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ABSTRACT Accurate segmentation of coronary arteries in X-ray angiograms is an important step for the
quantitative study of coronary artery disease. However, accurate segmentation is a challenging task because
coronary arteries are thin tubular structures with relatively low contrast and the presence of artifacts. In this
paper, a novel deep-learning-based method is proposed to automatically segment the coronary artery from
angiograms by usingmultichannel fully convolutional networks. Since the artifacts appear in both live images
(after the injection of contrast material) and mask images (before the injection of contrast material) and the
blood vessels appear only in live images, we take themask images into consideration to distinguish real blood
vessel structures from artifacts. Therefore, both live images and mask images are used as multichannel inputs
to provide enhanced vascular structure information. The hierarchical features are then automatically learned
to characterize the spatial associations between vessel and background and are further used to achieve the
final segmentation. In addition, a dense matching between the live image and mask image is processed for
a precise initial alignment. The experimental results demonstrate that our method is effective and robust for
coronary artery segmentation, compared with several state-of-the-art methods.

INDEX TERMS
Coronary artery, fully convolutional network, dense matching, U-net.

I. INTRODUCTION
X-ray angiography is the most common image modality
applied in the clinical diagnosis of coronary artery dis-
ease (CAD) due to its powerful ability to perspectively
inspect the vascular structure of the coronary artery [1], [2].
An increasing number of studies have demonstrated that
the accurate segmentation of the vascular structure from
angiograms can assist doctors in diagnosis and treatment
planning. However, X-ray angiography also brings some
unavoidable imaging problems, such as low contrast, motion
artifacts caused by heart beating and respiration, and integra-
tion effects of the catheter and spine in the angiograms [3].
These problems make accurate segmentation of the vascular
structure a challenging problem for the objective diagnosis
of CAD.

To extract the vascular structure, the traditional seg-
mentation methods usually focus on specific image
filters [4]–[9], tracking operators [10]–[12] and optimiza-
tion models [13]–[16]. The specific image filters, including
wavelets [4], Gaussian filter [6], Gabor filter [7], and Hessian
matrix [8], are employed to enhance the tubular structure
in vascular images while suppressing the background area.
Then, the threshold-based classification methods can sim-
ply and quickly achieve blood vessel segmentation on the
enhanced images. The tracking methods [10]–[12] start with
some chosen seed points marked in the blood vessel and
then iteratively connect them based on topology to obtain a
complete vessel. Additionally, the active contour model [13],
region growing model [14], graph cut model [15], and con-
ditional random field model [16] are the most popular
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optimization models applied to determine the boundary of
the segmented vascular structures by maximizing the feature
differences. However, these traditional segmentationmethods
generally require complicated preprocessing steps, e.g., spec-
ifying regions of interest (ROIs), to guide the segmentation
procedure. Moreover, their performances are often influ-
enced by the low quality of X-ray angiograms and motion
artifacts.

Recently, deep convolutional neural networks (CNN) have
shown outstanding performance in various natural and med-
ical image computing tasks, such as image recognition [17]
and semantic segmentation [18], [19]. The CNN model has
also been applied to vessel segmentation, especially retinal
vessel segmentation [20]–[22]. All the methods are imple-
mented via a patch-based learning strategy, i.e., CNN is
used as a classifier to classify whether a center point from
a selected patch belongs to the vessel region. Rather than
taking only a local patch with limited size into considera-
tion, fully convolutional networks (FCN) [18], [19] combine
the global semantic information with local details to effi-
ciently produce end-to-end segmentation by using advanced
encoder-decoder architectures on full-size images. Existing
FCNmodels in the literature [23] have achieved great success
for the segmentation of neuronal structures. However, when
these state-of-the-art methods are applied to angiograms,
they perform poorly in regions that are visually similar
to vessel regions, such as artifacts and catheters. There-
fore, segmentation by using only one source of information
(e.g., original images), may not be sufficient to effectively
distinguish real vascular structures from artifacts in
angiograms.

For this reason, a multichannel fully convolutional neu-
ral network is proposed in this paper for automatic seg-
mentation of coronary arteries in X-ray angiograms. As an
extension of the original FCN, the proposed method applies
convolution, pooling, and deconvolution operators to achieve
end-to-end segmentation. Specifically, it adopts multichan-
nel inputs to provide both live images (after the injection
of contrast material) and mask images (before the injec-
tion of contrast material) for precise identification of the
highlighted area of a coronary artery based on the differ-
ences. In addition, the motion between the live image and
mask image caused by heart beating and respiration is cor-
rected by hierarchical matching the correspondence between
the images. The experimental results on 148 X-ray angio-
graphic image sequences demonstrate the superior perfor-
mance of the proposedmethod comparedwith state-of-the-art
methods.

