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ABSTRACT In this paper, to solve the problem of the low recognition rate of the existing approaches
at low signal-to-noise ratio (SNR), an intra-pulse modulation recognition approach for radar signal is
proposed. The approach identifies the modulation of radar signals using the techniques of time-frequency
analysis, image processing, and convolutional neural network (CNN). Through Cohen class time-frequency
distribution (CTFD), the time-frequency images (TFIs) of received signals are extracted. In order to obtain
the high-quality TFIs of received signals, we introduce a new kernel function for the CTFD, which has
stronger anti-noise ability than Choi–Williams time-frequency distribution. A series of image processing
techniques, including 2-DWiener filtering, bilinear interpolation, andOtsumethod, are applied to remove the
background noise of the TFI and obtain a fixed-size binary image that contains only morphological features
of the TFI. We design a CNN classifier to identify the processed TFIs. The proposed approach can identify
up to 12 kinds of modulation signals, including frequency modulation, phase modulation, and composite
modulation. Simulation results show that, for 12 kinds ofmodulation signals, the proposed approach achieves
an overall probability of successful recognition of 96.1% when SNR is −6 dB.

INDEX TERMS Radar signal recognition, Cohen class time frequency distribution, convolutional neural
network.

I. INTRODUCTION
Radar signal intra-pulse modulation recognition is a crucial
technology in radar electronic warfare (EW). It plays an
important role in modern electronic support measure (ESM)
system, electronic intelligence (ELINT) system and radar
warning receiver [1]–[3]. The accurate recognition of intra-
pulse modulation of the radar signals can help to estimate the
function of radar emitters while improving the accuracy of
radar signal parameter estimation. However, the pulse com-
pression technique used in radar greatly reduces the power
spectral density of radar signal. The interception and identifi-
cation of radar signals have become more and more difficult.
The signal-to-noise ratio (SNR) for the normal working envi-
ronment of radar is also getting lower and lower. This requires
that the intra-pulse modulation recognition method of radar
signals has a good performance at low SNR. Furthermore,
with the rapid development of radar technology, the intra-
pulse modulation of radar signals are becoming more and
more diversified [4]. An extensive modulation types of radar
signals are also required to be recognized [5], [6]. There-
fore, how to accurately recognize extensive modulation types

of radar signals in low SNR environment is urgent to be
solved.

The intra-pulse modulation recognition approaches of
radar signals can be divided into two categories, including
decision theory based approach [7], [8] and statistical pattern
recognition based approach [9]–[12]. The former approach is
based on probability theory and Bayesian estimation theory,
which relies on the prior information of radar signals, such
as probability model or some other parameters of the sig-
nals. For practical uses, the latter approach is more popular,
since it performs better than the former one for the blind
recognition of radar signals. The latter approach requires
no prior information of radar signals. The statistical pattern
recognition based approach includes two major steps: fea-
ture extraction and classification. The feature extraction uses
techniques such as spectrum autocorrelation, time-frequency
analysis, high-order cumulants and various transform domain
analysis, etc.

The researchers have made great efforts to improve
the performance of the approach based on statistical pat-
tern recognition in low SNR environment. In [13], the
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Rihaczek distribution (RD) and the Hough transform (HT)
are used to concentrate the energy in time-frequency plane
and extract the ratio of the minimum to the maximum of the
HT and the peak number of the HT of the real part of the RD.
This approach can recognize linear frequency modulation
(LFM), frequency shift keying (FSK), binary phase shift key-
ing (BPSK) and mono-pulse (MP) signals and its probability
of successful recognition (PSR) can reach 90%when the SNR
is above−4 dB. This approach has a strong anti-noise ability,
but the identified type number of radar signals is limited.
In [14] and [15], radar signals are transformed into the time-
frequency domain using Choi-Williams distribution (CWD).
Then, the characteristics of the signal time-frequency domain
are extracted, including high-order cumulants, instantaneous
frequency and all order moments, etc. These characteristics
are formed as an input feature vector of the final classifier
consisting of two of back-propagation (BP) neural networks.
This approach can identify LFM, BPSK, Costas, Frank, P1,
P2, P3, P4 signals. The overall PSR is 94.7% when the
SNR is −2 dB. However, it can not identify the nonlin-
ear frequency modulation signals and composite modulation
signals. In addition, the performance of these approaches
depends very much on the extracted features. These extracted
features often rely on the experience of the researchers, and
it is not necessarily optimal. So researchers are trying to find
a way that can extract features automatically and optimally.

