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ABSTRACT This paper presents an image statistical modeling-based texture classification (TC) approach
via the Bayesian-driven B-splines probability density estimation of the image textural surface appearance
(ITSA), termed TCvBsISM. It approximates the probability density functions (pdfs) of the marginal
distribution and joint distribution, involving the global organization and the locally structural layout of local
homogeneous patches in the texture surface, respectively, of both the image raw pixel space and the filter
response space, by the linear combination of B-spline basis functions (BsBFs) for ITSA feature charac-
terization. The corresponding linear weighting coefficients (LWCs) are determined by an entropy-based
optimization criterion with a prior smooth constraint over the LWCs. By leveraging the B-spline-based
pdf modeling, distinctive ITSA structural features of texture images are characterized by the LWCs of the
pre-defined BsBFs, which are then embedded in an integrated statistical feature dictionary learning, texture
pattern representation, and discrimination model to perform TC. Extensive confirmative and comparative
experiments on three different texture databases and one natural environmental scene database demonstrate
that the proposed TCvBsISM is very promising, especially when the images of different texture patterns
appear to be quite similar with the limited training samples. The effects of various parameters on TCvBsISM,
such as the choice of the filter bank, the size of the image statistical feature dictionary, as well as the number
of BsBFs, are also discussed.

INDEX TERMS Image statistical modelling, B-spline probability density estimation, minimum entropy,
Bayesian probability density estimation, texture classification.

I. INTRODUCTION
Texture, ubiquitously existing in all-natural images, is an
important visual perception clues to a variety of image
analyses and computer vision tasks [1], such as image
segmentation, objection detection, image retrieval, and many
others more cannot be enumerated exhaustively. Hence, tex-
ture analysis, especially texture classification (TC) consti-
tutes one of the fundamental issues in computer vision.
Nevertheless, it is even difficult to get a precise definition
for computer texture modeling and texture analysis, though
human beings can discriminate different texture patterns
effortlessly. Hence, TC is still an indispensable but chal-
lenging task in computer vision and some related intelligent
information processing fields [2].

A common TC system involves two modules, texture
feature extraction (or feature learning) and pattern identifi-
cation [1], [3]. It is believed that distinctive texture fea-
ture extraction is a bottleneck in automatic TC [1], hence
that has attracted researchers’ great interest. During the past
decades, local descriptor-based texture analysismethods have
become a mainstream, which can be categorized into two
classes [4]. One is the sparse descriptor approach based on
some detectable interest points, and the other is the dense
descriptor approach extracting pixel-wise features of local
patches.

Representative sparse descriptor is the scale invariant
feature transform(SIFT) proposed by Lowe [5] with its
variants, e.g., the speed up version, SURF [6] and the
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dimension-reduction version, PCA-SIFT [7]. Whereas the
most popular dense descriptors include Gabor wavelet [8]
and local binary pattern(LBP) [9] with its variants, e.g., the
pairwise rotation invariant co-occurrence local binary pat-
tern (PRICoLBP) [10], dual-tree complex wavelet transform
(DTCWT)-fused LBP feature termed LBDTCWT as well as
the energies in the log-polar(LP) transform domain termed
LPDTCWTE [11], diamond sampling structure-based local
adaptive binary pattern (DLABP) [12], and so on. Though
ample studies have demonstrated that the LBP-based descrip-
tors can achieve promising TC performance on some specific
data sets, they still exhibit limitations in fully capturing the
discriminative texture pattern information as analyzed in [12],
since theymainly concern the change of the stimulus between
the center pixel and its neighbor pixels and ignore the pixel
change trends and the original intensities of the local homo-
geneous patches (LHPs). Hence, some researchers attempted
to extract more discriminant local pattern information beyond
the local paired pixels. For instance, Chen et al. [4] proposed
a robust descriptor termed Weber Local Descriptor (WLD),
encoding both differential excitations and orientations at cer-
tain locations based on the fact that human perception of a
texture pattern depends not only on the change of a stimulus
but also on the original intensity of the stimulus. Analogically,
Pan et al. [13] proposed a feature-based LBP (FbLBP), taking
the magnitude of the difference vector computed based on the
traditional LBP as a complementary. Whereas Yu et al. [14]
proposed a multitrend binary code descriptor (MTBCD)
fused the gray level co-occurrence matrix (GLCM) texture
statistics computation method, attempting to reveal the trend
of pixels change in local region and the spatial relation of
local patterns.

In addition, some researchers combined the ideas of sparse
and dense descriptors in a crossway. For instance, Li et al.
used the SIFT in a dense sampling way [15] and Heikkila
extracted the LBP base on the interest regions [16] of the
sparse way.

All these local descriptor-based texture analysis methods
attempt to choose a limited subset of the texture features from
local patches [1] of raw pixel space or filtering response
space. Despite ample evidence has shown the good perfor-
mance of these methods on some specific texture databases,
‘‘no single approach did perform best or very close to the
best for all images, thus no single approach may be selected
as the clear winner’’ as it was concluded in a comparative
study [17].

One big limitation of these local descriptor methods is the
neglecting of the global characteristics of the holistic image
surface appearance. As stated in [1], the Bag-of-words(BoW)
model, borrowed from natural language processing and doc-
ument classification areas, is an effective local-global texture
characteristics representation approach, gaining great interest
in the academic community and leading a new prospect in TC.
It encodes both the local texture pattern by using LHPs-based
pre-learned textons [18], [19] and the global texture appear-
ance by an orderless histogram of the occurrence frequencies

of textons. However, it is worth noting that the patch size
is a non-negligible influence factor. As analyzed in [1],
smaller sized patches can achieve more local characteristics,
but cannot effectively capture larger scale spatial structural
characteristics, which may be a dominant texture feature
but sensitive to capture pose, illumination change and noise
contamination. Whereas larger sized patches will lead to a
quadratic increase in the dimension of the patch space and
bring about great pressure in the textons learning.

Intuitively, the ITSA essentially dues to the albedo varia-
tion on a flat or three-dimensional surface, which exhibits a
special organizational behavior of the LHPs. The local struc-
tural characteristics and the global organization behavior of
the LHPs should attribute to the spatial variation of the image
pixel intensity values and finally be boiled down to the variant
statistical distribution characteristics. In other words, the ran-
dom organization of the LHPs generates the global visual
appearance, while the regular or irregular exhibition or lay-
out of each LHP results in the local characteristics. Hence,
how to characterize the distinctive global organizations and
the local exhibition of the ITSA is greatly important to
TC [20].

Many statistical modeling-related methods were intro-
duced to describe these global organizations and local
exhibition characteristics for texture analysis. The early
widespread methods are the statistics-based methods,
such as the first-order and second-order statistics, and
co-occurrence matrix-based joint statistics, as well as their
variants [21], [22]. The statistics-based texture analysis
methods do not concern the latent probability distribution
model (LPDM) of the ITSA, which mainly depend on
the measured values of the predefined statistics. That may
achieve analogous statistical values from different texture
images from different texture patterns with different LPDMs
and consequently lead to misclassifications. Hence, investi-
gating the LPDM of the ITSA for accurate TC is important
and urgent [23].

Some empirical statistical models (ESMs) were introduced
to approximate the LPDM of the ITSA especially in a
specific image transform domain. These ESMs are gener-
ally sharp-peaked distribution models with long tail on left,
right or both sides of the distribution, e.g., Gaussian scale
mixture model (GSMM) [24], symmetric Weibull distribu-
tion model [20], [25]–[27], which mainly capture the global
characterizations of texture images based on the evidence
of the sparse behavior of texture images in the multi-scale
transform spaces [28]. To characterize the local exhibition
characteristics of the ITSA, theMSDmodels can be extended
to multivariate statistical distribution (MvSD) models, e.g.,
the joint distribution, representing the statistical dependence
of the pixels with a specific distance and orientation. These
MSD and MvSD models can be also used as a prior to
improve the capabilities of the image processing technolo-
gies. For instance, Hammond and Simoncelli [29] proposed
a GSMM-based image denoising method with Bayesian
least squares estimation and demonstrated to achieve the
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best performance among the state-of-the-art image denoising
methods.

However, ESMs-based texture analysis methods are dif-
ficult to approximate the statistical model of texture
images with unexpected distribution profiles. For instance,
the commonly-used ESMs are generally unimodal, which
cannot approximate LPDMs of ITSAs with multimodal dis-
tribution profiles. Another negative influence is that the
ESMs-based texture analysis methods generally depend
on the researchers’ knowledge experience. Hence, it is
bound to achieve poor TC performance if the unreasonable
empirical model is introduced. Recently, the basis distribu-
tion or polynomial based PDF estimation (PDFE) methods
attract increasing interest, which can approximate any com-
plicated distribution model without any prior knowledge of
the true distribution by introducing Bayesian smooth con-
straints [30], [31].