The remainder of this paper is organized as follows.
Section II.A proposes the multichannel inputs in the proposed
FCN framework; Section II.B presents the network architec-
ture; Section II.C introduces the matching method for the live
and mask images; Section II.D introduces the preparation of
the training data. Section III presents the experimental results,
followed by a discussion of future directions and applications
in Section IV.

II. METHOD
A. MULTICHANNEL INPUTS
Many CNN-based vessel segmentation methods adopt a
patch-based classification strategy [20]–[22] that regards
blood vessel detection as a pixel-wise binary classification
problem. The trained CNN classifier estimates whether the
center position of a patch is in a coronary artery or not.
As a result, the limited range of the local patch trans-
forms the segmentation into several independent problems
for each pixel, and the segmentation results may be discon-
tinuous and noisy. To take the global semantic information
into consideration, the FCN-based [18], [19] segmentation
model [23] introduces an encoder-decoder architecture for
end-to-end segmentation. However, artifact regions and
catheter regions are very similar to the vessel regions in
angiographic images, and this similarity may lead to incor-
rect classification in these regions. A set of examples is
shown in Fig. 1, where Fig. 1 (a) presents a live image
with clear vascular structure. Fig. 1 (a1)-(a4) show four
zoomed regions on the live image that represent an artifact
region, diaphragm region, catheter region, and real vessel
region, respectively. Tubular structures are present in all four
zoomed images, so they are all likely to be considered to be
potential vascular structures if the only reference is the live
image.

Hence, we propose multichannel-input-based FCN
to address this limitation, inspired by digital sub-
traction technology [24], [25]. The mask image shown
in Fig. 1 (b) is selected from the same angiographic image
sequence of Fig. 1 (a), where Fig. 1 (b1)-(b4) corre-
spond to Fig. 1 (a1)-(a4). The three fake vessel regions
Fig. 1 (b1)-(b3) are highly similar to the live image
Fig. 1 (b1)-(b3), whereas the real vessel regions in Fig. 1 (b4)
and Fig. 1 (a4) are completely different because the live and
mask images were taken before and after injection of the
contrast material, respectively. Significant differences occur
in the regions of vessel, while the background remains consis-
tent, except for heartbeat and respiratory motion. Therefore,
we introduce an image registration method for the live and
mask images in Section II.C to obtain the aligned mask image
shown in Fig. 1 (c). Clearly, Fig. 1 (c1)-(c4) are aligned to
the position of Fig. 1 (a1)-(a4), especially Fig. 1 (c2). Then,
Fig. 1 (a4) is easily identified as the real vessel region, while
Fig. 1 (a1)-(a3) are fake vessel regions. Therefore, in the
proposed method, the aligned mask image is also fed into
the FCN model with the live image as multichannel inputs to
obtain a better segmentation result.

B. NETWORK ARCHITECTURE
Fig. 2 shows the architecture of our proposed network, which
is a variant FCN model [18], [19], including multiple convo-
lutional layers, max pooling layers, deconvolutional layers,
and fully convolutional layers, just like U-net [23]. In the
encoder path, the multichannel inputs first go through the
64 channels of the 3 × 3 convolutional layer with zero
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FIGURE 1. Example patches from the live image, mask image, and aligned mask image. (a) Live image. (b) Mask image.
(c) Aligned mask image. (a1)-(a4) Zoomed patches from the artifact region, diaphragm region, catheter region, and real
vessel region. (b1)-(b4) Corresponding zoomed patches of (a1)-(a4) in the mask image. (c1)-(c4) Corresponding zoomed
patches of (a1)-(a4) in the aligned mask image.

FIGURE 2. Architecture of the proposed deep learning network.

padding (stride of 1), followed by rectified linear unit (ReLU)
activation [26]. After these two convolutions, a 2 × 2 max
pooling layer is connected to downsample the feature maps.

