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ABSTRACT The false data injection (FDI) attack is a potential threat to the security of smart grids,
and therefore, such threats should be assessed carefully. This paper proposes a self-governing FDI attack
method with exploitation and exploration mechanisms and then evaluates its threat to power systems.
The attack is executed by viruses embedded in monitoring systems in substations. First, the FDI attack
is formulated as a partially observable Markov decision process. Then, an improved online reinforcement
learning method called nearest sequence memory Q-learning is adopted to make the attack more effective.
Finally, propagation, an inherent property of viruses, is described using a propagation-evolution model that
serves as the exploration mechanism for the proposed FDI attack. To validate the proposed attack method,
cosimulations of daily operations of the IEEE 39-bus system are performed in which both the automatic
voltage control system and the proposed FDI attack are modeled. Test results show that the proposed
FDI method can cause voltage collapse even if only a few substations are infected.

INDEX TERMS Cybersecurity, false data injection, partially observable Markov decision process, nearest
sequence memory Q-learning.

I. INTRODUCTION
A. MOTIVATION
Novel communication technologies and control methods can
enable better smart grid regulation; however, they also intro-
duce serious cybersecurity threats [1]. For example, in 2010,
the ‘‘Stuxnet’’ worm hit the staff computers of an Iranian
nuclear plant and caused irreversible damage [2]. This is
an example of a typical cyberattack against a power sys-
tem. Cyberattacks may also cause cascading failures in a
power system, thereby posing a serious threat to national
infrastructure [3], [4].

A false data injection (FDI) attack is an important type
of cyberattack in which a malicious attacker injects false
data into a control and communication system to disrupt its
normal operation [5]. Researchers have shown the existence
of attack patterns capable of bypassing state estimation (SE)
and presented the smallest set of manipulated measurements
needed to launch a hidden attack [3]. The threat of FDI attacks
cannot be neglected and should be assessed thoroughly.

This study develops a novel self-governing FDI attack
model with weak assumptions to make it more realistic.
In contrast to existing studies, it is assumed that viruses
know nothing about the parameters and topology of a target
system. A virus can only obtain local measurements from its
host substation. Such attacks are launched by independent
viruses enhanced with reinforcement learning. The attacker
only has to embed one virus in the target system, following
which the virus can propagate through the target system
and independently launch decentralized attacks. Studies on
FDI attacks enhanced with reinforcement learning may help
in identifying vulnerabilities in a power grid and in perform-
ing a security assessment.

B. RELATED WORK
Studies on FDI attacks vary depending on the perspective of
the attack targets. Sridhar andGovindarasu [6]modeled smart
FDI attacks against automatic generation control systems and
proved that the system frequency is affected by such attacks.
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Sridhar and Manimaran [7] discussed direct and indirect
FDI attacks against automatic voltage control (AVC) systems
as well as the disturbance of bus voltages through sensitivity
analysis. Electricity market operations are also vulnerable to
FDI attacks [8], [9].

Most studies usually make some basic assumptions. For
example, some studies [5], [10]–[12] assumed that attack-
ers can obtain complete knowledge of the system topology,
parameters, and measurements. In this case, constructing
an attack pattern becomes an optimization problem. Other
studies [6], [7], [13] assumed that FDI attacks are launched
based on local topological, electrical parameters, and local
measurements and then presented static attacking strategies.
Sou et al. [14] discussed a dynamic strategy. Yu and Chin [15]
proposed a blind FDI attack. Attackers who do not know
the system parameters or topology uses principal component
analysis to infer critical information from limited measure-
ments. For example, Kim et al. [16] inferred information
using a subspace method. An effective FDI attack strategy
that can be performed using only limited knowledge and
information will be more cost effective and less detectable
and, consequently, a bigger security threat. From this per-
spective, this study discusses an FDI attack strategy based on
reinforcement learning. In this strategy, an attacker launches
attacks through viruses that attack substations independently
without centralized control. The viruses do not know the
topological or electrical parameters of the substation; there-
fore, they obtain information from their host substations.

Exploration is a key part of this decentralized attack.
Viruses exploit information about the host substation and per-
form a wide exploration of different substations. They dupli-
cate, propagate, accumulate information, and evolve within
the cyber-physical system. Many studies have investigated
virus propagation models. Draief et al. [17] discussed how
the cybersystem topology and probability of spread affect
the final propagation state. Other studies [18], [19] modeled
virus propagation accurately using a Markov chain and then
simplified it. Yang et al. [20] discussed a bivirus compet-
ing propagation model in cybersystems. In this light, this
study presents a simplified propagation-evolution model to
describe a multiple substation infection scenario and dis-
cusses the possible impact on the power system.