This paper presents a B-spline image statistical modeling-
based TC method, termed TCvBsISM. It derived the one-
dimensional and two-dimensional BsBFs-based PDFE for
ITSA feature characterization by introducing a prior smooth
constraint on the distribution model, which can effectively
avoid the fluctuation of the PDFE results inspired by the
literature [31] and consequently achieve the distinct LPDMs
of any texture pattern. Based on the pre-fixed BSBFs, it con-
verted the global organization and the local layout of LHPs
in a texture image into the corresponding linear weighting
coefficients (LWCs) of the pre-fixed BSBFs, which is bene-
ficial to the automatic TC. The performance of TCvBsISM is
verified by extensive experiments on three different texture
image databases and one natural environmental scene data
set, which achieved superior performance compared with the
state-of-the-art TC methods.

The remainder of this paper is organized as follows: the
Bayesian-driven image statistical modeling method based on
B-splines PDFE is presented in Section II. Detailed TCvB-
sISM is presented in Section III. Experimental results on three
different textural image databases and one natural environ-
mental image data set with the effects of various parameters
in TCvBsISM approach are discussed in Section IV and
conclusions are given in Section V.

II. BAYESIAN-DRIVEN IMAGE STATISTICAL
DISTRIBUTION MODELING
ESMs, e.g., Gaussian distribution, Weibull distribution
or exponential distribution, cannot effectively capture the
complicated and irregular distribution profiles of ISTAs for
the diversity and unpredictability of the texture patterns.
Common nonparametric PDFE methods, e.g., histogram,
kernel density estimation, either approximate the PDF by a
non-smooth bar chart with low estimation precision or by
a continuous function without convenient and applicable
expression form for the following pattern classification.

Recently, some researchers attempted to use the mixture of
polynomials, e.g., normal polynomials, Hermit polynomials,
to approximate the distribution model. It demonstrated that

the high order polynomials were not stable and the lower
order polynomials may not achieve the PDFmodel with suffi-
cient precision. Alternatively, the using of basis distributions
or positive kernels with some constraints is demonstrated to
achieve the PDF approximation result with enough precise-
ness [31], [32].

Hence, we approximate the PDF of ITSA by the linear
weighting combination of some pre-defined BsBFs, which
converts the PDFE into a weight optimization issue. By intro-
ducing a prior smooth constraint on the linear weight-
ing coefficients(LWCs), we derived a stable and reliable
Bayesian-driven BSBFs-based PDFE method, including the
one-dimensional PDF modeling and the two-dimensional
modeling, which can be adaptive to various random samples
with no prior distribution information of the true statistical
models.

A. BsBFs-BASED ONE-DIMENSIONAL PDF ESTIMATION
1) ONE-DIMENSIONAL B-SPLINE PDF MODELLING
Suppose a random variable x within the range of [tmin, tmax],
the PDF of x can be approximated by the linear weighting
combination of BSBFs, given by

fX (x|a) = aTBk =
M∑
i=1

ajβj,k (x) tmin ≤ x ≤ tmax (1)

where a = (a1, a2, · · · , aM )
T is the LWCV, βj,k (x) is the

j-th BsBF of k-order, M is the number of BSBFs. The BsBF
can be defined in a recursive form as

βj,k (x) =
x − ti

ti+k−1 − ti
βj,k−1 (x)+

ti+k+1 − x
ti+k+1 − ti+1

βj+1,k−1 (x)

(2)

where βj,0 (x) =
{

1, if ti ≤ x ≤ ti+1
0, otherwise with a specific def-

inition 0/0 = 0, T = (t0, t1, · · · , tn)T is a knot vector,
consisting of n + 1 non-descending real-valued knots, sat-
isfying tmin = t0 < t1 < t2 < · · · < tn−1 < tn = tmax.
The second-order BsBF is the most commonly-used basis
function, which can be defined as

βi,2 =



(x − ti)2(
ti+2 − ti

) (
ti+1 − ti

) if ti ≤ x ≤ ti+1

x − ti
ti+2 − ti

·
ti+2 − x
ti+2 − ti+1

+
ti+3 − x
ti+3 − ti+1

·
x − ti+1

ti+2 − ti+1
if ti+1 ≤ x ≤ ti+2(

ti+3 − x
)2(

ti+3 − ti+1
) (
ti+3 − ti+2

) if ti+2 ≤ x ≤ ti+3

0 otherwise
(3)

As can be seen from (3), four extended nodes, t−2, t−1,,
tn+1, tn+2 are needed to make a meaningful computation on
the end points. For convenience, it usually takes t−2 = t−1 =

t0 and tn+1 = tn+2 = tn.
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Since fX (x|a) is a PDF, two constraints must be satisfied.
One is that all the coefficients in a must be nonnegative to
make sure the estimated PDF being always positive, and the
integral of fX (x|a) over (−∞,+∞) must be one, namely,∫

+∞

−∞

fX (x|a)dx =
∫
+∞

−∞

M∑
i=1

aiβi,k (x)dx

=

M∑
i=1

ai
ti+3 − ti

3
= 1 (4)

2) MLE-BASED B-SPLINE PDF MODEL
PARAMETER ESTIMATION
Suppose a random sample Xs =

(
x1, x2, · · · , xns

)T is sam-
pling from an unknown probability model f (x), the key step
of the BsBFs-based PDFE is to determine the LWCV a based
on the observed sample Xs. As reported in [33], the cross
entropy can be used to evaluate the PDFE results, given by

J (g, f ) = −
∫
f (x) log g (x)dx (5)

where f (x) is the true distribution model and g(x) is the can-
didate distribution model. To facilitate application, the mea-
surable entropy (ME) can be used to make an asymptotically
unbiased estimation of J (g, f ) [33], given by

ME = −
∫
fX (x|a) logfX (x|a) dx +

3nf
2ns

(6)

where nf is the number of the free parameter in BsBFs-based
PDF model in (1). The model complexity M and LWCV a
can be obtained by minimizingME.

In this paper, since the number of the BsBFs is fixed,
the estimation of the PDF model parameter degrades into
a maximum likelihood estimation (MLE) method. Namely,
we can solve the following optimization problem to obtain a,

â= argmax
a

{
log

[ ns∏
i=1

fX (xi|a)

]}
=argmax

a

ns∑
i=1

log fX (xi|a)

s.t.
M∑
i=1

ai
ti+3 − ti

3
= 1

ai ≥ 0 (i = 1,2, · · · ,M ) . (7)

Many optimization methods can be used to solve the
abovementioned optimization problem. As derived in [33],
a fast-convergent iteration scheme was given by

â(n+1)
j =

1
nscj

ns∑
i=1

â(n)j βj (xi)

fX
(
xi|â

(n)
) (8)

where cj =
(
tj+3 − tj

)
/3, â(n)j denotes the n-step iteration

results of the j-th LWC. Given an initial estimation of the
LWCV â(0), it reported that it can achieve a stable estimation
of LWCV â within a small number of iteration steps.

3) PRIOR SMOOTH CONSTRAINT(PSC)-BASED
PARAMETER REVISING
The MLE-based parameter estimation result generally exists
a certain error, resulting from the overemphasizing the com-
plexity or overfitting of the B-spline model.

Suppose the estimation deviation of each coefficient ai
is wi, the MLE-based PDFE result â can be expressed as,

â = a+ w (9)

where a is the true LWCV and w is the error vector. Based
on the central limit theorem, w should follow a normal distri-
bution with zero-mean and a common covariance σ 2IM×M ,
(IM×M is a M ×M identity matrix [31]). Hence, conditioned
on the true LWCV a, the likelihood of â can be computed as

p
(
â|a
)
=

1

(2π)M /2

1∣∣σ 2IM×M
∣∣

× exp
{
−
1
2

(
â− a

)T (
σ 2IM×M

)−1 (
â− a

)}
=

(
1

√
2πσ

)M /2

exp
{
−

1
2σ 2

∥∥â− a
∥∥2
2

}
(10)

where ‖·‖22 means the square value of 2-norm. As stated
in [31], since â is estimated directly from the samples, p

(
â|a
)

contains all the necessary information of the sampling data
related to the real distribution.

