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ABSTRACT The problem of influence maximization (IM) has been extensively studied in recent years
and has many practical applications such as social advertising and viral marketing. Given the network and
diffusion model, IM aims to find an influential set of seed nodes so that targeting them as diffusion sources
will trigger the maximum cascade of influenced individuals. The largest challenge of the IM problem is its
NP-hardness, and most of the existing approaches are with polynomial time complexity, making themselves
unscalable to very large networks. To address this issue, in this paper, we propose LAIM: a linear time
iterative approach for efficient IM on large-scale networks. Our framework has two steps: 1) influence
approximation and 2) seed set selection. In the first step, we propose an iterative algorithm to compute the
local influence of a node based on a recursive formula and use the local influence to approximate its global
influence. In the second step, the k influential seed nodes are mined based on the approximated influence
in the first step. Based on our model, we theoretically prove that the proposed approach has linear time and
space complexity.We further accelerate our algorithmwith simple modifications and propose its fast version.
Experimental results on eight real-world large-scale networks exhibit the superiority of our approach over
the state-of-the-art methods in terms of both effectiveness and efficiency.

INDEX TERMS Influence maximization, iterative algorithm, social networks analysis, information diffu-
sion, computational complexity.

I. INTRODUCTION
Influence maximization (IM) is an extensively studied opti-
mization problem in social networks analysis and big data
mining. The research of this problem has great practical
values in a lot of scenarios. For example, in social market-
ing, a company may choose the key opinion leaders to help
advertising their new products or services. Political leaders
become more and more active on social media platform

such as Facebook and Twitter, so that their policy can be
widely popularized through the public. On social networks,
social influence can play a significant role to affect people’s
decision making [1]. In summary, given the network and
diffusion model, influence maximization aims to find the best
set of k individuals from the network such that targeting them
as diffusion sources will trigger the maximum cascade of
influenced individuals with the ‘‘world-of-mouth’’ effect [2].
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The study of influence maximization has wide applications
including viral marketing [3], [4], popularity prediction [5],
[6], decision making [1], etc.

A. DIFFUSION MODEL
The research of influence maximization cannot be separated
from the underlying diffusion models [7], which play a vital
role. Two widely considered models are the linear thresh-
old (LT) model and the independent cascade (IC) model [8],
both of which are time-discrete. In these diffusion models,
a node is associated with two states, namely, active or inac-
tive. Active means the node has been successfully influenced,
e.g., adopted a new product or accepted a new idea. If a
node is active, it will propagate the influence to its inactive
neighbors. Inactive means the influence has not yet reached
the node or the influence has reached but the node refuses to
be influenced. At the beginning all nodes in the network are in
the inactive state, then k seed nodes are activated as diffusion
sources and influence starts propagating from them, until the
diffusion process finally tops.

1) IC MODEL
Under the IC model, each directed edge (u, v) of the network
is associated with a propagation probability puv. At step t , for
each active vertex u, it will try to activate each of its inactive
neighbor, suppose v, and succeed with probability puv. Once
v is successfully activated, it will remain active during the
rest of the time, and from the next step t + 1, it will pass
the influence to its neighbors in the same manner. On the
contrary, if u falls to activate v, u will not make any more
attempts in the future, i.e., edge (u, v) can be regarded as
blocked. If v has multiple active neighbors, their attempts will
be independent of each other. The propagation stops when no
more individuals can be further activated.

2) LT MODEL
Under the LT model, whether an individual can be activated
depends on its active neighbors in the current step. For an
inactive vertex v, each of its adjacent incoming edge, sup-
pose (u, v), has a weight parameter buv indicating how v is
influenced by u. The weight parameters should satisfy the
constraint

∑
u neighbor of v buv ≤ 1 for each v. Under this

setting, each node v is given an activation threshold θv, which
is usually randomly selected from the interval [0,1] at the
beginning of diffusion. At step t , for any inactive node v,
once the condition

∑
u active neighbor of v buv ≥ θv is achieved,

v will be activated and remain active from step t + 1. The
propagation stops until no more individuals can be further
activated.

B. INFLUENCE MAXIMIZATION
Kempe et al. [8] first formulated the influence maximization
(IM) problem as a discrete optimization problem, i.e., given
a social graph G(V ,E) and the diffusion model, IM aims to
find a subset S ⊆ V of k seed nodes such that targeting
them as diffusion sources will trigger the maximum number

of influenced individuals under the diffusion model, i.e.,
S∗ = argS⊆V∧|S|=k max σ (S), where σ (S) is an objec-
tive function (usually called influence spread) evaluating
the number of influenced individuals. Since most diffusion
models are stochastic, Kempe et al. [8] defined σ (S) as the
expected number of active individuals after the influence
propagation stops. Based on the above definition, they proved
that under both IC and LTmodels, the IMproblem isNP-hard,
and its objective function is submodular. Here a function σ (·)
which maps subsets S ⊆ V to non-negative real numbers,
i.e., σ : 2V → R, is called submodular if it has the following
two properties:

(1) σ (S) is monotone increasing with S, i.e., ∀S ⊆
T , σ (S) ≤ σ (T );
(2) σ (S) has the ‘‘diminishing returns’’ property, i.e., ∀v ∈

V , S ⊆ T , it satisfies that σ (S ∪ {v})− σ (S) ≥ σ (T ∪ {v})−
σ (T ).
The ‘‘diminishing returns’’ property reflects the phe-

nomenon that when we add an element to a set S, its marginal
gain with respect to S, i.e., σ (S∪{v})−σ (S) is at least as much
as the marginal gain of adding the same element to a super set
of S.