Recently, some researchers introduce deep learning to
the field of radar signal modulation recognition, since deep
learning can automatically extract the characteristics of sig-
nals and it has made great success in many fields, such as
image recognition, speech recognition, object detection and
so on [16]–[18]. Some approaches for radar signal modu-
lation recognition based on deep learning have been pro-
posed [19]–[22]. In [20], a deep neural network model based
on multiple restricted Boltzmann machines is designed for
radar signal recognition. It can identify eight kinds of radar
signals (CW, PSK, DPSK, FSK, MP, LFM and NLFM) in
the time domain. In [22], the convolutional neural network
(CNN) based on LeNet-5 is introduced to identify the time-
frequency images (TFIs) of radar signals. This approach can
identify eight kinds of radar signals (BPSK, LFM, Costas,
Frank and T1-T4) when SNR is above −2 dB. However,
there are still many problems with these approaches. First,
the modulation type of the recognizable signal is limited
in low SNR environment. Second, if the test samples and
training samples parameters vary greatly, the performances of
these approaches will be greatly reduced, so the adaptabilities
of these approaches are poor and they cannot identify radar
signals with large variation range parameters.

In this paper, we propose a novel approach for radar
signal intra-pulse modulation recognition which uses the
techniques of time-frequency analysis, image processing
and CNN based on LeNet-5. The approach can identify
twelve kinds of modulation signals, including LFM, Sinu-
soidal frequency modulation (SFM), 2FSK, 4FSK, dual
frequency modulation (DLFM), even quadratic frequency

modulation (EQFM), multiple linear frequency modulation
(MLFM), BPSK, Frank, MP and composite modulation
(LFM-BPSK, 2FSK-BPSK).We introduce a new kernel func-
tion for Cohen class time-frequency distribution (CTFD) to
extract the TFIs of radar signals. The CTFD with the new
kernel function has better anti-noise ability than CWD for
the proposed approach. Through a series of methods, includ-
ing 2-D Wiener filtering, bilinear interpolation and Otsu
method, we remove the background noise of the TFI while
enhancing the robustness of the approach and a fixed-size
binary image that contains only morphological features of the
TFI is obtained. In addition, in order to improve the classifica-
tion performance of the CNN based on LeNet-5, we increase
the number of CNN layers and reset the parameters of CNN.
Simulation results show that the overall PSR of the approach
reach as high as 96% when the SNR is −6 dB.
The remainder of this paper is organized as follows.

Section II introduces the recognition system framework.
In Section III, the data processing algorithm is introduced
in detail. And Section IV introduces the convolution neural
network in detail. Section V shows the simulation results.
Finally, Section VI provides conclusions.

II. SYSTEM FRAMEWORK
The received radar signal is composed of a modulated signal
and noise. Its model can be written as

s (t) = x (t)+ n (t) (1)

where s (t) and x (t) are received signal and modulated sig-
nal, respectively. n (t) is random noise, which is generally
assumed to be additive white Gaussian noise.

The modulated signal x (t) is given by

x (t) = Arect
(
t
/
T
)
e−j(2π fct+φ(t)+φ0) (2)

where A is the amplitude and T is the pulse width. fc and
φ0 are the carrier frequency and the initial phase, respectively.
φ (t) is the phase function, which determines the modulation
type of radar signal. Thus, we pay more attention to the
characteristics of the phase function of the modulation signal.