One of the underlying and useful hypotheses to govern the
statistical modeling is the model smoothness, which can be
defined by introducing the approximated first derivatives on
both the left and right side of a checked point on the true
model parameter a in mathematics, namely, ∂a

∂i

∣∣
+
=

∂a
∂i

∣∣
−
,

where the subscript ‘‘+’’ and ‘‘−’’ represent the left and the
right derivatives, respectively. In the discrete form, it can be
expressed as ai+1 − ai = ai − ai−1 + ei, where ei denotes
the smoothness residual error of the i-th coefficient in a,
alternatively, ei = ai+1+ai−1−2ai and i = {2, 3, . . . ,M−1}.
Based on the smoothness assumption, elements in the
smoothness residual error e should obey an independent and
identical Gaussian distribution with zero mean and the same
variance ρ2, namely,

p (e) = p (e2, e3, · · · , eM−1)

=

(
1
2π

)(M−2)/2 exp {− 1
2e

T
(
ρ2I

(M−2)×(M−2)

)−1 e}∣∣ρ2I
(M−2)×(M−2)

∣∣
=

(
1

2πρ2

)(M−2)/2
exp

{
−

1
2ρ2

eT e
}

(11)

By introducing a transform matrix, we can rewrite e = Da,
where D is

D =


1 −2 1

1 −2 1
...

1 −2 1
· · ·

· · · 1 −2 1


(M−2)×M

(12)
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Then substitute e = Da back into (11), we can obtain
a prior of the true LWCs a in (13), which is a prior constraint
to restrict the fluctuation of the B-spline based statistical
model.

p (a|σ, ρ) =
(

1
2πρ2

)(M−2)/2
exp

{
−

1
2ρ2

(Da)T (Da)
}

=

(
1

2πρ2

)(M−2)/2
exp

{
−

1
2ρ2
‖Da‖22

}
(13)

In Zong’s study [31], it introduced a variance ratio parame-
ter ω2

= σ 2/ρ2 representing the smooth factor, then the prior
distribution p

(
a|ω2

)
can be represented as

p
(
a|ω2

)
= ω(M−2)

(
1

2πσ 2

)(M−2)
exp

{
−
ω2

2σ 2 ‖Da‖
2
2

}
(14)

To obtain the true LWCV a, we can use the Bayes’ theorem
to obtain the posterior distribution p

(
a|â
)
as

p
(
a|â
)
∝ p

(
a|ω2

)
p
(
â|a
)

= ωM−2
(

1
2πσ 2

)2M−2

× exp
{
−

1
2σ 2

[∥∥â− a
∥∥2
2 + ω

2
‖Da‖22

]}
(15)

Then we can achieve the point estimation of a by maximizing
the posterior p

(
a|â
)
. Namely, the PSC-based model parame-

ter estimation aBayes should be revised as

aBayes = argmax
{
−
∥∥â− a

∥∥2
2 − ω

2
‖Da‖22

}
=

(
IM×M + ω

2DTD
)−1

â (16)

Figure 1 displays an artificial image with its B-spline-
based statistical modeling results. As can be seen from Fig.1,
the fluctuation of the direct MLE-based PDFE result can be
alleviated effectively by introducing a prior smooth constraint
on the LWCs.

Apparently, the smooth factor ω2 will greatly affect the
PDFE result. We can obtain the best PDF model by a more
Bayesian treatment, namely, obtaining the best smooth factor
ω2 based on the samples. As reported in [31], the best smooth
factor can be estimated by the Type II maximum likelihood
Principle with a new measured factor, named Bayesian Mea-
sured Entropy (MEB), given by

MEB
(
ω2
)
= − (M − 2) logω2

+ (ns − 2) log q2

+ log
∣∣∣FTF∣∣∣+ constant (17)

The optimal smooth parameter ω2 can be obtain by mini-
mizing MEB

(
ω2
)
, where q2 = −

∥∥â− a
∥∥2
2−ω

2 ‖Da‖22, and

F =
[

IM×M
ωD(M−2)×M

]
(2M−2)×M

.

FIGURE 1. BSBFs-based one-dimensional PDFE. (a) An artificial image
with pixel intensities randomly sampling from a known mixed probability
model, which is pX (x) = g (x) /K , where

g (x) = 0.8×
[

x
2 exp

{
−

(
x
2

)2
}]
+ 0.2×

[
1
√

2π
exp

{
−
(x−7)2

2

}]
and

K =
10∫
0

g (x)dx ≈ 1,is a normalized parameter. (b) The true PDF model

with its histogram distribution; (c) The MLE- based B-spline statistical
modeling results and (d) Bayesian-driven B-spline statistical modeling
result with a prior smooth constraint on LWCs, where the smooth factor
ω2 = 90.

B. BSBFS-BASED TWO-DIMENSIONAL PDF MODELING
1) TWO-DIMENSIONAL B-SPLINE MODEL DESCRIPTION
The two-dimensional PDF can be approximated as [33]

fXY (x, y|a) =
M∑
i=1

N∑
j=1

ai,jβi,k (x) βj,k (y) (18)

where a =
(
a1,1, a1,2, a1,3, · · · , aM ,N

)T , βi,k (x) is the k-
order BsBF. Analogizing to the one-dimensional PDF model,
two constraintsmust be considered tomake a reasonable PDF,
the nonnegative LWCs and the integral of n fXY (x, y|a) must
be one, namely,∫
+∞

−∞

fXY (x|a)dx =
∫
+∞

−∞

M∑
i=1

M∑
j=1

ai,jβi,2 (x)βj,2 (y)dxdy

=

M∑
i=1

N∑
j=1

ai,j
xi − xi−3

3
×
yj − yj−3

3
= 1

(19)

Given the random sampling pair Xs =
(
(x1, y1)T ,

(x2, y2)T , · · · ,
(
xns , yns

)T)T , LWCV a can be estimated by
solving the following optimization problem,

â = argmax
a

{
log

[ ns∏
i=1

fXY
(
xi, yj|a

)]}

= argmax
a

ns∑
i=1

log fXY
(
xi, yj|a

)
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s.t.
M∑
i=1

N∑
j=1

ai,j
xi − xi−3

3
×
yj − yj−3

3
= 1

ai,j ≥ 0 i=1,2, · · · ,M ; j=1,2, · · · ,N (20)

Zong and Lam [30], [33] has derived an iteration formula
to solve the abovementioned optimization problem, namely,

â(n+1)
ij =

1
nsci,j

ns∑
l=1

a(n)i,j βi,2 (xl) βj,2 (yl)

fXY
(
xl, yl |â

(n)
) (21)

where ci,j =
xi−xi−4

3 ×
yj−yj−4

3 .

2) PSC-BASED PARAMETER REVISING
Suppose the estimation deviation vector isw, the MLE-based
PDF model parameter estimation result â can be expressed as

â = a+ w (22)

Like the one-dimensional PDFE, the estimation error wij
should follows an independent identically Gaussian distri-
bution model with zero mean and a common σ 2 variance.
Hence, the likelihood function of â is given by

p
(
â|a
)
=

(
1

√
2πσ

)MN

exp
{
−

1
2σ 2

∥∥â− a
∥∥2
2

}
(23)

According to the Bayes’s theorem, the posterior probability
p
(
a|â
)
∝ p (a) p

(
â|a
)
, where the prior distribution term

p (a) is still unknown, which is a prior used to govern the
smoothness of the statistical model.

According to the Zong’s definition [30], the smoothness of
the statistical model can be approximated by the second-order
difference of a, defined as

ei,j = ai,j−1 + ai−1,j − 4ai,j + ai,j+1 + ai+1,j (24)

while on the four boundaries, the parameter differences
e1,j, ei,1, eM ,j, ei,N are defined with a little change, which are
defined as

ei,1 = ai−1,1 + ai+1,1 − 2ai,1; i = 2, · · · ,M − 1

e1,j = a1,j−1 + a1,j+1 − 2a1,j; j = 2, · · · ,N − 1

ei,N = ai−1,1 + ai+1,1 − 2ai,1; i = 2, · · · ,M − 1

eM ,j = aM ,j−1 + aM ,j+1 − 2aM ,j; j = 2, · · · ,N − 1

(25)

where e =
(
e1,1, e1,2, · · · , eMN

)
. As reported in [30], based

on the smooth hypothesis, ei,j should follow an independent
and identical Gaussian distribution with zero mean and a
common ρ2 variance, namely,

p (e) = p
(
e1,2, e1,3, · · · , e1,N−1, e2,1, · · · , eM−1,N

)
=

M−1∏
i=1

N∏
j=2

1
√
2πρ

exp

{
−
e2i,j
2ρ2

}

=

(
1
√
2πρ

)MN−4

exp

− 1
2ρ2

M−1∑
i=1

N∑
j=2

e2i,j



=

(
1
√
2π

)MN−4 1∣∣ρ2IMN−4
∣∣1/2

× exp
{
−
1
2
eT
(
ρ2IMN−4

)−1
e
}

(26)

By introducing a new transform matrix D2, we can obtain a
new expression e = D2a and substitute it back into (26) we
can obtain a prior model of a, given as

p (a|ρ) =
(

1
√
2πρ

)MN−4

exp
{
−

1
2ρ2
‖D2a‖22

}
(27)

where

D2

=


D

I(M−2)×M D1 I(M−2)×M
...