The same process is repeated three times to reach the lowest
resolution level, and the channel number is doubled during
each downsampling.
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Symmetric to the encoder path, the decoder path increases
the resolution level three times by using a 2 × 2 deconvo-
lutional layer. Similar convolutional layers with ReLU acti-
vation are performed twice in each resolution level, and the
channel number is halved during each upsampling. Since
the up sampling deconvolutional layer loses the sharpness of
the feature maps, at each resolution level, a concatenation
operator is included to fuse the upsampled feature maps
with the same level feature maps obtained from the previous
encoder path. Then, both the global contextual information
from the low-level features and the spatial details from the
previous convolution guide the precise segmentation. The
final segmentation map is achieved by a 1 × 1 fully con-
volutional layer and sigmoid activation. The coefficients of
the network can be learned using the training images with
ground-truth segmentations (achieved by the data preparation
method described in Section II.D) of the coronary arteries.

C. MATCHING OF LIVE AND MASK IMAGES
Mask images are widely used in angiography subtraction,
as they usually have similar backgrounds to those of the
live images [24], [25]. However, as live and mask images are
acquired at different times, considerable displacements exist
between them, as shown in Fig. 1 (a2) and (b2). To address the
displacements, the hierarchical deformable dense matching
method [27] is used to generate the matching correspon-
dences between the live and mask images; then, the aligned
mask images are registered to the live images, as shown
in Fig. 1 (a2) and (c2).

Hierarchical deformable dense matching [27] is a general
matching framework that allows robust determination of the
dense correspondences between two images. The algorithm
consists of two major steps. First, the multilevel correlation
maps, which indicate the similarity scores between the mul-
tisize local patches of a feature point from the live image
and each position in the mask image, are calculated by a
bottom-up strategy. Second, a top-down strategy is used to
estimate the movement of the feature points by iteratively
maximizing the similarity scores in multilevel correlation
maps. This process is also guided by the motion information
obtained from a level higher than the current one (except the
top level).

D. TRAINING DATA PREPARATION
148 angiography image sequences are included in this study.
We choose one pair of live and mask images from each
sequence to form 148 image pairs. The resolution of the
images is 512 × 512. All the live images were segmented
manually by experts from the collaborating hospital to form
the ground truth. In total, 130 pairs of angiograms are taken
as the training set and the other 18 pairs are chosen as the
test set.

Since only a few manually annotated images are avail-
able for training, data augmentation is necessary to teach
the network the desired invariance and robustness proper-
ties. In the case of different imaging positions, we randomly

choose 9 sets of rotation and translation invariance for each
pair of images to obtain 1300 pairs of images, including the
original images. In addition, random elastic deformations of
the training samples appear to be the key concept to train a
segmentation network with very few annotated images [23].
Hence, we generate 3 random smooth deformations on each
image pair to obtain 5200 pairs of images for training by using
random displacement vectors on a coarse 3× 3 grid.

III. EXPERIMENTAL RESULTS
In this section, we first present the experimental settings and
the competing methods, then evaluate the effectiveness of
the improved network proposed in this paper, and finally
compare the segmentation results achieved by different
methods.

A. EXPERIMENTAL SETTINGS
Asmentioned in Section II.D, there are 130 pairs of manually
annotated angiograms taken as the training set and 18 pairs of
angiograms chosen as the test set. Each angiographic image
is 512 × 512 pixels with 256 gray levels. The network is
implemented using Caffe [28] and optimized using SGD [29]
using a computer with a single GPU (i.e., NVIDIA GTX
1080 8GB). We set the initial learning rate to 1e-2, and
multiply it by 0.5 after every 10000 steps.

To quantitatively compare the segmentation performance
of our method with that of state-of-the-art methods, we use
various evaluation metrics. First, for the segmentation result,
true positive (TP) denotes the number of predicted vascular
pixels inside the ground-truth vascular segmentation; false
positive (FP) denotes the number of predicted vascular pixels
outside the ground-truth vascular segmentation; true nega-
tive (TN) denotes the number of predicted background pixels
outside the ground-truth vascular segmentation; false nega-
tive (FN) denotes the number of predicted background pixels
inside the ground-truth vascular segmentation. The accuracy
(Acc), Sensitivity (Sen), Specificity (Spe), Precision (Pre),
and F1-score are defined as:
Acc =

TP+ TN
TP+ TN + FP+ FN

, Sen =
TP

TP+ FN

Spe =
TN

TN + FP
, Pre=

TP
TP+FP

, F1=
2·Pre·Sen
Pre+Sen

(1)

The above five indicators range in [0, 1], and the larger the
score, the better the segmentation.