C. CONTRIBUTIONS
This study discusses decentralized FDI attacks with exploita-
tion and exploration mechanisms. It makes the following
contributions:

(1) This study proves the feasibility of purely data-driven
FDI attacks on power systems. The attacker launches this
attack without knowing the topological and electrical param-
eters of the target system. It is assumed that the attacker can
only observe local measurements in a substation. Under these
weak assumptions, the FDI attack becomes more realistic but
may be less effective. After modeling the FDI attack from a
substation as a partially observed Markov decision process
(POMDP), we apply online reinforcement learning to find

an optimal attack strategy. Then, we develop an effective
FDI attack method that is strictly constrained by the above
assumptions. Finally, this attack is executed through a mali-
cious virus injected into the substation that aims to disrupt
normal power system operations.

(2) This study introduces a virus propagation model to
the FDI attack method. This model describes the stochas-
tic process of a virus spreading in a target power system.
Although worm spreading has been studied extensively in the
field of cybersecurity, ours is the first study of FDI attacks
on power systems in consideration of virus-spreading effects.
Test results show that after several rounds of spreading,
the proposed virus-based FDI attack can create voltage col-
lapses easily.

(3) This study presents a knowledge merging method
for accumulating useful experiences from different virus
instances. Through remaining dominant utility functions
associated with states and actions, a new Q-matrix is gen-
erated and referred for late attacks when two viruses meet
at the same substation. This method enables virus evolution,
thereby speeding-up information accumulation and enhanc-
ing the efficacy of proposed FDI attacks.

(4) This study also discusses the weakness of the proposed
FDI attack and proposes a defense strategy against it.

II. PROBLEM DESCRIPTION
This study discusses decentralized FDI attacks with exploita-
tion and exploration mechanisms. The target system is an
AVC that regulates the active and reactive power outputs of a
generator. The AVC systemmodel includes models for power
flow (PF), SE and bad data identification (BDI) system, and
optimal power flow (OPF). The AVC optimizes a power
system’s reactive power flow and sends commands to the
generators’ automatic voltage regulators. Fig. 1 shows the
AVC system and an FDI attack against it.

FIGURE 1. AVC system.

A power system’s PF is modeled using a set of time-variant
nonlinear equations in which the load shape is defined by
a load curve. This study considers a distributed slack bus
instead of a single slack bus.

The weighted least squares approach is commonly used
for modeling SE. It has a simple BDI mechanism that uses
residual examination. Detailed models of SE and BDI can be
referred elsewhere [21].
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In the OPF model, the objective function is to minimize
net loss. The PF and bus voltage constraints are set to ensure
that the system runs within the safe zone. The OPF model is
expressed as follows:

min
PGen

cTp (PGen − PLoad)

s.t.



PGen − PLoad − P(θ,V) = 0

QGen − QLoad − Q(θ,V) = 0

PGmin ≤ PGen ≤ PGmax

QGmin ≤ QGen ≤ QGmax

1QGmin ≤ 1QGen ≤ 1QGmax

Vmin ≤ V ≤ Vmax

PBr min ≤ PBr ≤ PBr max

QBr min ≤ QBr ≤ QBr max.

(1)

where PGen and QGen are respectively the active power and
reactive power output of generators, PGmax and PGmin are
respectively the upper and lower limits for the active power
output of a generator, QGmax and QGmin are respectively
the upper and lower limits for the reactive power output
of a generator, PLoad and QLoad are respectively the active
and reactive loads, V and θ are respectively the magnitude
and phase angle of the bus voltage, P(θ,V) and Q(θ,V)
are respectively the functions for calculating the active and
reactive power flows using a complex bus voltage, PBr is
the vector of the branch active power flow, PBr min and
PBr max are respectively the lower and upper limits for the
branch active power flow, QBr is the vector of the branch
reactive power flow, and QBr min and QBr max are respectively
the lower and upper limits of the branch reactive power
flow.

