracking parameters
to the specific scenario, making the algorithm able to deal
with flying cameras. The experimental results demonstrate
the effectiveness of the proposed method on images with
various resolutions and completely different environments in

terms of objects of interest, activities and distances from the
targets.

A qualitative analysis points out that most of the errors are
due to objects which stop their movement and are confused
with the background. Such detection problems are partially
solved in the tracking step by the finite-state machine, which
introduces the concept of ghost state and it is able to deal
with objects that disappear for a certain number of frames.
Moreover, an event recognition module which analyzes the
results of the tracking may infer interesting information (e.g.
a queue or a car accident on a highway).
Another error identified after the qualitative analysis is
related to objects properly detected and tracked by the algo-
rithm, but with artifacts like shadows that warp the bounding
boxes and cause a drop in the Precision and in the Recall (the
Pascal Criterion is not respected), especially on the Mivia
Drone dataset. Such errors are quite hard to solve, but in a
real application they should not have a significant impact on
the results. Indeed, an event recognition module is designed
for processing the trajectories of the objects, so an error in the
estimation of the shape should not determine an error in the
analysis of the behavior.
A typical problem with flying cameras is the fact that the
aerial vehicle may quickly vary the flight altitude, so causing
a sharp change of the distance from the objects. Although
the proposed algorithm is able to learn the optimal param-
eters, during the transient there may be errors due to the
almost instantaneous change of the appearance (especially
in terms of the size of the objects). Moreover, in a real
application the aerial vehicle does not follow the movement
of the objects (we simulated this situation in the Mivia Drone
dataset), so the camera compensation is a very challenging
operation liable to errors. A future direction to solve these
drawbacks may be the use of the information about the flight.
The knowledge of the geographic coordinates of the drone,
together with its speed, can give a significant contribution to
improve the quality of the camera compensation step. Indeed,
the system can take into account the movement of the camera
between consecutive frames in order to improve the quality
of the foreground mask and the estimation of the background
transformation due to the camera movement. In recent years
the technology is moving quickly in this direction, so the use
of such information to improve the multi-object tracking by
flying camera may be not so far.

Before concluding, it is worth to point out that one of
the main problems of evaluating this kind of approaches is
the lack of publicly available implementations and ground
truths for multi-object tracking. We hope that our significant
effort of labelling and making publicly available the anno-
tations for such wide datasets will help and encourage the
scientific community to use these standard benchmarks for
performance comparisons.

IV. CONCLUSION
In this paper we propose a method for tracking moving
objects with a flying camera equipped by a drone. The main
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novelty of the proposed approach is the introduction of a
detection and tracking algorithm based on a test and set proce-
dure, where the choice of the optimal parameters is adaptively
performed. Such technique allows to adapt the algorithm to
each scenario, solving the problem of the configuration for
environments not known a priori. The performance, both in
terms of accuracy and efficiency, confirms the effectiveness
of the proposed approach. The possibility to work in real time
over systems on a module demonstrates that the system is
suitable for real situation awareness and behavior analysis
applications.
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