B. COMPETING METHODS
In this paper, we propose a multichannel input segmentation
network for X-ray angiograms based on the U-net structure.
Two models are trained by the prepared training data, one
with the live and mask images, named multichannel seg-
mentation network (MSN), and the other with the live and
the aligned mask images, named multichannel segmentation
network with aligned inputs (MSN-A), which is the final
version of the proposedmethod. To evaluate the segmentation
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FIGURE 3. Illustration of the segmentation results achieved by different
networks. (a1) Live image. (a2) Mask image. (a3) Aligned mask image.
(a4) Subtraction image of the live image and the aligned mask image.
(a5) Segmentation result by U-net. (a6) Segmentation result by MSN.
(a7) Segmentation result by MSN-A. (a8) Ground truth of segmentation.
(b1)-(b8) The images from LCA, corresponding to (a1)-(a8) from RCA.

performance, four baseline methods are chosen as compet-
ing methods, namely, the conditional random filed (CRF)
method [16], LevelSet method [9], CNN method [20], and
original U-net method [23]. These four competing methods
are briefly introduced as follows.
1) CRF [16]: CRF is an extensively used image segmen-

tation method. In this method, image segmentations are
mapped to graphs, where each pixel represents a node,
and every node is connected with an edge to its neigh-
bors according to a certain connectivity rule [30]. Then,
energy minimization helps to achieve the segmentation
based on the graphs.

2) LevelSet [9]: The LevelSet model combines both line
and edge detection using quadrature filters across multi-
ple scales. The filter result gives well-defined vessels as
linear structures, while distinct edges facilitate a robust
segmentation.

3) CNN [20]: CNN is used as a classifier to classify
whether a center point from a selected patch belongs
to the vessel region on the live images. To train the
CNN model, the same training data (Section II.D) are
included to extract the training patches following the
method in [20].

4) U-net [23]: The original U-Net is also an encoder-
decoder-architecture-based FCN model that uses only
live image, instead of multichannel inputs. For fair com-
parison, all the training settings (Section III.A) are con-
sistent with those of the proposed method.

FIGURE 4. Zoomed illustration of the segmentation results achieved by
different networks. First column: Segmentation result by U-net. Second
column: Segmentation result by MSN. Third column: Segmentation result
by MSN-A. Different rows of images show zoomed vessels in different
regions, in which black, white, red, and green regions indicate TP, TN, FP,
and FN, respectively.

C. EFFECTIVENESS OF THE IMPROVED NETWORK
In this subsection, we compare the proposed MSN and
MSN-A to the original U-net model to evaluate the effec-
tiveness of the improved network, especially with the
multichannel inputs and matching method for the live
and mask images. Fig. 3 presents two sets of segmen-
tation results on the left coronary artery (LCA) and
right coronary artery (RCA). First, the aligned mask
images (Fig. 3 (a3) and (b3)) effectively reduce the inter-
ference of the motion caused by heart beating and respi-
ration between the live images (Fig. 3 (a1) and (b1)) and
the mask images (Fig. 3 (a2) and (b2)). Fig. 3 (a4) and (b4)
show the subtraction images of the live images and
the aligned mask image, and they give a rough vas-
cular enhancement but cannot achieve accurate binary
segmentation. Fig. 3 (a5)-(a8) and (b5)-(b8) illustrate the
segmentation results achieved by U-net, MSN, MSN-A and
the manually annotated ground truth, respectively. In these
figures, three salient regions, namely the catheter, vessel-like
artifacts, and difficult to detect thin vessels, are marked
with blue, green, and red arrows, respectively. Compared to
U-net, the proposedMSN andMSN-A effectively identify the
catheter (blue arrow) as a non-vascular region. Additionally,
MSN-A achieves the most accurate vascular segmentation
in the thin vessel region (red arrow) and the strongest noise
removal ability in the artifact region (green arrow).

We also quantitatively evaluate the accuracy of the seg-
mentation results based on the ground truth manually anno-
tated by experts, as shown in Table 1. By comparing the
results obtained by MSN with those obtained by the original
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FIGURE 5. Illustration of the segmentation results achieved by CRF, LevelSet, CNN, U-net, and the proposed MSN-A; the four rows indicate four sets of
results.

TABLE 1. The average segmentation performance, in terms of Pre, Sen,
Spe, Acc and F1-score, obtained by U-net, MSN, and MSN-A for the ten
testing images.

U-Net, we observe that multichannel inputs are beneficial for
improving the performance of U-Net (i.e., average F1-score
is improved from 0.8203 to 0.8402). Furthermore, by incor-
porating the image registration method, MSN-A achieves the
best performance (i.e., average F1-score is improved from
0.8402 to 0.8725). This result demonstrates that it is possi-
ble to effectively improve the segmentation performance by
using live images and aligned mask images as multichannel
inputs.