In this paper, we propose a radar signal intra-pulse mod-
ulation recognition approach based on convolutional neural
network. The framework of the proposed approach is shown
in Figure 1. The most essential difference among the signals
of different modulation types is the form of the phase func-
tion. That is, the difference in the form of the instantaneous
frequency function. The core idea of the proposed approach is
to transform the recognition problem of the signal modulation
to the TFI recognition. From Figure 1, we can see that the
approach is divided into two parts: one is the extraction and
processing of the TFIs of radar signals, and the other is the
recognition of the TFIs of radar signals. The extraction of
the TFIs is vital for the approach. This approach requires
that the extracted TFI of siganl can reflect the instantaneous
frequency of the signal while having good anti-noise perfor-
mance. Hence, in order to improve the quality of the TFIs,
the CTFD with a new kernel function is proposed to extract
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FIGURE 1. The framework of the intra-pulse modulation recognition approach proposed in this paper.

the TFIs of radar signals. For the intra-pulse modulation
recognition of radar signals, we pay more attention to the
morphological features of the TFIs of radar signals. In order
to reduce computational complexity, the TFIs of radar signals
need to be transformed into binary images. In low SNR
environment, however, the extracted TFI yet exists a lot of
noise that make the image binarization more difficult. Thus,
2-D Wiener filtering is used to smooth the TFI and reduce
noise. After that, in order to reduce the structural complexity
of the CNN, the bilinear interpolation is used to resize the
TFI. The TFI is transformed into a binary image by deploying
Otsu method and the background noise of the TFI of the
signal is also removed. This ensures the quality of the TFI of
signal and further reduces the computational burden of CNN.
Finally, a CNN is designed to identify the above processed
image. Radar signal intra-pulse modulation recognition is
eventually accomplished.

III. DATA PROCESSING
In this section, the various methods used to process the data of
the received radar signal in this paper are explained in detail,
which include CTFD, Wiener filtering, bilinear interpolation
used to resize image and Otsu method used to remove the
background noise of the image.

A. COHEN CLASS TIME FREQUENCY DISTRIBUTION
FOR TFI EXTRACTION
The most widely used methods to extract the TFI, include
Short-Time Fourier Transform (STFT), Wigner-Ville dis-
tribution (WVD) and so on [23]. When using STFT to
extract TFI, we need to choose the window function and
its length, which can not be changed once selected. This
makes the STFT lack of adaptability. Hence, the STFT is
not suitable for extracting TFIs of unknown signals. As for
WVD, it has very high time-frequency resolution, but its
anti-noise ability is poor. For the modulated signals such as
nonlinear frequency modulation signal, PSK and FSK, there
will be the cross-terms that seriously affect the recognition
of the modulation types of the signal. For example, for FSK
signals, the cross-terms can cause false frequency-hopping,

which makes it impossible to identify the FSK type based
on frequency hopping. For PSK signals, there are small fre-
quency hopping amplitude. The cross-terms can cause small
frequency hopping features to be unclear, affecting the iden-
tification of PSK signals. Also, the cross-terms of modulated
signal are easily affected by noise and have instability. Con-
sequently, it is not reliable to use the cross-terms to identify
signals. In short, when using TFI to identify signal, we hope
to minimize the cross-terms of signal while retaining the
modulation feature of signal. Cohen class time frequency
distribution is able to obtain the expected properties like
higher resolution, non-negative and removal of cross-terms
by smoothing the WVD through time and frequency shifting
with a kernel function [24]. Cohen class time frequency
distribution is defined as

C (t, ω) =
1

4 π 2

∫∫
AF (τ, ν)φ(τ, ν) e−jνt−jωτdνdτ

(3)

AF (τ, ν) =
∫
x
(
u+

τ

2

)
x∗
(
u−

τ

2

)
ejνudu (4)

where x (u) is the received signal. AF (τ, ν) is the ambiguity
function. τ and ν are the time delay and the frequency shift,
respectively. φ (τ, ν) is a kernel function. Equation (3) shows
that the Cohen class time frequency distribution is a two-
dimensional Fourier transform of the signal that is a signal
after filtering the ambiguity function with a kernel function.

By designing the kernel function, the cross-terms of the
signal can be eliminated and the noise can be reduced.
Reference [25] points out that the kernel function should be
a 2-D low pass filter function. The most common kernel
function is a Gaussian function, φ (τ, ν) = exp