The OPF and SE modules rely on correct and intact
data collected from each substation. A malicious attacker
embeds viruses into substations and interrupts normal uplink
data. This study uses weak assumptions of the information
obtained by the attacker to enhance the feasibility and practi-
cality of the proposed FDI attack method. These assumptions
are listed below:
• The viruses do not know the topological and electrical
parameters of the power system.

• The viruses can only observe local measurements from
the host substation and only decide the optimal attack
strategy based on local measurements.

• Viruses can spread through the network carrying their
previously learned knowledge.

The attack uses both ‘‘exploitation’’ and ‘‘exploration’’
mechanisms. (1) ‘‘Exploration’’: A virus does not know
the topological and electrical parameters of the power sys-
tem. It has to learn these through trial-and-error. In each
trial, the virus performs an action and observes the sys-
tem feedback. Gradually, the virus collects more infor-
mation about the system, thus making its attacks more
threatening. ‘‘Exploitation’’ thus represents the process
of obtaining information through reinforcement learning.

(2) ‘‘Exploitation’’: Viruses duplicate and spread to other
substations through a propagation process, as discussed in
Section V. When doing so, they carry previously learned
knowledge. Finally, viruses can accumulate knowledge
learned from all substations to enhance their attack effects.

This study evaluates the impact of the newly proposed
FDI attack on power systems. By understanding the attack
mechanism, defense strategies can be developed to enhance
power system security.

III. FDI ATTACK MODEL
As shown in Fig 2, the POMDP is used to describe an
FDI attack launched by viruses. A POMDP consists of the
following eight elements: state, observation, action, state-
transition probability, state-observation probability, reward,
and strategy:

{S,O,A,P,B,R(o, a), π(o)} . (2)

A. STATE AND OBSERVATION
The complex bus voltage vector is set to be the POMDP state,
that is, s = [V , θ]. S denotes the set of all possible s.

FIGURE 2. FDI attacks modeled using POMDP.
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A virus can obtain measurements from its host substation
through a POMDP observation as expressed below:

Mob =
[
m1,m2, · · · ,mnM

]T
, (3)

where Mob ∈ RnM are the measurements acquired by the
virus from the host substation, nM is the number of mea-
surements, and mi represents the ith measurement of the
substation. The discrete per unit value of each measurement
mi is defined as follows:

si = k, if mi ∈
[
m0
i + (k − 1)1mi, m0

i + k1mi
)
, (4)

where m0
i is the lower limit of mi; 1mi, the interval between

discrete values; k , an integer that satisfies 1 ≤ k ≤ nDMi ;
and nDMi , the number of discrete steps. Hereafter, Mob is
simply denoted as o.

B. ACTION
The virus manipulates measurements sent from substations to
the control center. These measurements are expressed as

M false =

[
mf1,m

f
2, · · · ,m

f
nM

]T
with

mfi = mi × ri, i = 1, 2, . . . , nM , (5)

where ri is the error ratio of measurement mi; it is adjusted
according to the POMDP state. We set the error ratio interval
as rmin

i ≤ ri ≤ rmax
i . Then, ri may be discretized as follows:

ri = rmin
i + ai ·1ri

with

ai = 0, 1, 2, · · · ,

⌊
rmax
i − rmin

i

1ri

⌋
, (6)

where b·c means that fractions are rounded down and ai is
the false data injection action for the ith measurement. Then,
the virus action can be represented by vector a:

a =
[
a1, a2, · · · , anM

]T
. (7)

Thus, the number of all possible POMDP actions is

na =
nM∏
i=1

⌊
rmax
i − rmin

i

1ri

⌋
. (8)

The set of all possible POMDP actions a is denoted as A.

C. PROBABILITIES OF STATE TRANSITIONS AND STATE
OBSERVATIONS
The virus observes measurements of its host substationMob.
Then, it injects certain false data, denoted as action a. The
power system is disturbed by the injected false data, and
the state transitions from s to s′ are described by the state
transition probability P

(
s′|s, a

)
in the POMDP model. The

state transition probability satisfies the following constraint:∑
s′∈S

P
(
s′|s, a

)
= 1,∀s ∈ S, a ∈ A. (9)

However, state s is unobservable for the virus; thus, the state
transition probability cannot be acquired.

