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ABSTRACT We propose a new adaptive clustering algorithm that is robust to various multitask environ-
ments. Positional relationships among optimal vectors and a reference signal are determined by using the
mean-square deviation relation derived from a one-step least-mean-square update. Clustering is performed
by combining determinations on the positional relationships at several iterations. From this geometrical basis,
unlike the conventional clustering algorithms using simple thresholding method, the proposed algorithm can
perform clustering accurately in various multitask environments. Simulation results show that the proposed
algorithm has more accurate estimation accuracy than the conventional algorithms and is insensitive to
parameter selection.

INDEX TERMS Decentralized clustering, multitask learning, adaptive networks, distributed estimation,
diffusion adaptation.

I. INTRODUCTION
Distributed estimation over adaptive networks has become
an important research area due to its diverse applica-
tions [1]–[5]. Previous research has been well explained in
tutorial work [6]–[10]. For inference over networks, three
classes of approach have mostly been studied: incremen-
tal algorithms [11]–[13], consensus algorithms [1], [14], [15]
and diffusion algorithms [6]–[10], [16], [17]. The diffusion
algorithms are attractive because they do not need cyclic
path to cooperate with adjacent nodes, and show wider sta-
bility ranges and enhanced performance than the consensus
algorithms [18].

Earlier work on distributed learning algorithms focused on
the single-task problem in which every node in a network
must estimate a single optimal parameter vector. However,
many applications happen to be multitask-oriented, in which
different clusters of nodes are interested in estimating dif-
ferent optimal parameter vectors [19]–[24]. Applications
include tracking of multiple targets [25]–[27], cooperative
spectrum sensing under several local interferers [28] and
classification problems involving multiple models [29]–[33].
Many studies assume that cluster information is known

in advance, but in practical applications the nodes usu-
ally do not know beforehand which clusters they belong to
and which other nodes have the same objective [25]–[27].
If the nodes simply cooperate with all adjacent nodes with-
out clustering, the estimation performance can be seriously
degraded [34], [35].

For the solution of such problem, several adaptive clus-
tering algorithms have been proposed [34]–[38]. First, Zhao
and Sayed [34] proposed a combination rule for the adapt-
then-combine (ATC) diffusion least-mean-square (DLMS)
algorithm [17], which is derived by minimizing the network
mean-square deviation (MSD). In [35] and [36], new com-
bination rules for the ATC and combine-then-adapt (CTA)
DLMS algorithms were proposed, which were derived in a
manner similar to [34] but used different approximation of the
optimal vectors. The resulting combination rules have clus-
tering effect by giving small weights to data from nodes that
appear to belong to other clusters. However, [34] is sensitive
to the setting of the initial condition. Chen et al. [35], [36]
showed better estimation accuracy than [34], but from inac-
curate approximation of optimal vector used in the deriva-
tion, they usually give too much weight to data from itself.
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Therefore, the performance improvement by combining esti-
mates may be limited. In [37] and [38], clustering is per-
formed by calculating 2-norm distance of estimates from
different nodes and comparing it with a threshold parameter.
If the 2-norm distance is larger than the threshold, the two
nodes are determined to be in different clusters; otherwise,
the two nodes are determined to be in a same cluster. Because
of this simple thresholding mechanism, clustering perfor-
mance of the algorithms is very sensitive to the choice of this
arbitrary threshold. Furthermore, if the threshold is not set
properly for a given multitask environment, performance can
be severely degraded.

In this article, we propose a novel clustering method
that is robust to the various multitask environments, which
include different topologies, signal-to-noise ratio (SNR) val-
ues, optimum values and user parameters. Each node gen-
erates a reference signal that continuously approaches its
optimal vector. Using the MSD relation derived from an
one-step LMS update, the positional relationships among
optimal vectors and the reference signal can be determined.
By combining determinations on the positional relationships
at several iterations, each node finally determines whether
a neighbor node belongs to the same cluster. Afterward,
any distributed estimation algorithm can be used with the
clustered neighborhood information. In this paper, we use the
DLMS algorithm [17] that has a simple structure yet obtains
good estimation performance. From its accurate clustering,
the resulting algorithm shows improved estimation accuracy
than the conventional algorithms. Furthermore, the proposed
algorithm is robust to various multitask environments, which
means that the parameters need not be finely tuned according
to the given environment. In this paper, to show the robustness
of the proposed algorithm, we vary step sizes, weight tap
length and optimum vectors that have a critical impact on the
estimation performance of the conventional algorithms.