I(M−2)×M D1 I(M−2)×M
· · · · · ·

· · · D


(MN 4)×MN

(28)

D is defined in (12), and

D1 =


−2

1 −4 1
...

1 −4 1
· · ·

· · · 2


(M−2)×M

(29)

If we import another new parameter ω2
= σ 2/ρ2, represent-

ing the smooth factor, the prior distribution of the true model
parameter a can be expressed as

p (a|ω) = ωMN−4
(

1
√
2πσ

)MN−4

exp
{
−
ω2

2σ 2 ‖Da‖
2
2

}
(30)

Hence, based on the Bayes’ theorem, the prior smooth-driven
BsBFs-based statistical model parameter can be estimated by
maximizing the following posterior distribution,

p
(
a|â, ω

)
∝ p (a|ω) p

(
â|a
)

∝ ωMN−4
(

1
√
2πσ

)MN−4

exp
{
−
ω2

2σ 2 ‖Da‖
2
2

}
×

(
1

√
2πσ

)MN

exp
{
−

1
2σ 2

∥∥â− a
∥∥2
2

}
= ωMN−4

(
1

√
2πσ

)2MN−4

× exp
{
−

1
2σ 2

[
ω2
‖Da‖22 +

∥∥â− a
∥∥2
2

]}
(31)

Given a specific ω2, we can achieve the point estimation of
the true model parameter a by maximizing p

(
a|â, ω

)
aBayes =

(
IMN×MN + ω

2DTD
)−1

â (32)
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Furthermore, we can perform a more Bayesian treatment
to obtain the best smooth factor ω2 by the Type II maximum
likelihood Principle as reported in [30].

Figure 2 displays the scatter plot of 3600 point-pairs, sam-
pling from a mixture distribution model. The PDFE results
indicate that more stable and accurate statistical model will
be achieved by introducing a prior smooth constraint over the
model parameter.

FIGURE 2. BsBFs-based two-dimensional PDF modeling. (a) Scatter plot
of 3600 pair-points, sampling from a mixture distribution, whose PDF is
pXY

(
x, y

)
= g

(
x, y

)
/K , where

g
(
x, y

)
= 0.3×NNN

(
x|u0,

(
βy
)−1

)
0
(
y |a,b

)
+ 0.7×NNN (x|u,6), where

NNN (·) and 0 (·) denote the normal distribution and Gamma distribution,
respectively, and x =

(
x, y

)T , µ0 = 5, β = a = b = 2, u =
(
5,5

)T ,

6 =

[
2 0
0 1

]
and K =

9∫
0

g
(
x, y

)
dxdy ≈ 1 is a normalized parameter. (b)

The true PDF of the random sampling pair-points; (c) The MLE-based
B-Spline PDFE results and (d) Bayesian driven B-Spline PDFE result with
the smooth factor ω2 = 12.

III. PROPOSED TCvBsISM
The proposed TCvBsISM consists of three stages, offline
B-spline LWCs-based image statistical feature dictionary
learning (ISFDL) phase, frequency histogram-based texture
pattern representation training (FH-TPRT) phase and online
TC (OTC) phase, displayed in Fig.3. The BsBFs-based image
statistical modeling is performed on the original pixel space
as well as on the multi-channel transform space, filtered with
the orientation and spatial-frequency selective linear filter
banks.

A. ORIENTATION AND SPATIAL-FREQUENCY SELECTIVE
LINEAR FILTERING
Three widely-used filter banks, the steerable isotropic
Gaussian derivative filter (SIGDF) [34] bank, orientation
anisotropic Gaussian derivative filter (OAGDF) [35] bank
and Gabor wavelet filter bank (GWFB) [21] are considered
for MS&MO ITSA feature representation.

1) SIGDF
SIGDFs are implemented by introducing a steerable oper-
ation on the isotropic Gaussian derivative filters (IGDFs)

with low computation complexity. Suppose a k-order GDF
template is

Gk,σ (x, y) =
k∑

m=1

m∑
i=0

Km,i
∂ i

∂x i
∂m−i

∂xm−i
Gσ (x, y) (33)

where Gσ (x, y) is the Gaussian function. As stated by Free-
man and Adelson [36], the Gaussian derivative filter (GDF)
template Gk,σ (x, y) is steerable, thus the filtering response
of image I at a special orientation θ can be expressed by the
following linear combination formula [20],

I (X) ∗ Gk,σ (RθX) =
k∑

m=1

m∑
i=0

αm,iIm,i (X) (34)

where X = (x, y)T , Rθ =
[

cos θ sin θ
− sin θ cos θ

]
is the rotation

transform matrix, Im,i (X) is the filtering response of image I
with the mixed GDFGm,i,σ with the derivative orders of i and
m-i with respect to the variable x and y respectively.

If we obtain the linear weighting coefficient αm,i, we can
achieve the filtering response at any orientation at a low
computational cost. As reported in the literature [20], [37],
αm,i is a trigonometric polynomial function of θ given by,

αm,i=

m∑
j=0

Km,j

j∑
t=0

m−j∑
l=0

(−1)lC t
jC

l
m−j(cosθ )

t+m−j−l(sinθ )j−t+l

(35)

2) OAGDF
The commonly-used two-variable elongated Gaussian kernel
function (eGKF) is given by [38]

EGσ,ρ,θ (x) =
1

2πσ 2 exp
{
−

1
2σ 2 x

TR−θ

[
ρ2 0
0 ρ−2

]
Rθx

}
(36)

where ρ is the anisotropic factor, satisfying ρ ≥ 1.
The anisotropic GDF (AGDF) is the first-order partial

derivative of an eGKF with respect to the first variable x,
and OAGDF is the rotating expression of the AGDF, which
reflects the structure variation of a texture image along the
direction θ ,

∇EGσ,ρ,θ (x) =
∂EGσ,ρ,θ (x)

∂θ

= −
ρ2 [cos θ, sin θ ] x

σ 2 EGσ,ρ,θ (x) (37)

It is worth noting that the OAGDF defined in (37) is
not steerable, hence the computation of OAGDF in a spe-
cific direction θ cannot be achieved by the linear weighting
summation of some fixed eGKF bases in analogous to the
generation of SIGDF. However, it reported that eGKF can be
decomposed into two Gaussian linear filters of nonorthog-
onal directions [35]. Thus, the recursive algorithm or com-
mon convolution operation can be applied to achieve the
filter response of OAGDF with low computation complexity,
as reported in [35].
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FIGURE 3. Overview of the proposed TCvBsISM.

3) GWFB
A commonly-used GWFB is computed as follows [39],

Gu,v(x, y) =
Kω0
√
πdκ

e
−

(
ω0
f u

)2
2d2κ2

(
d2(x)2θv+(y)

2
θv

)

·

[
ei
ω0
f u (x cos θv+y sin θv) − e−

κ2
2

]
(38)

where θv = πv/8,ω0 is themaximum frequency, and f u is the
spacing ratio among Gabor kernels in the frequency, u and v
represent the scale factor and orientation factor, respectively.
The standard deviation κ reflects the half magnitude spatial
frequency bandwidth [40], [41], with κ = 2.4653 for a
frequency bandwidth of 1.5 octave.1 The scale parameter K
is usually set as 1 so that its L2 norm < Gu,v,Gu,v >= 1.
Fig.4 displays the ensemble of the real parts and the imag-
inary parts of Gabor wavelets with spatial frequency width
of 1.5 octave.

1Based on the Gabor filter definition in (38), the relation between κ and
the half-amplitude bandwidth of the Gabor filter can be expressed as κ =
√
2 log 2

(
2φ+1
2φ−1

)
[39], [41], where φ is the bandwidth in octaves. Hence,

for φ = 1 octave, κ should be 2.0393; for φ = 1.5 octave, κ ≈ 2.4653.

FIGURE 4. Ensemble of real parts (a), imaginary parts (b) and the
magnitude (c) of the Gabor Wavelets with spatial frequency width
of 1.5 octave. The magnitudes of the Gabor filters are normalized by set
the scale parameter K = 1. The aspect ratio d of the elliptical Gaussian is
2:1 and the other parameters are set as follows, ω0 = π , f = π/2,
the filters on the three rings represents three different scale, namely,
u = 3,2,1 from outside to inside.