The state observation probability B(o|s) is defined as the
probability of observing o given system state s. Similarly,
the following constraint exists:∑

o∈O

B (o|s) = 1,∀s ∈ S. (10)

D. REWARD
When the bus voltage goes beyond its range, stability prob-
lems are likely to occur. Thus, the proposed attack uses
bus voltage sag as the immediate reward for the attacker as
follows:

R(s, a) =

{
D(V0)− D(Vt ) a 6= a0
R0 a = a0,

(11)

where Vt is the magnitude of the bus voltage of the host sub-
station after false data has been injected; V0, the normal bus
voltage; and D(V0) − D(Vt ), the discretized bus voltage sag.
The action corresponding to unmanipulated data is denoted
as a0 = [1, 1, · · · , 1]T . Reward R0 represents the reward for
action a0. D(·) is the discretization function for bus voltage,
and it is defined as follows:

D(V ) = k if

{
V ∈

[
V 0
i + (k − 1)1Vi, V 0

i + k1Vi
)

1 ≤ k ≤ NDS
Vi ,

(12)

where V 0
i is the lower limit for the discretized bus voltage;

1V , the discretization interval; and NDS
Vi , the number of

discretization levels. Reward R0 can be expressed as

R0 = D(V0)− D(Vex), (13)

where D(Vex) is the bus voltage that the attacker hopes to
achieve. A larger R0 value leads to more conservative attacker
behavior. For a large R0 value, viruses tend to choose no data
manipulation as the optimal action.

IV. EXPLOITATION USING REINFORCEMENT LEARNING
In the proposed attack, the virus must learn a pragmatic attack
strategy. Reinforcement learning is an effective approach for
obtaining a suboptimal solution of a POMDP. In this study,
nearest sequence memory (NSM) is used to achieve bet-
ter performance. McCallum [22] proposed NSM Q-learning
and showed that it performs well for robot navigation.
NSM Q-learning drives the virus to learn online and to
generate and adjust its attack strategy. Ordinary Q-learning
only considers the current state when updating the Q matrix,
whereas NSM Q-learning additionally considers the history
states. The NSM Q-learning process can be described as
follows:

{A,O, rt ,Y , q(y),Q(t, a)} , (14)

where A and O have the same definitions as those in (2).
In addition, rt is the reward acquired at moment t . The buffer
memory Y = [y1, y2, · · · , yt ] records the entire history of
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yt = (ot , at ). The depth of this buffermemorymust be limited
from the viewpoint of complexity. If t > ny, the first t − ny
entries will be deleted, giving

Y =

{
[y1, y2, · · · , yt ] t ≤ ny
[yt−ny , yt−ny+1, · · · , yt ] t > ny.

(15)

NSM Q-learning considers the nearest sequence memory
recorded in Y . The neighbor function is introduced to
describe the ‘‘distance’’ between two memories yi1 and yi2 :

N (yi1 , yi2 ) =

{
N (yi1−1, yi2−1)+ 1 yi1 = yi2
0 yi1 6= yi2 .

(16)

For yi1 , the set of its kN nearest memories is denoted
as YN (yi1 ), where kN is a crucial parameter for the
NSM Q-learning algorithm.

Reward Q(t, a) is the overall reward for a certain action a,
and it is calculated as follows:

Q(t, a) =
1
kN

t∑
i=1

q(yi)δt,a(yi)

with

δt,a(yi) =

{
1 yi ∈ YN (ot , a)
0 otherwise,

(17)

where q(yi) is the utility function for memory q(yi). The
optimal action is selected according to Q(t, a) as

at = argmax
a∈A

Q(t, a). (18)

After the action is executed, the system state transitions
from st to st+1, and the virus obtains new observation ot+1.
According to the observed bus voltage, utility function q(yt )
is updated as follows:

q(yt )=
(
1− βδ(yt )

)
q(yt )+βδ(yt )

(
rt+γ max

a∈A
Q(t+1, a)

)
.

(19)

Utility function q(y) is equal to the Q function in ordinary
Q-learning. Figure 3 shows a simplified diagram of an FDI
attack simulation. The simulation consists of three simulation
phases: physical system, FDI attack, and control system.

V. EXPLORATION THROUGH PROPAGATION
The proposed FDI attack is launched through viruses. The
viruses exploit knowledge about the system by using rein-
forcement learning. By contrast, existing studies mostly
focused on centralized attacks in which attackers collect
information from various substations and decide whether to
inject false data into particular substations. When a virus
directly launches an attack, it can only obtain and manipu-
late local measurements. In both biology and cybersecurity,
propagation and mutation are important features of viruses.
Viruses perform exploitation to collect information about the
host substation as well as vast exploration through different
substations. They duplicate, propagate, and evolve in the
cyber-physical system. We develop a simplified propagation-
evolution model to describe these features.