This work is organized as follows. We formulate the
problem and briefly introduce the DLMS algorithm [17] in
Section 2. We derive the proposed clustering method con-
sidering practical implementation in Section 3. We give the
simulation results in Section 4, and conclude the paper in
Section 5.

Notation:We use boldface letters for random variables and
normal letters for deterministic quantities.

II. BACKGROUND
A. PROBLEM FORMULATION
Consider a network of N nodes that are distributed over some
geographic region (Fig. 1). The set of neighbors of node k ,
including node k itself, is called the neighborhood of node k
and is denoted by Nk . At each time instant i, each node k
collects a scalar measurement dk (i) and an 1×M regression
vector uk,i of some random processes {dk (i),uk,i}. At each i
and k , the data are assumed to be related to anM×1 unknown
vector wok by a linear regression model as

dk (i) = uk,iwok + vk (i), (1)

FIGURE 1. Network topology of N = 8 nodes in four different clusters.

where vk (i) is zero-mean measurement noise with variance
σ 2
v,k , and is assumed to be temporally white and spatially

independent. vk (i) and ul,h are assumed to be independent of
each other for all {k, l, i, h}. The objective of each node k is to
estimate wok in a distributed and adaptive manner by sharing
information within Nk .

B. DLMS ALGORITHM
The DLMS algorithm [17] consists of two steps: adapta-
tion and combination. During the adaptation step, each
node k updates its estimator by using the observed data
{dl(i), ul,i}l∈Nk that are available at node k . In the combi-
nation step, each node k calculates the weighted average of
the estimators from its neighborhood. We focus on the ATC
DLMS algorithm which is given as

ψk,i = wk,i−1 + µk
∑
l∈Nk

clku∗l,i(dl(i)− ul,iwk,i−1) (2)

wk,i =
∑
l∈Nk

alkψl,i, (3)

where µk is a positive step size, and {clk , alk} are
non-negative weighting coefficients that satisfy

clk = alk = 0 if l /∈ Nk ,

N∑
k=1

clk =
N∑
l=1

alk = 1. (4)

The DLMS algorithm works well in a single-task network
(wok = wo for k = 1, . . . ,N ). However, in multitask scenario
in whichwok can differ from node to node, simply using all the
data from neighborhood may result in performance degrada-
tion compared to the single (no-cooperation) LMS [34], [35].
When nodes do not know which nodes in the neighborhood
belong to the same cluster, a clustering process is necessary
to attain the benefits of cooperation.
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III. PROPOSED ALGORITHM
We consider the situation in which the cluster information
is not known in advance. If the nodes simply cooperate
with all adjacent nodes as usual in a single-task network,
the performance further degrades with increase in the differ-
ence between optimal vectors of different clusters. Therefore,
in general, to benefit from cooperation in multitask network,
clustering is necessary. For clustering, we use a reference
signal that is generated separately from the main estima-
tion procedure (in this paper, DLMS); therefore, we prevent
propagation of clustering error that may occur temporarily
during the transient phase. Unlike the conventional clustering
algorithms that use simple thresholding method, we use the
positional relationship among the optimal vectors and the
reference signal; this relationship can be determined by an
one-step LMS update equation. From this geometrical basis,
the proposed algorithm is expected to work well in various
multitask environments without fine tuning of the parameters.