B. STATISTICAL FEATURE EXTRACTION
The statistical features are obtained by the LWCV of the
BsBFs-based PDF model. The ultimate statistical feature of
an image I is achieve as

fIpix =
(
αT1,Ipix ,α

T
2,Ipix

)T
(39)
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where α1,Ipix and α2,Ipix represent the LWCVs of the one-
dimensional and two-dimensional BSBFs-based PDF model.
Simultaneously, if D filters are considered for the MS&MO
characteristics representation, we can obtain D filtering
responses of image I , thus the filter banks-based statistical
feature can be expressed as

fIfilter =
(
αT1,Ifilter1 ,α

T
1,Ifilter1 , · · · ,α

T
1,IfilterD ,α

T
2,Ifilter1 ,

αT2,Ifilter2 , · · · ,α
T
2,IfilterD

)T
(40)

where αT1,Ifilter i and αT2,Ifilter i represent the one-dimensional
and two-dimensional BsBFs-based LWCVs of the filtering
responses based on the i-th filter. Hence, the statistical feature
of an image I can be expressed as

fI =
(
f TIpix , f

T
Ifilter

)T
(41)

In addition, if we partition the original image I into K
non-overlapped sub-images, the extended statistical feature,
fI_extend , can be expressed as

fI_extend =
(
f TIpix_extend , f

T
Ifilter_extend

)T
(42)

where fIpix_extend and fIfilter_extend stand for the extended
BsBFs-based statistical features of the raw pixel and the filter
bank responses respectively, given by

fIpix_extend =
(
f TIpix , f

T
Ipix,sub1

, f TIpix,sub2
, · · · , f TIpix,subK

)T
(43)

fIfilter_extend =
(
f TIfilter , f

T
Ifilter,sub1

, f TIfilter,sub2
, · · · , f TIfilter,subK

)T
(44)

where fIpix,subi records the BsBFs-based statistical feature
vector of the ith sub-image of the original image, fIfilter,subj
represents the BsBFs-based statistical feature vectors of the
jth sub-blocks of the filter bank responses of image I .

C. DETAILS OF TCvBsISM
As can be seen from Fig.3, the proposed TCvBsISM mainly
includes three phases, ISFDL, FH-TPRT and OITC phase.
Suppose there are M -class of texture patterns in the training
database, {ωi; 1 ≤ i ≤ M}, the i-the texture pattern consists
of Sωi samples, where the j-th sample is dented as Iωi,j. The
main steps of the proposed TCvBsISM can be expressed as
follows.

Stage I: ISFDL. Learn the statistical feature dictionary
(SFD), illustrated in the right of the Fig.3.
I-i). For each image Ii in the training image database,

use the BsBFs-based PDFE method to obtain
the one-dimensional and two-dimensional statisti-
cal feature of the raw pixel intensities, fIi,pix =(
αT1,Ii,pix ,α

T
2,Ii,pix

)T
.

I-ii). Prepare a multichannel filter bank filterbank =

{filterSIGDF ,filterOAGDF ,filterGWFB} to obtain the
MS&MO filter responses of image Ii, where
filterSIGDF , filterOAGDF and filterGWFB represents

the filter banks of SIGDF, OAGDF and GWFB,
respectively.

I-iii). For each filter response Ii,filterj , obtain the one-
dimensional and two-dimensional statistical features

fIi,filterj , fIi,filterj =
(
αT1,Ii,filterj

,αT2,Ii,filterj

)T
.

I-iv). Partition the current image Ii into K non-overlapped
sub-images and obtain the extended statistical feature
fIi_extend of image Ii as expressed in (42). Specifically,
if K = 0, it means the only the statistical features
of the holistic image are considered. In this work,
images are partitioned into 32 × 32 non-overlapping
sub-blocks for texture analysis.

I-v). Repeat the same statistical feature extraction steps
from I-i to I-iv to obtain the statistical feature vectors
FTraining of all images in training database, FTraining ={
fIi_extend |i = 1, · · · ,

M∑
i=1

Sωi

}
.

I-vi). Obtain the SFD DTraining based on the statistical
feature vectors of the image raw pixel space and
the filter bank response space, respectively, by the
furthest-neighbor cluster learning approach (the com-
plete linkage agglomerative clustering).

DTraining =
{
Dpix ,Dfilter

}
=
{
Dpix,1,Dpix,2, · · · ,Dpix,L ,

Dfilter,1,Dfilter,2, · · · ,Dfilter,L
}

(45)

where Dpix and Dfilter represent the textons learned
from the raw pixel space and the filtering responses
space, respectively; L denotes the number of entries of
Dpix or Dfilter. In the ISFDL, the dissimilarity between
two sets is measured by the KL-divergence and the
mean value of each cluster is achieved as an item
(texton) of SFD.

Stage II: FH-TPRT. Obtain the histogram-based texture
pattern feature representation based on the frequency occur-
rence of the learned textons, illustrated in the middle of Fig.3.

I-i). For each texture pattern ωi, obtain the extended sta-
tistical feature fIωi,j_extend of each image Iωi,j in the
data set of the texture pattern ωi by using the same
processing steps from I-i to I-iv and then achieve
the statistical feature vectors of all of images in the
training database, Fωi =

{
fIωi,j_extend |j = 1, · · · , Sωi

}
.

I-ii). Obtain the histogram representation of the texture pat-
ternωi, denoted as Hωi . We firstly label each of the sta-
tistical feature fIωi,j_extend with a closest pre-learned tex-
ton based on the nearest-neighbor method and a nor-
malized 2L-tuple occurrence frequencies histogram is
achieved.

I-iii). Repeat the steps II-i and II-ii to obtain the
histogram-based representation of all texture patterns,
H =

{
Hω1 ,Hω2 , · · · ,HωM

}
.

Stage III: OTC. Identify the texture pattern of a given
texture image, illustrated in the left part of Fig.3.
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Given a new testing image Inew, obtain its histogram
HInew representation with the same steps from II-i to II-
ii. Then Inew is labelled by the nearest neighbor classifi-
cation method by the histogram distance measurement,
ωt = argmin

t

{
distance

(
HInew ,Hωi

)
|i = 1, 2, · · · ,M

}
,

where theχ2statistics is used for distancemeasurement,
namely, distance

(
HInew ,Hωi

)
= χ2

(
HInew ,Hωi

)
=

1
2

N∑
k=1

[
HInew (k)−Hωi (k)

]2
HInew (k)+Hωi (k)

.

D. RELATIONS TO CLASSIC TEXTONS-BASED TEXTURE
CLASSIFICATION METHODS
The proposed TCvBsBFs is a member of the family of
textons-based TC methods, originally proposed in [42],
where the authors opened up the possibility of generating a
universal operational definition of textonswith the supervised
clustering learning approach. Then, flourishing variants of
the textons-based TC approaches can be found in the liter-
ature. Amongst these methods, VZ algorithm [18] and their
subsequent approaches, PATCH and PATCH-MRF [19], are
representative methods. We hereby analyze the difference of
the TCvBsISM with VZ algorithm and PATCH approaches.

The VZ algorithm also includes a textons learning stage,
a histogram-based texture pattern modeling stage and a TC
stage. In the textons learning stage, training images in each
texture pattern are firstly convolved with filter banks, e.g.,
the rotationally invariant filter bank, then the filter responses
of all images in the corresponding texture pattern are con-
catenated and aggregated for textons learning based on the
K-means clustering method. Regarding the number of textons
in the feature dictionary, it reported the experimental results
of 10 textons per class on the texture databases. Since the
entire textons space is relative large (about 10∗Nt, where Nt
means the number of texture class), as reported in the litera-
ture [42], these textons can be pruned down, e.g., retaining
100 textons, to achieve slimmer textons space by merging
centers or getting rid of those centers with too few data
assigned to them. The texture pattern is then modeled by a
discrete histogram of the learned textons, and the number of
the histogram model is directly proportional to the number of
training images in each texture pattern. Finally, a test texture
image is also represented by a histogram model, and its tex-
ture pattern category is labeled by the distance measurement
of the histogrammodels. Apparently, the discriminant feature
regarding the viewpoint, illumination and the small-scale
change of the imaged texture surface results from the abil-
ity of the filter banks. However, in the later literature [19],
it directly learned textons on the raw pixel space and use
the patch-based representation in VZ algorithm to generate
a new method PATCH. The neighboring structure, patch-
based thought is also applied in the literature [1], the dif-
ference is the latter author attempted to seek non-adaptive,
information-preserving, universal-dimensionality reduction
of texture patches for TC.

Though the dominant role of the filer banks is questioned
in the Varma and Zisserman’s literature [19], we believed that
the filter bank response information is a necessary comple-
mentary of the image raw pixel space-related ISTA character-
istics, and there is ample evidence demonstrating the strong
ability of the orientation and spatial-frequency selective filter
banks.