[
−
(τν)2

σ

]
,

called CWD. The CWD can suppress cross-terms of signals
and reduce noise. However, from the expression of the CWD
kernel function, we can see that when τ = 0 or ν = 0,
φ (τ, ν) = 1. This shows that the CWDkernel function has no
filtering effect on the τ axis and the ν axis. However, for radar
signals, the auto-terms of the modulated signal concentrate
along and around the ambiguity domain τ axis, and the
maximum appears around the origin, whereas the cross-terms
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exist far from the τ axis. Also, there is no auto-terms of the
modulated signal on the ν axis, except at the origin. This
means that for the intra-pulse modulation recognition of radar
signals, the kernel function of CWD is not the best choice.
Therefore, based on this characteristic of radar modulated
signals, we design a new kernel function for CTFD that can
extract the TFI of radar signal with better quality than CWD.
This new kernel function is designed as

φ (τ, ν) = e−
(
ατ 2+βν2

)
(5)

where α and β are two parameters that can adjust the shape
of the kernel function. The width of the kernel function is
estimated by 4 times of the standard difference of Gaussian

function, then the width of the τ axis and the ν axis are
√

8
α

and
√

8
β
, respectively.

We give a contour map of the kernel function shown in (5)
in Figure 2. As is shown in Figure 2, by adjusting the coeffi-
cients α and β, we make this kernel function distribute along
the τ axis and have an elliptical shape, which fits well with
the distribution of radar signals in the ambiguity domain.
In Figure 3, we give the TFI of the SFM signal extracted by
CWD and CTFDwith a new kernel function when the SNR is
−6 dB. It can be clearly seen that the quality of the TFI of the
SFM signal extracted by the CTFDwith a new kernel function
is better than that of the CWD. This is because the new kernel
function can effectively filter the ν axis compared with the
kernel function of CWD, and its shape can well match the
distribution characteristics of radar signals in the ambiguity
domain. This makes CTFD with a new kernel function have
better anti-noise ability than CWD.

FIGURE 2. In this picture, the contour map of the kernel function
designed by this paper is displayed.

In the actual signal processing, the signal is discrete, so the
CTFD in this paper needs to be discretized. The following
equation (6) is obtained from equation (3), (4) and (5).

CTFD (t, ω) =
∫∫

1
√
4 π β

e−
(u−t)2
4β −ατ

2

x
(
u+

τ

2

)
x∗
(
u−

τ

2

)
e−jωτdudτ (6)

The equation (6) is discretized as follows:

CTFD (n, k) = 2
∑
m

∑
l

1
√
4πβ

e−
T2s (l−n)

2

4β −4αT 2
s m

2

x (l + m) x∗ (l − m) e−j
4πkm
N (7)

where N is the length of the received signal, and Ts is
the sampling period of signal. In this paper, we set
N = 1024, Ts = 1, α = 0.0005, β = 0.001. Figure 3 shows
the TFIs of twelve different signal modulation types obtained
by the CTFD.

FIGURE 3. The TFI of the SFM signal extracted by CWD and CTFD with a
new kernel function when the SNR is −6 dB. (a) CWD. (b) CTFD.

B. 2-D WIENER FILTERING
Though designing kernel function of CTFD can reduce noise,
there still exist a lot of noise in TFI at low SNR. These
noises will seriously affect the recognition of signal modu-
lation. Therefore, we need to filter the TFI of the signal to
further reduce the nosie. A Gaussian white noise stationary
random process after time-frequency transform is a white
noise stationary random process [21]. 2-D Wiener filtering
is an adaptive filter which adjusts the effect of the filter
according to the local variance of the image. It has a better
filtering effect on white noise. A 2-D Wiener filtering is
used to filter the TFI of the signal in this paper. We give a
detailed calculation procedure for 2-D Wiener filtering. For
more principles, please refer to [26].

Suppose am×n pixel two-dimensional image is expressed
in matrix Hm×n and each pixel can be expressed as H (i, j),
i = 1, · · ·,m, j = 1, · · ·, n. We need to select a filter
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FIGURE 4. The TFIs of different modulation types signals: (a) LFM, (b) MP, (c) SFM, (d) BPSK, (e) 2FSK, (f) 4FSK, (g) LFM-BPSK,
(h) DLFM, (i) EQFM, (j) MLFM, (k) 2FSK-BPSK, (l) Frank code.

neighborhood ηa×b with a pixel size of a × b. Then the
mean µ and variance σ 2 of the neighborhood of each pixel
is calculated by equation (8) and (9).