A more detailed view of the segmentation results is shown
in Fig. 4. The FP region (red) and the FN region (green)
are the smallest in the segmentation result of the MSN-A
method. Compared to the rough edges and clutter noise in the
segmentation results of U-net and MSN, the results obtained
by our MSN-A method have smooth edges and fine vascular
segmentation detail.

To evaluate the sensitivity of the segmentation of tiny
vascular structures, we divided the vascular regions into

TABLE 2. The average Sen value of the segmentation performance on
vascular regions with different thickness obtained by U-net, MSN, and
MSN-A.

three types according to the size of the radius (i.e., large:
the radius is larger than 5 pixels; medium: the radius is in
3 to 5 pixels; small: the radius is smaller than 3 pixels). The
average Sen value is calculated for the segmentation results,
as shown in Table 2. The results show that the Sen value
of the three methods was relatively close in the area of the
large vessel regions, while the advantages of the proposed
MSN-Amethodwere obvious in the small andmedium vessel
regions, i.e., the Sen value increases from 0.8347 to 0.9211
for medium vessels and from 0.7231 to 0.7678 for small
vessels.

D. EVALUATION ON SEGMENTATION RESULTS
After verifying the effectiveness of the improved network,
the comparison of its performance with the state-of-the-art
methods is given in Fig. 5. The first column of Fig. 5 shows
four live images from the testing data; the second to sixth
columns show the segmentation results obtained by CRF,
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FIGURE 6. More results from our proposed method. First column: original
live images. Second column: ground-truth segmentations. Third
column: the segmentation results obtained by the proposed MSN-A
method. Fourth column: the color maps of the segmentation errors,
where black, white, red, and green regions indicate TP, TN, FP, and FN.

LevelSet, CNN, U-net, and the proposed MSN-A method,
respectively; and the last column shows the ground-truth
segmentations of the angiograms. Overall, all methods can
segment most of the vascular regions. However, they per-
form very differently in the artifact regions. The CRF, CNN
and U-net methods perform poorly in removing catheter and
sparse artifacts, as these regions are very similar to the vas-
cular regions. The LevelSet method and our method perform
well in removing both catheters and artifacts, but the LevelSet
method does not perform well in extracting vascular details.
Moreover, the LevelSet method requires many seed points
that are carefully selected in the vascular regions by manually
labeling. By contrast, our method is fully automatic and free
of parameter tuning. Additionally, the automatic segmenta-
tions obtained by the proposed MSN-A are more consistent
with the manual ground truth in these examples, especially
for the small vascular structures.

The quantitative segmentation results of the testing images
obtained by our MSN-A method and the four competing
methods are reported in Table 3. First, compared with the
conventional segmentation methods (i.e., CRF and LevelSet)
and deep-learning-based segmentation methods (i.e., CNN
and U-net), the proposed MSN-A method achieves good
results in coronary artery segmentation in terms of all five
evaluation criteria (i.e., Pre, Sen, Spe, Acc and F1-score).

TABLE 3. Segmentation results for different methods.

Second, in terms of the computational time required to seg-
ment one image, U-net (0.11 s) and MSN-A (0.12 s) are
the least time consuming, and the conventional methods take
longer (1.14 s for CRF and 7.65 s for LevelSet). Although
CNN is a deep-learning-based segmentation method, it is
the slowest (70.33 s) method due to the patch-based learn-
ing strategy. Five additional segmentation results for angio-
graphic images are shown in Fig.6.

IV. CONCLUSION
In this study, we have proposed a multichannel FCN model
(MSN-A) to achieve efficient end-to-end segmentation of
vascular structures in X-ray angiograms. MSN-A adopts
a multichannel input strategy to comprehensively charac-
terize the vascular structural information from live images
and mask images complementarily. To correct the motion
caused by heart beating and respiration, a hierarchical dense
matching method is employed to align the mask images
to the live images. Compared to the typical single-channel
CNN or U-net method, taking the aligned mask image into
consideration is suitable for segmentation in low-contrast
angiograms, especially for removing catheters and artifacts.
Experiments demonstrate that the proposed end-to-end seg-
mentation method is very effective and efficient and can
achieve better results than those of three state-of-the-art meth-
ods. Moreover, the proposed MSN-A method can be further
improved in the future by taking all the angiographic image
sequences into consideration instead of choosing one live
image and one mask image.
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