A. DERIVATION OF MSD RELATION
Each node k keeps running single LMS to use the result as a
reference signal:

φk,i = φk,i−1 + µku
∗
k,i(dk (i)− uk,iφk,i−1), (5)

where µk is a positive step size. The objective of each node
k is to distinguish whether a neighbor node l is in the same
cluster as k . First, consider an LMS update of the reference
signal from l at i− 1 using the data of k:

φkl,i = φl,i−1 + µlu
∗
k,iεkl(i), (6)

whereµl is a positive step size and εkl(i) , dk (i)−uk,iφl,i−1.
We call (6) ‘one-step LMS update’ because φl,i−1 is not
updated recursively, but only once at each iteration i. This
equation will be used to determine the positional relationship
among the unknown parameters wok , w

o
l and the reference sig-

nal φl,i−1. We introduce the weight error vectors from wok as

φ̃k,l,i−1 , wok − φl,i−1, φ̃k,kl,i , wok − φkl,i. (7)

Then, the LMS update (6) can be rewritten as

φ̃k,kl,i = φ̃k,l,i−1 − µlu
∗
k,iεkl(i). (8)

Squaring both sides of (8) and taking expectations yields the
relation between MSDs from wok as

E
∥∥∥φ̃k,kl,i∥∥∥2 = E

∥∥∥φ̃k,l,i−1∥∥∥2 −1kl(i), (9)

where

1kl(i) , 2µlRe
{
E
[
ε∗kl(i)uk,iφ̃k,l,i−1

]}
−µ2

l E
∥∥u∗k,iεkl(i)∥∥2 , (10)

and 1kl(i) > 0 means that φl,i−1 becomes closer to wok by
the one-step LMS update (6). To simplify (10), we use the
following relation:

εkl(i) = uk,iφ̃k,l,i−1 + vk (i). (11)

Then the expectation terms of (10) can be rewritten as

E
[
ε∗kl(i)uk,iφ̃k,l,i−1

]
= E |εkl(i)|2 − σ 2

v,k , (12)

E
∥∥u∗k,iεkl(i)∥∥2 = E

∥∥pkl,i∥∥2 + E
∥∥uk,i∥∥2 σ 2

v,k , (13)

where we define pkl,i , u∗k,iuk,iφ̃k,l,i−1. Therefore, (10) is
rewritten as

1kl(i) = 2µl
{
E |εkl(i)|2 − σ 2

v,k

}
−µ2

l

{
E
∥∥pkl,i∥∥2 + E

∥∥uk,i∥∥2 σ 2
v,k

}
. (14)

B. PROPOSED ADAPTIVE CLUSTERING ALGORITHM
Considering the positional relationship amongwok ,w

o
l and the

intermediate estimate φl,i−1, each node k can use 1kl(i) to
determine whether a neighbor node l is in the same cluster.
There are two cases to be considered.

1) wo
k 6= wo

l (Fig. 2)
Consider when nodes k and l are in different clusters. Because
φl,i constantly approaches wol as i increases, it is far from wok
with a very high probability for every iteration. Therefore,
the LMS update (6) makes the estimate φl,i−1 become closer
to wok , i.e., 1kl(i) > 0. The exception is when wok is located
very close to the trajectory of the update (5) at node l at some
iterations, which will also be considered later by stacking
method and cross checking between two nodes.

FIGURE 2. Positional relationship among estimates and unknown vectors
wo

k 6= wo
l at early stage of the update (6) (left) and after sufficient

convergence to wo
l (right).

2) wo
k = wo

l (Fig. 3)
Consider when nodes k and l are in the same cluster. At the
early stage of the update (6) at node l (Fig. 3, left), φl,i−1
is far from wok so that 1kl(i) > 0. As φl,i−1 approaches
to wok (Fig. 3, right), the contribution of measurements
decreases [39], which means that the probability that the
update (5) will reduce MSD decreases. Therefore, either
1kl(i) > 0 or 1kl(i) < 0. Motivated by this insight, we pro-
ceed to derive a new clustering algorithm.

From these observations, the sign of1kl(i) will be used for
clustering. For practical implementation, we first estimate the
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FIGURE 3. Positional relationship among estimates and unknown vectors
wo

k = wo
l at early stage of the update (6) (left) and after sufficient

convergence to wo
l (right).

noise variance σ 2
v,k as in [40]:

σ̂ 2
v,k = E ‖εkk (i)‖2 −

E
∥∥pkk,i∥∥2

E
∥∥uk,i∥∥2 . (15)

Also, the statistical values in (14) are not available in prac-
tice. We estimate E‖uk,i‖2 and E |εkl(i)|2 by time-averaging
methods [41] as∥∥ûk,i∥∥2 = α ∥∥ûk,i−1∥∥2 + (1− α)