µ =
1
ab

∑
i,j∈η

H (i, j) (8)

σ 2
=

1
ab

∑
i,j∈η

H2 (i, j)− µ2 (9)

P (i, j) = µ+
σ 2
+ σ 2

N

σ 2 [H (i, j)− µ] (10)

Finally, the filtered image Pm×n can be calculated by (10).
Where σ 2

N is the noise variance, since the variance of the noise
is unknown, we can replace it with the average of all the local
estimates of variance. Regarding the size of ηa×b, we can
choose the appropriate size based on experience. Here we set
ηa×b to 40× 40.

C. IMAGE RESIZING AND IMAGE BINARIZATION
In order to reduce the computational complexity and simplify
the complexity of the convolutional neural network classifier,
we need to resize the TFI of the filtered signal. This paper uses
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FIGURE 5. The binary image after the image in Figure 4 (b) is resized to
64×64 and binarization.

bilinear interpolation to resize the TFI. The original image
Pm×n is resized to be the image Al×k by bilinear interpo-
lation. Then the pixel value of Al×k can be calculated by
equation (11) and (12).

A (x, y) = P (i+ p, j+ q) (11)

P (i+ p, j+ q) = (1+ p) (1− q)P (i, j)

+ (1− p) qP (i, j+ 1)

+ p (1− q)P (i+ 1, j)

+ pqP (i+ 1, j+ 1) (12)

where i and p are integral parts and decimal parts of mx
/
l,

respectively. j and q are integral parts and decimal parts
of ny

/
k , respectively.

For the approach proposed in this paper, the morphological
characteristics of the TFI of signal are crucial. In order to
reduce noise and computational complexity while preserving
the morphological characteristics of the image, the TFI needs
to become binary image. The Otsu method is utilized to make
the image binary processing in this paper [27]. The Otsu
method can be written as

max
th

f (th)=
N1N2

(lk)2

[
1
N1

N1∑
n=1

A1 (n)−
1
N2

N2∑
m=1

A2 (m)

]2
(13)

s. t. if A (i, j) ≥ th, A1 = A (i, j)
otherwise A2 = A (i, j)

(14)

where th is the threshold, N1 and N2 are the length of A1 and
A2,respectively. A (i, j) needs to be converted to gray value,
A (i, j) ∈ [0, 255].

Using ergodic method to solve equation (13) and equation
(14), we get the optimal threshold Th. The binary image K is
given by

K (i, j) =

{
1 H (i, j) ≥ Th
0 H (i, j) < Th

(15)

Figure 5 shows the binary image after the image
in Figure 4 (b) is resized to 64×64 and binarization. As shown
in Figure 5, the binary image still can well reflect the morpho-
logical features of the TFI.

IV. CLASSIFICATION
This section introduces in detail CNN and the radar sig-
nal modulation recognition approach proposed in this paper.
It focuses on the basic principles of CNN and the structure
of the CNN used in this paper. Then the specific steps of the
proposed approach are described in detail.

A. DESIGN OF CONVOLUTIONAL NEURAL NETWORK
CNN is a kind of neural network that is specially used
to process data with similar grid structure. It has excellent
performance in the field of image recognition. CNN gen-
erally include convolutional layer, pooling layer, fully con-
nected layer and activation function [28]. Figure 6 shows the
CNN structure designed for classification in this paper. The
CNN has a total of eight layers, including four convolutional
layers, three pooling layers and one fully connected layers.
The size of the input layer is 64×64×1 pixels. There are
12 neurons in the output layer, representing 12 categories.
The size of the convolutional kernel is 5×5. All the other
parameters have been shown in Figure 6. The following will
detail the CNN calculation process.

Assume that the input size of the convolutional layer is
M×M×D, denoted by I , whereD is the number of channels.
The size of the convolution kernel K is N × N × D and its
number is P. The stride of convolution is 1. The convolution
process can be denoted as

S (i, j, p) =
D∑
k=1

N−1∑
m=0

N−1∑
n=0

I (i+ m, j+ n, k)

×Kp (m, n, k)+ biasp (16)

where Kp and biasp denote the p-th convolutional kernel
and its bias, respectively. S denotes convolution output and
i, j ∈ [1,L], L =

⌊M−N
stride + 1

⌋
.