FIGURE 3. Flow diagram of FDI attack simulation.

A. PROPAGATION
Propagation is an inherent feature of viruses. A power sys-
tem is a large-scale and sophisticated system. It would be
difficult to seriously damage such a system with a single
virus injecting false data into a single substation. There-
fore, a pragmatic virus-launched FDI attack on a large
system requires an exploration mechanism for propagat-
ing through and learning from the system. In this study,
the virus has no knowledge before infection and learns every-
thing through trial-and-error. It duplicates and explores other
substations.

VOLUME 6, 2018 48789



Z. Wang et al.: Power System Security Under FDI Attacks

The propagation model used in this study is a simplified
version of the model proposed in [18]. Figure 4 shows a
simple illustration of this model that describes the propa-
gation probabilistically. As mentioned in Section I, in the
initial state, the attacker knows nothing about the topo-
logical structure of the target power system. Thus, the
initially infected substation can be considered a random
selection. We denote the probability that substation i is the
first infected one as Pinit(i). Thus, the following constraint
exists:

nbus∑
i=1

Pinit(i) = 1. (20)

Assume that the propagation process for each virus is inde-
pendent. At every time step, each virus has a probability
of propagating to a certain substation. Let Pinfectt,i be the
probability that substation i has been infected at time t .
The infection probability is denoted as Pt,i(j). Here,
Pt,i(j), i 6= j represents the probability of a virus spreading
from substation i to substation j. Furthermore, Pt,i(i) means
that substation i is infected at time t and remains infected at
the next time; in other words, the virus is not eliminated at
time t . Similarly, the probability that the virus is removed is
defined as 1 − Pt,i(i). Then, the probability of substation j
being infected at time t + 1 can be described as

Pinfectt+1,j = 1−
∏
i∈L

(
1− Pt,i (j)

)
, (21)

where L in (21) denotes the set of all infected substa-
tions. In the simulation, the propagation is a random process
described by Pinit(i) and Pt,i(j).

FIGURE 4. Virus propagation model.

B. EVOLUTION
The proposed attack uses a simple evolution model of the
virus considering previously learned knowledge. When a
virus duplicates itself and spreads to another substation,
the copies inherit the previously learned knowledge; however,
they are not the same viruses anymore. They continue to
exploit this knowledge in different substations, and therefore,
the knowledge they carry differs. When exploring different
substations, some viruses will accumulate knowledge and
launch more dangerous attacks. Knowledge inheritance is
possible because of the same structure of knowledge in NSM
Q-learning and the homogeneity of the power system. In other
words, similar types of measurements are made in different
substations. The values of certain types of measurement in
different substations, for example, bus voltage magnitude, are
similar in per-unit values. Because of these properties, data
alignment is relatively easy in NSMQ-learning. Furthermore,
knowledge learned in one substation is probably valid in
another substation because of these properties.

If two viruses meet in a substation, for example, substation
j is already infected when another virus spreads from substa-
tion i to j, the evolution model needs to be considered. This
situation may not occur if the infection probability Pt,i(j) is
small. However, it is likely to occur if the infection probability
is large. In this situation, the different ‘‘knowledge" carried by
viruses is merged.

The merging of two viruses refers to their knowledge
gained from previous attacks being merged to formulate an
updated attack strategy. Then, using this updated attack strat-
egy may make FDI attacks on a newly intruded substation
more efficient and effective. The merging of two utility func-
tions is a point-to-pointmerging. It depends on the property of
the function, which is discretized and is expressed as amatrix.
Merging the ‘‘knowledge’’ of two neural networks is much
more difficult. In (22), y = (o, a) represents taking action a
under observation o. Merging is performed separately for
each yi, through which the ‘‘experience’’ of two viruses
under similar conditions is merged. For two utility functions
q1(y) and q2(y) that represent two viruses, the merged utility
function q∗(y) is defined as follows:

∀y q∗(y)

=


0 q1(y) = 0 and q2(y) = 0
max(q1(y), q2(y)) q1(y) 6= 0 or q2(y) 6= 0
Sq1
Sq
q1(y)+

Sq2
Sq
q2(y) q1(y) 6= 0 and q2(y) 6= 0,

(22)

where 
Sq1 =

∑
∀y q1(y)

Sq2 =
∑
∀y q2(y)

Sq = Sq1 + Sq2 .