∥∥uk,i∥∥2 , (16)

σ̂ 2
εkl (i) = ασ̂

2
εkl (i−1) + (1− α)ε2kl(i), (17)

where 0 ≤ α ≤ 1 is a forgetting factor. Using the
relation E

[
pkl,i

]
= E

[
u∗k,iεkl(i)

]
, we estimate E

[
pkl,i

]
by

time-averaging as

p̂kl,i = αp̂kl,i−1 + (1− α)u∗k,iεkl(i) (18)

and use
∥∥p̂kl,i∥∥2 instead of E

∥∥pkl,i∥∥2 [41]. Using (14)–(18),
inequality 1kl(i) > 0 can be rewritten as

σ̂ 2
εkl (i) >

µl

2

∥∥p̂kl,i∥∥2
+

(
1+

µl

2

∥∥ûk,i∥∥2)(σ̂ 2
εkk (i) −

∥∥p̂kk,i∥∥2∥∥ûk,i∥∥2
)
. (19)

If inequality (19) is satisfied, we assign bkl(i) = 1; otherwise,
we assign bkl(i) = 0, and we stack L past values in an
L × 1 vector Bkl,i , [bkl(i), bkl(i− 1), . . . , bkl(i− L + 1)]T .
In general situations, 1kl(i) is always positive when wok =
wol , whereas 1kl(i) can be either positive or negative when
wok 6= wol . Therefore, the two cases can be distinguished by
observing values stacked in Bkl,i; overwhelming dominance
of 1 means that nodes are in different clusters. We propose
to choose the connection between nodes k and l 6= k at
iteration i by using the probability that the inequality (19) is
satisfied as follows:

tkl(i) =

{
0 if 6L

m=1Bkl,i/L > p,
1 otherwise,

(20)

where {tkl(i)} are entries of Ti, N × N adjacency matrix at
iteration i and 0 < p < 1 is an user parameter. p should
be chosen to be close to 1, because in general 1kl(i) > 0
when nodes k and l are in different clusters. In addition,

we disconnect the link k → l if the link in the opposite
direction l → k is disconnected:

tkl(i) = 0 if tlk (i) = 0 for l ∈ N−k (21)

where N−k denotes the set Nk except for node k . By the
cross checking in (21), clustering can be done accurately for
the rare exceptions when wok 6= wol and wok is located very
close to the trajectory of update (5) at node l. Of course,
each node always uses its data without the above procedure,
i.e., tkk = 1 for all k . We denote clustered neighborhood of
node k at iteration i asNk,i. Now, each node k can use the data
from Nk,i to perform any distributed estimation algorithm.
Table 1 shows the pseudo code of the proposed algorithm
when using the ATC DLMS for the estimation process.

TABLE 1. Pseudo code of the proposed algorithm.

The conventional algorithms [36], [37] perform clustering
by comparing the 2-norm distance of the estimates with an
arbitrary threshold. This threshold must be less than δ ,
min{‖wok − wol ‖

2
| k = 1, . . . ,N , l ∈ Nk , wok 6= wol },

which is the minimum value of 2-norm distances of optimal
vectors between every two adjacent nodes in different clus-
ters. This value is unknown in general applications. Even if
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the threshold is chosen to be < δ, these methods still have
the disadvantage that the performance is sensitive to the
setting of the threshold value. In contrast, the proposed algo-
rithm is insensitive to the choice of the parameters L and p,
and can perform clustering accurately in various multitask
environments.

TABLE 2. Computational complexity (×, +) and communication cost (C)
of the conventional clustering algorithms and the proposed algorithm for
node k at each time i . Communication cost denotes the number of scalar
values which are transmitted from node k .

Table 2 shows computational complexity and communica-
tion cost of the conventional clustering algorithms and the
proposed algorithm. For fair comparison, we use clk = 0 for
l 6= k (no information exchange) and any deterministic rule
for the combination weights alk (i). Also for [35] and [36],
we assume that the algorithms don’t use normalization of
qk (n), which is optional. The results are given as linear combi-
nations of variablesM , L, |Nk | and |Nk,i|, where |Nk | denotes
the degree of node k . By comparing the coefficients of the
resulting formulas, we note that the proposed algorithm needs
more computations and communications than the conven-
tional methods. Nonetheless, with these additional require-
ments, the proposed algorithm shows improved estimation
accuracy and robustness to various multitask environments.
We will examine these features in the following simulation
section.