Hence, the first difference is that the proposed method
takes full account of both the image raw pixel space informa-
tion and the filter bank responses information. We introduced
three kinds of orientation and spatial-frequency selective fil-
ter banks, including SIGDF, obtaining the multiscale and
omnidirectional isotropic structural features, OAGDF, used to
obtain the anisotropic structures, and Gabor wavelets, which
can minimize the uncertainty of signal both in time and
frequency domain.

Another difference is that the textons in TCvBsISM are nei-
ther directly learned from the original pixel space as PATCH
nor directly learned from the filter bank responses as VZ algo-
rithm. TCvBsISM learned textons based on the probability
density models of the texture images. As summarized in the
literature [19], the success of the canonical texture research
areas, such as synthesis, classification, segmentation, com-
pression, was largely due to a fuller statistical representation,
which was the entire distribution profile representation as
opposed to some low or middle-high-order moments of the
statistical distribution. The proposed TCvBsISM employs the
B-splines-based PDFE approach to approximate the marginal
and joint distribution models of ITSA, which can make
a fuller consideration of the statistical distribution of the
raw pixel space and the filter response space, including the
marginal distribution, which can be attributed to the global
origination of the micro-structures, and the joint statistical
model, which can extract the local spatial structured char-
acteristics of ITSA. In addition, B-splines-based PDFE can
approximate any complicate distribution model without any
prior knowledge of the true distribution model. By introduc-
ing a prior smooth constraint on the PDF model, the essential
structure feature of texture images can be expressed by the
LWCs of the pre-defined BsBFs with enough high precise-
ness. Hence, the proposed TCvBsISM is not texture pattern-
specific and it canmake effective texture analysis for any kind
of texture pattern without any prior information of the true
image distribution model.

The third difference is that the textons in TCvBsISM are
not learned class by class, which are learned directly on the
stack of all training images of all texture patterns. The big
advantage of this processing fashion is it can achieve discrim-
inant textons for the successive texture pattern modeling and
representation. The class-wise learning mode achieves the
same number of textons for every texture pattern, which is not
conducive to histogram-based texture pattern representation.
For instance, the isotropic texture pattern intuitively needs
less textons than the anisotropic texture pattern to characterize
its ISTA. Furthermore, the theoretical number of textons for
best TC is also affected by the dissimilarity of different TPs,
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for instance, if all the textures look considerably different,
a small number of textons can achieve good discriminant
performance, on the contrary, if two texture patterns look very
similar, small number of textons may not have strong distin-
guishing ability, because the textons learned from similar tex-
tures will inevitably exhibit only gentle difference, which lead
to a low classification accuracy for the similar representation
of texture patterns. The class-wise textons learning cannot
effectively exhibit the intra difference of each texture pattern,
since it treats all kind of texture pattern indiscriminatingly.
The proposed TCvBsISM achieves textons by making an
integrated consideration of the texture images of all texture
patterns, the learned textons will be adaptive to intra-variation
and inter-similarity of all kinds of texture patterns, hence,
it can achieve more representative models for texture pattern
representation and classification.

IV. EXPERIMENTAL EVALUATION
A. DATA SETS AND EXPERIMENT SET-UP
Three commonly-used texture databases, the normalized
Brodatz texture database Brodatz [43], Columbia-Utrecht
Reflectance and texture database CURet [44], UIUC [45],
a 8-class outdoor natural scene categories data set (8-CONS)
[46] were used to validate the effectiveness of the proposed
TCvBsBFs method.

The small-scale Brodatz subset B24
Sc (24 classes) consists

of 24 homogeneous texture patterns from the normalized
Brodatz texture (NBT) database [43]. Images in B24

Sc were
treated as reported in literature [1].

The large-scale Brodatz data set B108
Ls (108 classes) con-

tains almost all the texture patterns in the NBT database,
except the texture patterns D14, D55, D78 and D105, since
the visual appearance of the texture pairs D14 and D16,
D53 and D55, D78 and D79, D105 and D106 are nearly the
same.

B108
Ls is a challenging testing data set, because (1) There are

a large number of texture patterns but only a small number of
training samples. (2) Some different texture patterns visually
belong to the same visual scene captured with different illu-
mination, imaging distance or viewing angles, e.g., D6 and
D14, D23 and D27, D25 and D26, D79 and D78. (3) Some
texture patterns are prone to incur visual ambiguities, e.g.,
D40 and D42, D103 and D104, etc. Some confusing texture
patterns can be seen in Fig.5.

TheCURet subsetC20
Sub (20 classes) includes 20 classes of

different texture patterns, where texture images are captured
from the real-world surface with different capturing scales,
surface height variations and orientations. The 20-class tex-
ture patterns are displayed in Fig.6.

The UIUC data set T 25
D (25 classes) includes 25 texture

patterns. The database includes surfaces whose texture is
due mainly to albedo variations (e.g., wood and marble),
3D shape, as well as a mixture of both(e.g., brick and car-
pet) [45]. In each texture pattern, images have significant
variations on scale differences and viewpoint as well as the

FIGURE 5. Some confusing texture patterns in BBB108
Ls . (a) Texture images

seem to be captured from the same scene; (b) Image captured from
different texture patterns with visual ambiguities.

FIGURE 6. 20-class CURet subset C20
Sub.

uncontrolled illumination variation. Some texture images can
be seen from Fig.7.

The natural environmental scene database N 8
out (8

classes) consists of 8 natural outdoor categories scene pat-
terns [46], coast, mountain, forest, open country, street,
inside city, tall buildings and highways. There are 2688 color
images, each of the image is 256×256 pixels. Typical image
samples can be seen in Fig.8.

FIGURE 7. UIUC data set TTT 25
D .

FIGURE 8. Images in the data set NNN 8
out .

Table 1 summarizes the related information of these data
sets used in the experiments. Only the gray value of the
texture images is considered in the TC experiments. In each
independent experiment, we randomly select a fixed number
of images as the training samples, the remaining samples as
the test samples.

B. EXPERIMENTAL VALIDATION
Three kinds of key parameters affect the classification per-
formance of the proposed TCvBsISM approach, the textons
number (L), the number of BSBFs for the one-dimensional
(M ) and two-dimensional (M , N ) PDFE, and the number of
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TABLE 1. Summary of the data sets used in the experiments.

TABLE 2. Details of data set NNN 8
out .

filters in MS&MO filter banks, mainly determined by the
derivative orders (d) and the number of the orientations (O)
and the number of the scales (S) or the choice of the scales of
the SIGDF, OAGDF and GWFB.

1) EFFECT OF THE PARAMETER OF TEXTON NUMBER IN SFD
The classification results with different texton number L is
shown in Fig.10, where L is denoted as a ratio of textons
number per texture patterns. Namely, the total number of
textons is L ×Nt , where Nt is the number of textures. As can
be seen from Fig.9, the classification accuracy (CA) increases
with the increase of L and keeps stable with relative high CA
on a certain range. Specifically, when L ranges from 14 to
18, the average CAs on the five data sets are relative higher
than both the smaller and higher value of L, and it ultimately
decreases for a sufficiently large number.

Theoretically, number L represents the richness of the
SFD. Intuitively, the larger value of the textons number, more
complicated texture patterns can be expressed and relative
higher CA will be achieved. However, the number of training
samples is limited which restricts the diversity expression of
the texture pattern. When the textons number L exceeds the
diversity expression ability of the training samples, the CA of
the proposed TCvBsISM will decrease.

Extensive experiments demonstrated that the proposed
TCvBsISM reached its best classification performance as the
L ranges in 14 to 18. Hence, we fix the textons number L
as 16 per texture pattern in the following experiments except
with a specific statement.

2) EFFECT OF THE NUMBER OF BSBFs
The number of BsBFs directly affects the fitting goodness of
the PDF and finally effects the classification performance.
Fig.10 displays the PDFE results of a testing texture image
(D27 in Brodatz database). It can be seen clearly that the

FIGURE 9. Average CA on the five data sets with different textons number
L. The number of BsBFs for the one-dimensional and two-dimensional
PDFE are 80 and (80, 80), and the parameters of the first-order SIGDF are
set as scales σ ∈

{
2,2
√

2,4,4
√

2,8
}

with 9 uniform
distributed-orientations in the [0, π ], namely, a total of 45 filters in the
SIGDF. The scale and orientation parameters of the OAGDF are set the
same as the SIGDF and the anisotropic factor ρ = 2. There 1.5 octave2

Gabor wavelet filters are adopted to generate the GWFB with 5 scales and
8 orientations and κ = 2.4653.

smaller M generate the smoother PDF model, whilst the
largerM results in the complicated PDF model.

The goodness of the estimated probability density model
was tested by the one-sample Kolmogorov-Smirnov(KS) test
method. In this work, extensive numeric KS statistics have
demonstrated when the number of BsBFs is larger than 40,
the BsBFs-based PDFmodel on any test database can pass the
KS test. Hence, the number of the BsBFs for precise enough
PDFE should be larger than 40.