(23)

Note that ∀y means y = (o, a),∀o ∈ O,∀a ∈ A, rather
than ∀y ∈ Y .
The merging process is guided by the simple idea that

useful knowledge should always be retained. There are three
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different conditions: neither has the experience (also called
memory) y, one of the two has the experience y, and both
have the experience y.
(1) When q1(y) and q2(y) both equal zero, none of the

viruses have experienced such a situation, and thus, the com-
bined utility function equals zero. (2) When q1(y) or q2(y) is
nonzero, one of the viruses has memory y, and thus, the com-
bined utility selects the nonzero element. (3) When q1(y)
and q2(y) are all nonzero, both viruses have ‘‘knowledge’’
of such circumstances, and thus, the merged utility function
is a weighted combination of two values. The weights are
chosen as Sq1/Sq and Sq2/Sq; they represent how ‘‘rich’’ the
knowledge is.

VI. CASE STUDY
A cyber-physical cosimulation is used to study the influ-
ence of FDI attacks launched by viruses. The cosimulation
platform was implemented by combining different off-the-
shelf power system analysis toolboxes and was developed
in MATLAB. The analysis functions from the MATPOWER
and PSAT toolboxes are used. Details of the design of
the cosimulation platform can be referred elsewhere [23].
An IEEE 39-bus system [24] is selected as the test system
with fully functioning SE and OPF modules. In the test
case, each bus in the IEEE 39-bus system is considered a
substation. Appendix A shows details of the configurations
of the test system, SE, OPF, POMDP, and NSM Q-learning.
Appendix B shows the topology of the IEEE 39-bus system.

The load curve λD(t) shown in Fig. 5 describes the load
over a day. During the simulation, the active and reactive
loads change according to the load curve λD(t) and the load
ratio λL :

PLoad = PLoad0 × λD(t)× λL
QLoad = QLoad0 × λD(t)× λL , (24)

where PLoad0 and QLoad0 respectively represent the basic
active and reactive load (vector) of the IEEE 39-bus system.

FIGURE 5. Daily load curve of test IEEE 39-bus system.

This section consists of three subsections that explain
different aspects of the proposed FDI attack. Section VI-A
illustrates a typical single substation attack scenario. The
process of misleading SE and OPF is shown to show how

the attack strategy works. Section VI-B illustrates a typical
propagation attack to provide an intuitive understanding of
how a propagation attack could undermine the stability of
the power system. Section VI-C presents general test cases
consisting of scenarios in which different buses are attacked
under different load levels. In this part, we argue the following
points: (1) the proposed FDI attack method can pose a severe
threat to a power system regulated by an AVC and (2) if the
virus can propagate and evolve, such an attack can become
even more dangerous.

A. SINGLE SUBSTATION ATTACK
This section discusses an attack on a single substation. In this
scenario, a virus infects a substation (bus #38) and injects
manipulated data into the power system. Through NSM
Q-learning, the virus gradually learns to undermine the sys-
tem’s stability. The load ratio is set to λL = 2.4.

Fig. 6 shows the minimum bus voltage minbus Vbus and
active power loss. The attack causes system collapse. Imme-
diately before collapse (t = 9.3 h), the virus injects manipu-
lated data and the SE is misled, as shown in Table 1, where
PTrue
L and QTrue

L represent the true active and reactive power
loads, respectively, and PSE

L and QSE
L are the output data of

the SE. Owing to this misestimation, the OPF converges to
false results and sends incorrect commands to the generators,
as shown in Table 2. Finally, the commands sent to generators
buses #37 and #38 lead to the collapse of the target power
system.

FIGURE 6. Single substation attack: (a) minimum bus voltage during
attack and (b) active power loss.

TABLE 1. Real load and misled SE output at t = 9.3 h (per-unit value).

In contrast to many studies that assume that the attacker
uses only one action to control the system, this study assumes
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TABLE 2. Correct and misled OPF commands at t = 9.3 h (per-unit value).

that the virus can infect a substation. Subsequently, it can
continually perform malicious actions. Initially, the virus
possesses no knowledge about the target system and no
communication is feasible. It then learns how to bypass the
SE and damage the grid. Through trial-and-error, the virus
finally gains enough knowledge and successfully performs
a malicious action at t = 9.3 h. As illustrated above, after
enough information has been accumulated, the virus learns
an effective action under that state to bypass the SE, mislead
the OPF, and ultimately collapse the whole system.