In general, in order to obtain a nonlinear representation,
a nonlinear activation function needs to be added after the
convolution output. The ReLU function is a commonly used
activation function in modern convolutional neural networks
because it effectively suppresses the disappearance of gradi-
ents. The ReLU function is denoted as

f (x) = max (0, x) (17)

Thus, the output of the convolutional layer, called feature
map, can be expressed as

Sout (i, j, p) = max [0, S (i, j, p)]

(18)

In order to reduce data dimensions and parameters, to pre-
vent overfitting, the pooling layer needs to be used to process
the output of the convolutional layer. In this paper, we use
2×2 maximum pooling and its stride is 2. Therefore, the out-
put of the pooling layer Sd is

Sd (i, j, p) = max
m,n∈{0,1}

{Sout (2i+ m− 1, 2j+ n− 1, p)}

(19)
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FIGURE 6. The structure of CNN designed for classification in this paper.

where i, j ∈
[
1,
⌈L
2

⌉]
. If the dimension of Sout is not

enough, padding zero can make the dimension of Sout meet
the requirements.

Use (16), (18) and (19) to calculate CNN until the last
convolution layer. Slast denotes the output of the last convo-
lutional layer. As shown in Figure 6, Slast is a 1000 dimen-
sional vector. Note that W10 is the weight matrix of the fully
connected layer and the last convolutional layer, W21 is the
weight matrix of the output layer and the full connected layer.
Thus, the calculation of the last two layers is

h = f (W10Slast + b1) (20)

out = W21h+ b2 (21)

where h and out are the output of the fully connected layer
and the output of the output layer, respectively. b1 and b2 are
biases.

In order to get the probability classification result, we add
Softmax function to the output layer to get the final probabil-
ity classification output. The final probability classification
output ŷ is

ŷi = P (y = i| out) =
eout

i

12∑
i=1

eout i
(22)

where ŷ =
[
ŷ1, ŷ2, · · ·, ŷi, · · ·, ŷ12

]T
. ŷi represents the proba-

bility that the input is classified as class i. out i represents the
i-th component of the vector out . The category corresponding
to the maximum ŷ is the CNN classification result.
With regard to the optimization of CNN in Figure 6,

we choose the cross-entropy as the loss function. Well,
the training of the CNN can be written as

min
{
−
[
y log

(
ŷ
)
+ (1− y) log

(
1− ŷ

)]}
(23)

where y is the one-hot encoding of the data label.
Using a stochastic gradient descent method, we can eas-

ily optimize the solution (23). In the structure of the CNN
shown in Figure 6, as the depth of the convolution deepens,
the height and width of the feature map decrease. In order to
reduce the loss of information, deep learning research shows
empirically that the depth of the feature map must increase.
This means that the deeper convolutional layer has more

convolutional kernels and more calculations. We follow this
empirical criterion when designing the CNN. In fact, it is
difficult to find the optimal hyperparameter of a CNN, but
it is easy to find a set of hyperparameter that make CNN
works well. According to our experiment, we set a set of
hyperparameters that make the designed CNN have good
classification performance. This set of hyperparameters is
marked in Figure 6.

B. DETAILED PROCESS OF THE APPROACH
The basic principles of the radar signal intra-pulse modula-
tion recognition approach based on deep convolutional neural
network have been described above. The detailed process of
the algorithm will be given below.
Step 1: By using equation (7), the TFI of the received radar

signal is obtained as Hm×n. In this paper, the size of the TFI
is 1024× 1024.
Step 2:Matrix Hm×n is processed by 2-D Wiener filtering,

and matrix Pm×n is obtained. The neighborhood ηa×b size
of 2-d Wiener filtering is 40× 40.
Step 3: Using bilinear interpolation to resize Pm×n to

64×64, then using the Otsu method to obtain a matrix Km×n.
Step 4: The training set of CNN is obtained through

the above steps, and the training set is used to train the
CNN designed in this paper.
Step 5: Using the trained CNN to identify the data pro-

cessed in Step 1-3, the recognition of the intra-pulse modula-
tion of the radar signal is achieved.