Without doubt, the larger number of BsBFs, the com-
plicated PDF model will be achieved. However, the larger
number of BsBFs may not mean the better classification
performance, because the larger BsBFs number would bring
about the unstable and complicated PDFE results, which
would consequently have an adverse impact on the following
texture pattern representation and texture classification.

We conducted 30 independent trails with the same param-
eter setting rule on the five data sets, the average CAs with
the standard deviations of the proposed TCvBsISM method
with different BsBFs numbers are displayed in Fig.11. The
parameters of the MS&MO filter banks are set up the same
as experiments in Fig.9 and the textons number L stays for
16 per texture pattern for every data set.

As can be seen from Fig.12, given the fixed parame-
ters except of the BsBFs number M , the CAs don’t always
increase with the increasing of the BsBFs number.WhenM is
over a certain value (about 65), CAs will decrease. The exper-
imental results are generally consistent to our speculation
that unstable or complicated PDFE results would generate
an adverse impact on TC. However, CAs on data sets, T 25

D
and N 8

out , will improve again when the BsBFs number M

2The vivo biological experiments have demonstrated that the half magni-
tude spatial frequency widths of most simple cells in the visual cortex have
a half magnitude spatial frequency width between 1 and 1.5 octaves, with a
median of 1.4 octaves [41].
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FIGURE 10. BSBFs based PDFE of texture image D27 and its filter
responses (FRs) with SIGDF of different derivative orders and the filter
response amplitude (FRA) of a Gabor filter, where G30◦

1,3 represents the

first-order GDF of the orientation of 30◦, G120◦
3,3 stands for the third-order

GDF of orientation of 120◦ in the counter-clockwise direction, GGabor
2,5 is

the Gabor wavelet filter of the subband (u, v ) = (2,5) in (38). (a) BSBFs
based 1-D PDFE. (b) BSBFs based 2-D PDFE.

increases to a relative large value (in the experiment, it is
bigger than 120). The reason for this result mainly results
from the difference of the numbers of the training samples.

FIGURE 11. CAs (%) on the five data sets with different number of BsBFs.

The first three test data sets, B18
Sc , B108

Ls and C20
Sub, have

fewer training samples than the last two data sets, T 25
D and

N 8
out . Hence, when the complicated or unstable PDFE results

achieved due to a relative large BsBFs number, the adverse
effect will be alleviated by the increasing training samples
and it can be expected that when the training samples is
sufficient, a relative larger BsBFs number (however, it should
not be too large, whichwill bring about unstable PDFE results
and leads to too many LWCs adverse to the following texture
pattern representation and classification) would achieve bet-
ter classifier performance at a certain extend. However, when
the training samples is limited, just like the experiments in
this work, the proper BsBFs number should be ranged from
50 to 70 as displayed in Fig.12.

3) EFFECT OF THE SETTING OF FILTER BANKS
The generation of the MS&MO filter banks is theoretically
another great impact factor to the classification performance.
To facilitate description, we used G1, G2 and G3 represent
the first-order, second-order and third-order SIDGFs, respec-
tively, where Gi =

{
Gθi,σ |1 ≤ i ≤ 3, σ ∈ σ , θ ∈ θ

}
. And

we denote ∇EG =
{
∇EGσ,ρ,θ |σ ∈ σ , θ ∈ θ , ρ ∈ ρ

}
as the

OAGDF and Ggabor = {Ggaboru,v |u ∈ {0, 1, · · · ,U − 1},v ∈
{0, 1, · · · ,V − 1}} as the GWFB.

Table III displays the CAs of TCvBsISM with dif-
ferent combinations of the filter banks, where the scale
parameter σ of the SIGDF and the OAGDF are set as
σ =

{√
2, 2, 2

√
2, 4, 4

√
2, 8

}
, the orientation parame-

ter θ =
{
0, π90 ,

2π
90 , · · · , π

}
, the anisotropic factor ρ =

{2, 3, 4, 5, 7, 9}. 40 Gabor wavelet filters under 5 scales and
8 orientations with κ = 2.4653. The number of BsBFs for
the one-dimensional and two-dimensional PDFE are 60 and
(60,60). In Tab.3, None means only the raw pixel are consid-
ered for texture feature extraction, Com1 means the combi-
nation of the all the first-order, second-order and third-order
SIGDF.

As can be seen from Tab.III, the proposed TCvBsISM
can achieve quite high and stable CAs on the five data sets.
Especially, when it considers the ITSA features of both the
image raw pixel space and the filter response space of the full
combination of SIGDFs, OAGDFs and GWFB, the average
CA on the small scale Brodatz data set B18

Sc is nearly 99%
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TABLE 3. CAs (%) with different combination of filter banks(FBs).

with low fluctuation (reflected by the standard derivation of
the 30 independent trails, as low as 0.89 in percentile). The
best CA on the challenging data set B108

Lc is over 96%, which
is a promising classification result comparing with the state-
of-the-art methods in terms of the confusing visual texture
patterns existing this testing data set. The best average CA on
C20
Sub and T 25

D are both over 98%. The accurate identification
of the texture pattern in data sets C20

Sub and T 25
D are also

challenging tasks since the great inter-similarities existing
on the different texture patterns, though the texture pattern
numbers in these two data sets are not as large as that in B108

Lc .
The proposed method can also achieve good classification
performance on the natural environmental scene data set,
N 8

out , which is over 94% though the images in a specific scene
exhibit dramatically variant ITSA due to the great variability
in albedo, illumination, camera and viewing position, etc.

In all, the proposed TCvBsISM can achieve relatively good
CAs because of the full consideration of the global organiza-
tion and the local structural layout of the ITSA. The global
and local structural features of texture images are transformed
to the LWCV of the pre-fixed BSBFs, which can effectively
obtain the essential visual structural feature of the texture
image and is beneficial to the statistical feature dictionary
learning and pattern representation.

C. COMPARATIVE EVALUATION
We compared TCvBsISM with six classic TC meth-
ods, GLCM [22], Gabor wavelet transform (GWT) [22],
Multi-resolutionMarkov randomfield (MRMRF)model [47],
VZ algorithm [18], PATCH [48], PATCH-MRF [48] and six
more recent methods including Random-Projection (RP) [1],
FbLBP [13], LBPDTCWT [11], LETRIST [49], SWM [50]
and PRICoLBP [10]. Details of these methods are expressed
as follows.

GLCM [22], [51]. It characterizes texture structures by
calculating how often pairs of pixel intensity in a specified
spatial relationship occur by generating GLCMs. Based on
each GLCM, 14 statistical measures can be computed. The

extended GLCM-based texture analysis approach, termed
multi-scale GLCM, as reported in [22], is taken for compar-
ison.

GWT [22]. It applies the Gabor wavelet transform with
5 scales and 8 directions on the texture image and we
obtain 40 subbands, then a total of 80 parameters including
the mean and variance of the energy spectrum of each Gabor
subband are computed to constitute the Gabor texture feature
vector.

MRMRF [47]. A 3-layer Haar wavelet decomposition is
applied to construct the multiresolution image representation
firstly, and then the MRF model in each decomposition sub-
band is established. Each subband image is modeled with
4 non-zero MRF model parameters. For the 9 detailed sub-
bands, a total of 36 parameters can be obtained. At the same
time, 10 wavelet energy signatures (including the lowpass
subimage energy signature) are collected. Hence, we can
obtain 36 + 10 parameters to generate the MRMRF feature
vector. If we divided the image into nonoverlapped subimages
of 32 × 32 pixels and each subimage is processed the same
as an independent image.

VZ algorithm [18]. Texture pattern is represented by the
joint distribution of image filtering responses (MR8 filter
bank is used in the experiments, since it achieves the best clas-
sification accuracies as reported in the original literture [18]))
The distribution is represented by the frequency histogram of
filter response cluster centers (textons) of the filter resposnes.

PATCH [19]. Raw pixel intensities of local patches from
the selected training images in a texture class are aggregated
and clustered. The set of cluster centers from all the classes
comprises the texton dictionary. Both the training and the
testing is performed in the patch domain. The classification
is still achieved by nearest neighbor classifier with the χ2

statistic.
PATCH-MRF [19]. A texture image is represented by a

two-dimensional histogram: one dimension for the quantized
bins of the patch center pixel, the other dimension for the
learned textons from the patch with the center pixel excluded.
As reported in [19], it chooses 200 bins for the central pixel
with 10×NTP textons, which can achieve relative better per-
formance, where NTP means the number of texture patterns.
RP [1]. It also a patch-based texture classification

approach and implemented directly in the compressed
domain based on the random projection for dimension reduc-
tion of the loach patches. The only difference bewtten the
PATCH method is the random measurements are used as
feature for compressed dictionary learning.