The numerical results for the bus voltage and active power
loss near the collapse point are unrealistic. These indicate that
the system is no longer stable. In our simulation, the power
system dynamics are modeled by continuously changing the
power flow following load variations and reactive power
regulations. The power flow is generally represented by a set
of nonlinear equations that is solved by the Newton-Raphson
method. When Newton-Raphson iterations do not converge,
the maximum loading level causing voltage collapse can be
identified. Near this collapse point, the numerical results
of bus voltages may drop to zero, and the corresponding
Jacobian matrix might be singular. The numerical values can
only indicate that the system is no longer stable.

B. PROPAGATION ATTACK
In a propagation attack, the virus spreads in the test system
according to the propagation-evolution model described in
Section IV. The propagation parameters are set as

Pinit(i) = 1/39 ∀i
PT ,i(j) = 0.05% ∀i 6= j, ∀T
PT ,i(i) = 1 ∀T .

(25)

These parameters describe a spreading process with a very
low infection probability and zero cure probability [18].

Initially, a virus infects a substation (bus #34) and then
spreads to buses #34, #22, #38, #17, #14, and #5. Note
that the single substation attack on bus #34 does not cause
system collapse according to the simulation result shown
in Fig. 6. However, when propagation is enabled, viruses
collapse the system, as shown in Fig. 7. Tracing back to
the last converged OPF period (6.4 h), Tables 3 and 4 show
the misled estimations and commands. As illustrated, addi-
tional commands are misled in this case. After 6.4 h, the SE
never converges again; thus, the system loses centralized
control. This alone will not cause a big disturbance. However,
after 6.4 h, the system experiences a sharp increase in load
(see Fig. 5) that ultimately overruns the test system.

Fig. 8 shows the sequence of infection spread. A virus first
infects bus #34. It learns to destabilize the system through

FIGURE 7. Propagation attack: (a) minimum bus voltage during attack
and (b) active power loss.

TABLE 3. Real load and misled SE output at t = 6.4 h (per-unit value).

TABLE 4. Correct and misled OPF commands at t = 6.4 h (per-unit value).

FIGURE 8. Sequence diagram of virus propagation. Black bars indicate
that the bus is infected. Buses #34, #22, #38, #17, #14, and #5 are
successively infected.

trial-and-error. This procedure is the same as that described
in Section VI-A until the virus successfully spreads to
bus #22 4 h later. By using the proposed exploration
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mechanism, the virus takes the previously learned Q matrix
with it to the new host substation. However, no communica-
tion is allowed among these viruses. Thus, the two viruses
on buses #34 and #22 begin an uncoordinated attack using
the knowledge they have learned. The spreading procedure
continues. As is well-known in the field of biology, infec-
tion spread becomes faster as more buses are infected. The
inheritance of knowledge helps the uncoordinated attack.
These viruses cannot communicate, and therefore, forming
a certain pattern that contaminates sufficient measurements
to bypass the SE is very difficult. Propagation attacks mainly
damage the system by forcing the SE offline. Then, the load
fluctuation finally disables the system because there is no
centralized control.

C. GENERAL CASE
Fig. 9 shows a general case in which 195 propagation attack
scenarios (five different load ratios and 39 initial infection
buses) were tested. Then, a general case of a single substa-
tion attack was simulated as a control experiment, as shown
in Fig. 10. In these two figures, black bars indicate that
voltage collapse has occurred in this scenario. Here, voltage
collapse is defined as the bus voltage dropping below its
operational limit of 0.8 p.u..

FIGURE 9. Propagation attacks in 195 scenarios. Maximum voltage sag is
defined as maxt,bus V0 − Vbus(t),V0 = [1,1, ...,1]. The 19 black bars
indicate that in these 19 scenarios, the bus voltage drops below the
operational limit of 0.8 p.u..