IV. SIMULATION RESULTS
To illustrate the performance of the proposed clustering algo-
rithm, we present simulations for a network topology with
N = 80 nodes (Fig. 4, left), and specified statistical profiles
of regressor power and noise power (Fig. 4, right). We con-
sider channel identification problem of an FIR model with
channel length of M = 2 taps. The regressors are zero-mean
Gaussian, spatially independent and temporally white. The
step sizes were set to µk = 0.03 and all simulation results
were obtained by taking the ensemble average of the network
MSD:

MSDnetwork
=

1
N

N∑
k=1

E‖wok − wk,i‖
2 (22)

FIGURE 4. Network topology for N = 80 nodes (left), regressor powers
σ2

u,k (top right) and noise variances σ2
v,k (bottom right) for each node.

over 200 independent experiments. We use the uniform rule
alk (i) = 1

|Nk,i|
[42] for the combination step. For some

conventional methods, each node uses only its data during
the adaptation step, so that we assume that no information is
exchanged during the adaptation step (clk = 0 if l 6= k) for
fair comparison. We use α = 0.95, p = 0.9 and L = 30
for the proposed algorithm. For the conventional algorithms,
we use the parameter settings used in the original papers:
ξ = 0.01 for [35] and [36], ν = 0.98, α = 0.015, γ = 0.5
for [38] and θ = 0.015 for [37] (because [37] do not show
parameter settings, the value of θ is chosen to be the same as
α = 0.015 in [38]).

FIGURE 5. Change of cluster structure of network where nodes in the
same cluster are painted with the same color.

We first simulated an environment where the cluster struc-
ture changed abruptly in the middle of iteration (Fig. 5). The
unknown vectors were

wok =


[1, 1]T , k = 1, . . . , 20

[1.5, 1]T , k = 21, . . . , 40

[0.6, 0.6]T , k = 41, . . . , 60

[2, 0.5]T , k = 61, . . . , 80

(23)

for 0 < i ≤ 500, and

wok =


[1.5, 1.5]T , k = 1, . . . , 30

[2, 1]T , k = 31, . . . , 50

[0.7, 2.3]T , k = 51, . . . , 80

(24)

for 500 < i ≤ 1000. The transient network MSD curves
were obtained for the single (no-cooperation) LMS, DLMS
with known cluster structure of the network, which is denoted
by T o, and the various clustering algorithms (Fig. 6). All of

VOLUME 6, 2018 45443



J.-T. Kong et al.: Robust Distributed Clustering Algorithm Over Multitask Networks

FIGURE 6. Transient network MSD for the conventional algorithms and
the proposed algorithm in an environment where the cluster structure
was abrubtly changed at i = 501.

the clustering algorithms had MSD between that of the single
LMS and the DLMS with known T o, and kept track of the
unknown vectors well in an environment where unknown
vectors and cluster structure both changed abruptly.

As a result of inaccurate approximation of the unknown
wok , the algorithms in [37] and [38] had higher steady-state
MSD than the other clustering algorithms (Fig. 6, c and d).
The proposed algorithm (Fig. 6, g) had a slightly slower
convergence speed than the other algorithms because it needs
some iterations to perform clustering correctly when two
neighbor nodes have the same unknown vector (as explained
in Section 3 with Fig. 3). However, the proposed algorithm
had the lowest steady-state MSD among the clustering algo-
rithms. This result indicates that the proposed algorithm has
the best clustering accuracy.