FbLBP [13] is a LBP-extended texture feature analy-
sis approach. The texture features are extracted as follows.
Firstly, the difference vector of the local patches based on the
traditional LBP approach is decomposed into sign part and
magnitude part, the sign part is described by conventional
LBP, while the magnitude part is described by two features
of the mean and the variance of the magnitude vector.

LBPDTCWT [11]. The local feature of a texture pattern
is represented by the classic LBP feature by applying the
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dual-tree complex wavelet transform (DTCWT) and the
global texture features are extracted the energies of the
DTCWT coefficients on the detail subbands of the log-polar
(LP) transform image. Finally, the local feature histograms
and the global energy-based feature of all the subbands can
be concatenated to generate the fused texture feature.

LETRIST [49]. It is also a histogram-based texture feature
representation that encodes the joint information within an
image across feature and scale spaces.

SWM [50]. It encodes the class-specific local organiza-
tions of image directions (LOIDs) based on steerable circular
harmonic wavelets(CHWs).

PRICoLBP [10]. It is an extended LBP feature. According
to the processingmethod reported in literature [10], it extracts
six co-occurrence patterns from three scales and two orien-
tations and thus achieve a 2 × 3 × 590-dimensional feature
vector.

TCvBsISM. Both the statistical features of the original
pixel intensity space and the filter bank responses space are
considered. In the comparative experiments, the full combi-
nation of the three filter banks are applied, and the parameters
are set as the experiments in Tab.III.

TABLE 4. CAs (%) of the comparative texture classification methods on
the first Four data sets.

The CAs on B24
Sc , T 25

D , C20
Sub and B108

Ls are shown in Tab.IV,
where the classification results of the twelve comparative
methods are quoted the best results(with different parameter
setting) directly from the published papers as denoted in the
last column. The classification results of GLCM and GWT
method on the data set B24

Sc , marked with plus, means there
is a little difference of the data set between this work and
the published paper [22]. In [22], the number of the texture
patterns used for experiments is 32, but the size of the image
is smaller as 64 × 64. The numbers followed the CAs in the
brackets are the standard deviations of the repeated replace-
ment experiments. The numbers in the brackets followed
TCvBsISM stands for the number of the textons of each
texture pattern learned in the propose method.

As can be seen from Tab.IV, the proposed TCvBsISM can
achieve CAs of 98.80%, 96.20%, 98.72%, 98.04% on average
base on the 30 independent experiments with the textons

TABLE 5. CAs (%) of the comparative texture classification methods on
the challenging data sets NNN 8

out and BBB108
Ls .

number of 16 per texture pattern on the first four data sets,
B24
Sc , B108

Ls , C20
Sub and T 25

D . Compared with the classic and the
more recent TC methods, TCvBsISM outperformances all
of them on these two data sets, T 25

D and C20
Sub. Seemingly,

LBPDTCWT can achieve the highest CA on the data set
B24
Sc . However, B24

Sc is a small-scale data set and the visual
appearances of different texture patterns look different, hence
almost all the state-of-the-art methods can achieve satisfac-
tory classification results. Abundant literature reports have
demonstrated that almost all the state-of-the-art method can
achieve high CAs (generally higher than 96%) and signif-
icantly higher than the early classic TC methods, GLCM,
GWT and MRMRF. For instance, the proposed method can
also achieve as high as 98.80%on averagewith a low standard
deviation based on this data set. However, the comparative
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TABLE 6. Comparison of the Highest classification performance on data sets NNN 8
out .

method LBPDTCWT achieves much lower CA on data set
C20
Sub based on the original literature reports of this method.

Hence it indicates that performance of this TC method is
vulnerable, which is a data set-specific method. Analogically,
PRICoLBP can achieve higher CA on data set B108

Ls but it did
not perform well on the data set T 25

D . Whereas the proposed
method TCvBsISM can achieve relative high CAs on all the
first four data sets.

In terms of the aforementioned description of these testing
data sets, B108

Ls and N 8
out are two challenging data sets. B108

Ls
includes a large number of texture patterns, but the sample
number is relative small. Even worse, some different texture
pattern exhibit very similar visual appearance. N 8

out is com-
prised of the natural outdoor scene patterns. Due to the large
intra-variation resulting from the uncontrollable illumination
change and the viewing points of the camera, N 8

out is also
a challenging testing data set. Hence, we mainly concern
the classification performance of these comparative methods
on these two data sets, B108

Ls and N 8
out , of the following

experiments.
In the following comparative experiments, we use the iden-

tical TC framework of the proposed method TCvBsISM for
all the comparative TC methods (six classic and six more
recent TCmethods). In other words, we carry out three stages,
including dictionary learning, histogram-based texture pat-
tern representation and texture pattern classification, for all
of these methods, except that, instead of using the statistical
distribution model parameter feature of the proposed method,
these comparative TC methods use their own texture feature
and all the other parameters of different TC methods stay the
same in the experiments. The textons number in the statistical
feature dictionary is set ranging from 14 to 18 per texture
pattern. Each texture pattern is modeled by the occurrence
frequencies (normalized histogram) of the learned textons.
The CAs on the data sets, B108

Ls and N 8
out , are reported in

Tab.V, where L means the number of textons per texture
pattern.

As can be seen fromTab.V, TCvBsISMcan achieve the best
CA on the challenging data set B108

Ls as high as 96.02% with
the textons number of 16 per texture pattern on average, which
is apparently superior over the other comparative methods
with the same parameter setting. Though PR method can
achieve a little higher (higher about 0.58% on average) CA
on B108

Ls with the textons number of 18 per texture pattern,
which underperforms on data set N 8

out (lower 3.53% than
the proposed method on that data set). The superior classi-
fication results of the proposed method TCvBsISM mainly
due to the elaborate texture pattern representation, including
the B-spline-based marginal and joint probability distribution
estimation, the joint information exhibition both on raw pixel
space and the filter response space and the joint textons

distribution-based texture pattern representation, which can
effectively approximate any ITSA for texture pattern classi-
fication without any prior knowledge of the texture pattern.
Thus the proposed method TCvBsISM has strong discrim-
inant ability of the visually confusing texture patterns and
achieve higher classification performance on the testing data
set.

Besides the pure texture data bases, TCvBsISM can also
achieve better classification results (TCvBsISM gives the
highest classification, reaching as high as 95.02%) on the
natural scene database N 8

out according to the classification
results displayed in Tab.V. To facilitate performance compar-
ison, Table VI summarizes the preceding table, presenting
the overall best classification performance achieved by each
method on data set N 8

out for any parameter setting.
The natural scene classification is a much more complex

issue because: (1) There are thousands of scenes exist in
nature. (2) The surface appearance of the captured images is
unpredictable with the unknown and unpredictable illumina-
tion, viewpoint, and the imaging distance and so on. Hence,
even for a specific natural scene, e.g., street, the captured
images will exhibit great intra-variation. TCvBsISM can well
fit anymarginal and joint distribution of texture images for the
global and local visual characteristics representation, hence it
can achieve much higher CAs on this natural scene data set..

V. CONCLUSIONS
This paper presents TCvBsISM, a B-spline PDFE-based TC
scheme, which converts the representation of the complicated
ITSA into the estimation of the LWCs of the pre-defined
BSBFs. The proposed TCvBsISM approach can achieve
promising classification performance on the identification
of the visually similar texture images with limited training
samples mainly results from the following aspects:

(1) TCvBsISM fully considers the basic features of the
global organization and the local spatial structural exhibition
of LHPs in texture image, which are believed to be the
essential factor to determine the ITSAs of different texture
patterns.

(2) It demonstrated that the global organization and the
local spatial structural characteristics of LHPs are boiled
down to the 1-D and 2-D probability distribution models,
respectively, which are approximated by the BSBFs-based
PDFE, rather than the ESMs or some low or middle-high-
order moments of the statistical distribution. Corresponding
LWCs are determined by an entropy-based optimization cri-
terion with a prior smooth constraint over the LWCs. Hence,
TCvBsISM is not texture pattern-specific and it can make
effective texture analysis for any kind of texture pattern with-
out any prior knowledge of the image distribution.
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(3) Texture pattern is modeled by the joint probability dis-
tribution of B-spline statistical feature-based textons, which
has taken advantage of the merits of the-state-of-the-art
TC classification methods, e.g., VZ algorithm and PATCH
method. Both the raw pixel space information and filter
response space information are considered comprehensively
and the patch-based texture pattern modeling is adopted.
Hence it is easy to implement and can achieve higher and
more stable classification accuracy.
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