Under different load ratios, FDI attacks disrupt normal
operations to varying degrees. The maximum voltage sag
(defined as maxt,bus V0 − Vbus(t),V0 = [1, 1, ..., 1]) indi-
cates the severity of sabotage. When a system operates under
heavy load, the stability margin decreases and the proposed
FDI attack can cause a larger voltage sag or even voltage
collapse. A comparison of Fig. 10 with Fig. 9 shows that
when propagation is enabled, viruses usually cause larger
voltage sag. Voltage collapse occurs in 19 scenarios; this is

FIGURE 10. Single substation attacks in 195 scenarios. Maximum voltage
sag is defined as maxt,bus V0 − Vbus(t),V0 = [1,1, ...,1]. The seven black
bars indicate that in these seven scenarios, bus voltage drops below the
operational limit of 0.8 p.u..

much higher than the number of single substation attacks.
This indicates that a propagation attack poses a greater threat
to the power system.

Figs. 9 and 10 show that a single attack may pose a threat
to the power system and that propagation may deteriorate this
situation. When several viruses are involved in the attack,
more measurements are interpolated, and this increases the
information entropy. Chaotic measurements cause the SE to
deviate from the real state. The strategy of a virus can also
evolve in different directions: (1) in a single attack, some
viruses choose to cheat the SE, that is, make the SE converge
to an incorrect state, and (2) in a propagation attack, after
several trial-and-error iterations, the SE fails to converge
in almost all cases. The FDI attacks then actually become
denial-of-service attacks. This tendency is a direct result of
the basic assumption: once a virus compromises a substa-
tion, it cannot communicate because of the firewall. When
viruses cannot exchange information, they cannot collaborate
to cheat the SE. Reinforcement learning then guides the virus
in another direction, that is, toward paralyzing the SE.

VII. DISCUSSION: MITIGATION OF PROPOSED ATTACK
The attacks described in this study can be mitigated. Two
mitigation methods are presented for the weaknesses of the
attacks.

(1) This type of FDI attack requires a long learning period.
The injected virus initially does not possess any pragmatic
strategy. It needs to learn through trial-and-error. In the
above test cases, the learning process repeats approximately
103 times. In each round, the viruses observe local measure-
ments and inject manipulated data. If we can spot and inter-
rupt the learning process before the virus adopts a pragmatic
strategy, such an attack will probably fail.
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TABLE 5. Configuration of test cases.

FIGURE 11. Topology of IEEE 39-bus system.

(2) Attacks on different substations are not equally dam-
aging. The detailed patterns of these vulnerable buses still
need further investigation. As a simple example, buses with
both generators and loads are significantly more vulnerable.
Because the set of critical buses is relatively small, we can
improve their security to reduce the probability of infection.
When considering the propagation process, there may also be
certain combinations of buses that can cause severe damage
when infected together. Thus, if we can prevent the virus
from infecting these combinations of buses, the viruses will
have limited effect. To achieve this, we can increase the
heterogeneity of the cyber-system; specifically, we can use
equipment from different manufacturers in power system
planning to prevent a critical combinations of infections.

VIII. CONCLUSION
This study investigated a type of FDI attack on a power sys-
tem with exploitation and exploration mechanisms. This type
of attack only requires local measurements. An attack strat-
egy based on NSM Q-learning was proposed and validated.
Then, a simplified virus exploration model was introduced.

This study proposed a new type of decentralized FDI
attack. The virus can learn from limited information and
propagate carrying its previously learned knowledge. In other
words, no human intervention is needed once the virus

TABLE 6. Configuration of test System.

TABLE 7. Configuration of POMDP.

is embedded. These properties can significantly lower the
barriers to launching an FDI attack. Test cases illustrate that
this attack method can pose a severe threat to power systems
regulated by an AVC. The test results reveal a new cyber-
physical threat to power systems.

The proposed attacks can be mitigated. First, if we can
spot and interrupt the learning process before the virus adopts
a pragmatic strategy, the attack will probably fail. Second,
attacks on different substations are not equally damaging.
Because the set of critical buses is relatively small, we can
improve their security to reduce the probability of infection.

The results of this study may help in recognizing vulner-
abilities and enhancing security. We will further study the
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TABLE 8. Configuration of NSM Q-learning.

propagation path of such attacks while proposing detection
and defense strategies.

APPENDIX A
TOPOLOGY OF IEEE 39-BUS SYSTEM
Fig. 11 shows the topology of the IEEE 39-bus system. There
is no modification in the original IEEE 39-bus circuit except
for the distributed slack bus mentioned in section II.

APPENDIX B
CONFIGURATIONS
Table 5 shows the detailed configurations of the test cases.
Tables 6, 7, and 8 show the detailed configurations of the
models.
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