V. SIMULATION RESULTS AND ANALYSIS
In this section, the performance of the proposed approach
is analyzed using simulation data. The noise of signal is
additive Gaussian white noise. Classification performance is
measured as a function of the SNR. The SNR is defined as
SNR = 10log10

(
σ 2
s
/
σ 2
n
)
. σ 2

s and σ 2
n are signal power and

noise power, respectively.
There are twelve kinds of simulation radar signals,

including LFM, SFM, 2FSK, 4FSK, DLFM, EQFM,
MLFM, BPSK, Frank, MP, LFM-BPSK and 2FSK-BPSK.
The frequency parameters of the signals are normalized.
In order to analyze the generalization performance of the
approach, the parameters of all the simulation signals have
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TABLE 1. Simulation radar signal parameter table.

a dynamic range. The detailed parameters of the signals are
shown in Table 1. The signal length is N = 1024. For each
kind of radar signal, we simulate 200 samples every 2 dB as
training set when SNR ranges from −6 dB to 10 dB. There
is a total of 21600 samples in the training set. When SNR
ranges from−10 dB to 10 dB, we simulate 100 samples every
2 dB for each kind of radar signal as test set. There is a total
of 13200 samples in the test set.

A. THE PSR OF THE PROPOSED APPROACH
Figure 7 shows the relation curve between the PSR and
the SNR. From Figure 7, the PSR of the proposed approach is
positively related to the SNR. When the SNR≥0 dB, the PSR
of the approach for twelve kinds of signals is 100%. When
the SNR≥−6 dB, the PSR of the approach is more than 91%.
With the further decline of SNR, the PSR of the approach
begins to decline clearly, especially for LFM, MP, BPSK,
DLFM, EQFM and Frank signals. But when the SNR is
−8 dB, the approach still maintains more than a PSR of 80%
for SFM, 4FSK, LFM-BPSK, MLFM and 2FSK-BPSK. This
shows that the proposed approach is effective and robust.

In order to further analyze the performance of the pro-
posed approach, we compare the approach with the existing
approach (based on [22]). In [22], the TFI of the radar sig-
nal is extracted by CWD, and then the TFI is resized and
binarized using the nearest neighbor interpolation method
and the global threshold method. Finally, using LeNet-5 to
realize signal recognition. From Figure 7, it can be clearly
seen that the PSR of the proposed approach is higher than

FIGURE 7. The relation curve between the PSR of signal and the SNR.

that of the existing approach for twelve kinds of signals at the
same SNR. When the SNR is −6 dB, the PSR of the exist-
ing approach is very low, and the existing approach cannot

VOLUME 6, 2018 43881



Z. Qu et al.: Radar Signal Intra-Pulse Modulation Recognition Based on CNN

TABLE 2. Confusion matrix for the proposed approach at SNR of −6 dB.

achieve the recognition of twelve kinds of signals. By con-
trast, the overall PSR of the proposed approach is 96.1%
at SNR = −6 dB. This demonstrates that the proposed
approach has higher PSR and stronger anti-noise ability
than the existing approach. This is mainly because we have
adopted different methods from [22] to extract, process and
identify the TFI of radar signals. First, we designed a new
kernel function for the CTFD, which has been analyzed to be
more suitable for extracting the TFI of radar signal and have
stronger anti-noise performance than CWD in Section III-A.
Second, we performed 2-D Wiener filter processing on TFI
before resizing and binarizing the TFI of radar signal, which
can further reduce noise and improve the quality of the TFI.
Third, we built a CNN deeper than LeNet-5. It has two
more convolutional layers than LeNet-5, and the size of the
input layer increased from 32×32 to 64×64, which makes
CNN have better classification performance than LeNet-5.
In addition, regarding the impact of these three points on the
proposed approach, wewill perform simulation analysis later.

Table 2 shows the confusion matrix for the proposed
approach at SNR of −6 dB (100 tests for each signal). It can
be seen from the table that the approach has a very good
PSR for all twelve kinds of signals. The signals with the
lowest PSR are LFM signals with a PSR of 91%. According
to the confusion matrix, the recognition error occurs mainly
between the signals pairs which have similar TFIs, such
as LFM and LFM-BPSK signals, 2FSK and 2FSK-BPSK
signals, MP and BPSK signals. This is mainly because the
TFI of the BPSK signal exists some small frequency jump,
which is the main difference between BPSK signal and MP
signal. These small frequency jump become blurred and even
lost under the influence of noise and image resizing, leading
to confusion between signals.