The unknown vectors were set as (23) for the rest of
the simulations. The transient network MSD curves were
obtained for µ = 0.03 (Fig. 7, top) and µ = 0.06 (Fig. 7,
bottom). As µ increased, the steady-state MSDs of the con-
ventional clustering algorithms were degraded, especially
that of [37]. Asµ increases, the variation of the estimate value
increases, so that often, two nodes in the same cluster can be
identified as different cluster nodes. However, the proposed
algorithm always had similar steady-state MSD to that of the
DLMS with known T o.
The transient network MSD curves were obtained forM =

4 (Fig. 7, top) andM = 8 (Fig. 7, bottom) with fixed step size
µ = 0.03. We increased M by simply adding zeros for the
added taps; for example, the unknown vectors when M = 4
were set as

wok =


[1, 1, 0, 0]T , k = 1, . . . , 20

[1.5, 1, 0, 0]T , k = 21, . . . , 40

[0.6, 0.6, 0, 0]T , k = 41, . . . , 60

[2, 0.5, 0, 0]T , k = 61, . . . , 80.

(25)

As M increased, the performances were severely degraded
for the conventional algorithms in [37] and [38] (Fig. 8, e, f),

FIGURE 7. Transient network MSD for the conventional algorithms and
the proposed algorithm for µ = 0.03 (top) and µ = 0.06 (bottom).

and when M = 8, they even had the same MSD levels
as the single LMS (Fig. 8, a); this result means that each
node k determined all of its neighbor nodes as different
cluster nodes. Because those algorithms simply compare the
2-norm distance of estimates between adjacent nodes to arbi-
trary threshold θ and α, the clustering performance is highly
dependent on the parameter setting and network environment.
AsM increased, the 2-norm distance increased both when the
nodes belonged to the same cluster and when they belonged
to different clusters; this result means that θ and α must be
increased somewhat to maintain the clustering performance.
On the other hand, the proposed algorithm (Fig. 8, g) had
the similar steady-state MSD with the DLMS with known T o

(Fig. 8, b) for various tap lengths. To summarize, the proposed
algorithm is robust to the various step sizes µk and tap
lengths M , whereas for [37] and [38] to perform clustering
accurately their parameters should be finely tuned to suit the
environment.

The transient network MSD curves of the proposed algo-
rithm were obtained for various L (Fig. 9, top) and various p
(Fig. 9, bottom). L is length of the stacking vectorBkl,i, so that
the clustering accuracy can be improved by using large value.
p is an user parameter that should be chosen to be close to 1;
high p can cause miss detection (fail to detect same cluster
node) and low p can cause false alarm. Nevertheless, the pro-
posed algorithm had similar MSD curves for various choices
of L and p. The results show that the proposed algorithm is
insensitive to the choice of the parameters.
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FIGURE 8. Transient network MSD for the conventional algorithms and
the proposed algorithm for M = 4 (top) and M = 8 (bottom).

FIGURE 9. Transient network MSD for the proposed algorithm with
various L (top) and various p (bottom).

We simulated in a network composed of two clusters
(Fig. 10) with unknown vectors

wok =

{
[1, 1]T , k = 1, . . . , 40

[1, 1]T + cdiff [0.1,−0.1]T , k = 41, . . . , 80
(26)

FIGURE 10. Network topology for N = 80 nodes in two clusters.

FIGURE 11. Steady-state network MSD for the conventional algorithms
and the proposed algorithm with various cdiff.

where cdiff is a non-negative integer. For various cdiff values,
the steady-state MSD was obtained by averaging MSDs at
401 ≤ i ≤ 500 for 200 independent experiments (Fig. 11).
For small cdiff > 0, because two different unknown vectors
have similar values, and the decision of whether they are in
the same cluster is a difficult task, the steady-state MSDs of
the clustering algorithms were most degraded for cdiff = 1.
Other than that, the proposed algorithm always had the low-
est steady-state MSD among the clustering algorithms. This
result confirms that the proposed algorithm works well in
various multitask environments.

V. CONCLUSION
We proposed a new adaptive clustering algorithm that deter-
mines positional relationships among the optimal vectors and
a reference signal by using the MSD relation derived from an
LMS update equation. The proposed algorithm had slightly
slower convergence speed, but achieved lower steady-state
MSD than the conventional algorithms. The proposed algo-
rithm performed clustering well in a variety of environments
that had different M , µ and optimal vectors. The proposed
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algorithmwas insensitive to the choice of parameters L and p.
The greatest advantage of the proposed algorithm is its ability
to work well in various environments without careful tuning
of the parameters.
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