B. THE EFFECTS OF TFI EXTRACTION AND PROCESSING
ON THE PSR OF THE PROPOSED APPROACH
In order to verify the validity of the new kernel function
proposed in this paper for CTFD, we compare it with CWD.
The comparison result is shown in Figure 8. It can be seen
from this figure that the performance of CTFD with a new
kernel function for the proposed approach is better than that

FIGURE 8. The effects of the kernel function on the PSR of the proposed
approach.

of CWD. This is due to the fact that the kernel function of
CWD is unable to filter the frequency shift axis in the fuzzy
domain. In other words, the TFI extracted with CWD has
more noise than the TFI extracted with the CTFD proposed
in this paper at low SNR. Hence, the CTFDwith a new kernel
function has better anti-noise performance than CWD.

Figure 9 displays the TFI of the 4FSK signal before and
after filtering when SNR = −4 dB. It can be clearly seen
from the figure that the TFI noise of the signal is effectively
smoothed after 2-DWiener filtering. This guarantees that the
binarized TFI of radar signal has less noise in a low SNR
environment. Figure 10 shows the effect of 2-DWiener filter-
ing on this approach. As shown in Figure 10, the overall PSR
of the approach without 2-D Wiener filtering is significantly
lower than that of the approach using 2-D Wiener filtering
at the same SNR. In particular, when the SNR = −6 dB,
the approach using 2-D Wiener filtering achieved an overall
PSR of 96%, while the approach without 2-DWiener filtering
had an overall PSR of only 63%. This shows that 2-DWiener
filtering can effectively improve the approach performance.

In addition, we explored the effect of the size of the
CNN input layer on the performance of the approach.
Figure 11 shows the effect on the overall PSR of
the approach when the sizes of the CNN input layer
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FIGURE 9. The TFI of 4FSK signal before and after 2-D Wiener filtering
(SNR=−4 dB). (a) Before 2-D Wiener filtering. (b) After 2-D Wiener
filtering.

FIGURE 10. The effects of 2-D Wiener filtering on the PSR of the proposed
approach.

are 32×32, 64×64 and 128×128, respectively. From
Figure 11, when the CNN input layer size is 64×64,
the overall PSR of the approach is highest at the same SNR
(SNR≥−6 dB). There are two main reasons for the result
shown in Figure 11. One reason is that if the input layer of
the CNN is too small (such as 32×32), the TFI of signal will
lose more detail information (such as small frequency jump
of the TFI of BPSK signal), which will result in signals with
similar TFI that is hard to be identified under the influence
of noise. The other reason is that if the input layer of CNN is
too large (such as 128×128), the number of CNN layers must
be increased for the CNN model in this paper while keeping
the convolution kernel size of CNN unchanged. However,
an excessive number of CNN layers can lead to over-fitting

FIGURE 11. The effect of the input layer size of the CNN on the PSR of the
proposed approach..

and gradient vanishing of the CNNmodel, thereby degrading
the performance. Therefore, the size of the input layer of
CNN can neither be too small nor too large. For the approach
proposed in this paper, we think that it is reasonable to set the
input layer size of CNN to 64 × 64.

VI. CONCLUSION
In this paper, we proposed an intra-pulse modulation recogni-
tion approach for radar signal based on convolutional neural
network. The approach can identify twelve kinds of radar
signals (including LFM, SFM, 2FSK, 4FSK, DLFM, EQFM,
MLFM, BPSK, Frank, MP, LFM-BPSK and 2FSK-BPSK)
in a low SNR environment. Simulation results show that
the overall PSR of the approach is as high as 96.1% for
twelve kinds of radar signals when the SNR is −6 dB. This
shows that the approach is useful and reliable. The proposed
approach has good adaptability and it can effectively identify
radar signals with large variation range parameters. It can be
used in electronic reconnaissance, electronic resistance and
other fields to identify radar signals. We have only studied
the modulation recognition of intra-pulse single-component
radar signals in this paper. However, space electromagnetic
pulse density is getting bigger and bigger. How to realize the
modulation recognition of the intra-pulse multi-component
radar signal has become a problem to be solved. This is also
our future research work.
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