The IM problem has two major challenges. The first chal-
lenge, as given by Kempe et al. [8], is its NP-hardness.
The second challenge, as shown by Chen et al. [9], is the
#P-hardness in computing the exact value of the objective
function σ (S) for any given seed set S. Luckily, benefit
from the theory of submodular functions [10], the first chal-
lenge can be addressed through a ‘‘hill-climbing’’ greedy
algorithm. For the second challenge, a conventional way
to solve it is by running Monte-Carlo (MC) simulations to
approximate the objective function σ (S). It was proved by
Kempe et al. [8] that if one uses MC simulations to approxi-
mate the objective function, then the ‘‘hill-climbing’’ greedy
algorithm can generate solutions with a factor of (1−1/e−ε)
approximation ratio (≈ 63%) to the optimal solution, where
e is the natural logarithm base and ε is an arbitrarily small
positive number, which can be controlled by the number of
MC simulations. Unfortunately, running MC simulations to
approximate the objective function is a time consuming thing,
as Chen et al. [11] had previously shown, the time complex-
ity of the greedy algorithm with MC simulations can be as
high as O(knRm), where n and m are the number of nodes
and edges, R is the number of MC simulations. Previous
experimental studies showed that one usually needs tens of
thousands of MC simulations to get a satisfactory approxima-
tion to the objective function. Consequently, the conventional
greedy algorithm can only handle small networks.

In recent years, scholars proposed numerous methods to
address the challenges of the IM problem. These approaches
can be divided into several groups, e.g., simulation-based
algorithms [12], [13], node centrality-based algorithms [14],
[15], influence path-based methods [16], [17], reverse influ-
ence sampling-based algorithms [18], [19], etc. However,
these approaches either cannot handle large networks with
linear time/space complexity, or produce poor solutions with
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low accuracy. To the best of our knowledge, there are almost
no influencemaximization algorithmswhich not only provide
high quality solutions, but also has linear time and space
complexity.

Motivated by the above observations, in this article,
we propose LAIM: a Linear time iterative Approach for effi-
cient InfluenceMaximization on large-scale social networks.
Our framework has two steps: (1) influence approximation;
and (2) seed set selection. In the first step we propose an
iterative algorithm to compute the local influence of a node
based on a recursive formula, and use the local influence to
approximate its global influence. In the second step, the k
influential seed nodes are mined based on the approximated
influence in the first step. Based on our model, we theo-
retically prove the proposed approach has linear time and
space complexity. We further accelerate our algorithm with
simple modifications and propose its fast version. We con-
duct extensive experimental study on eight real-world large-
scale networks and the results exhibit the superiority of our
approach over the state-of-the-art methods, as evaluated by
influence spread, memory usage and running time.

A preliminary conference version of our work appears
in [20]. Compared to the conference version, this article has
the following new contributions:
• A comprehensive literature review is provided, which
covers most of the related research works published in
the latest two years.

• The proposed approach is more detailedly illustrated and
analyzed, both theoretically and experimentally.

• The evaluation framework is largely enriched by incor-
porating more datasets, including more competitive
baselines, and conducting more experiments, together
with performance analysis, which provides a deep
insight into our proposed approach.

The rest of this article has the following parts. Section II
presents a literature review on the study of influence maxi-
mization. Section III introduces the preliminaries of the prob-
lem and our model. In Section IV we propose the linear time
iterative approach. Section V presents the evaluation frame-
work, including the datasets, baseline methods, evaluation
measures, and experimental environment. In Section VI we
present and discuss the results. Section VII concludes this
research.

II. LITERATURE REVIEW
Numerous research works have been proposed in recent years
to solve the influence maximization problem. We roughly
divide these studies into four groups: (1) simulation-based
methods, (2) node centrality-based methods, (3) influence
path-basedmethods, and (4) reverse influence sampling (RIS)
based methods.

A. SIMULATION-BASED METHODS
The general idea behind simulation-based methods is to
design new tricks to reduce the number of MC simulations
without compromise on solution accuracy.

Leskovec et al. [12] proposed CELF algorithm to improve
the time efficiency of the traditional greedy algorithm through
a lazy forward strategy. In their approach, they maintained
the marginal gains of individuals with respect to the current
seed set and partially updated their marginal gains (through
MC simulations) only when it was necessary. Through exper-
iments the authors showed their approach was much more
efficient than the traditional greedy algorithm and it can
generate solutions with the same approximation ratio to the
optimal solution.

Inspired by similar idea, Goyal et al. [13] proposed
CELF++, an improved version of CELF. Compared to
CELF, CELF++ not only stored the marginal gains of
individuals corresponding to the current seed set, but also
maintained their marginal gains with respect to a super set of
the seed set, which further reduced the unnecessary checking
of candidates. In their experiments the CELF++ algorithm
achieved about 30% ∼ 50% speed up over the CELF
algorithm.

Zhou et al. [21] proposed a new upper bound of the
influence spread under IC and LT models. The new upper
bound was then utilized to prone the MC simulations of
the greedy algorithm. Experimental results showed their
approach achieved about 2 ∼ 10 times speedup as compared
with the CELF algorithm.

A common disadvantage shared by the simulation-based
algorithms is that they all require a large number of MC
simulations to obtain a close approximation to the objective
function, making their worst-case time complexity as much
as O(knmR), thus cannot scale to large networks.

B. NODE CENTRALITY-BASED METHODS
Node centrality-based algorithms mine the influential seed
nodes according to some centrality measures defined on a
node or a set of nodes.

Chen et al. [11] proposed the SD (Single Discount) algo-
rithm by taking into consideration the impact of previously
chosen seeds on current candidates. Specifically, the algo-
rithm iteratively selected a new seed node with the maximum
degree. When a node was chosen, the degree of each of its
neighbor will be decreased (discounted) by a unit, in order to
avoid influence overlap. Experimental results showed that the
SD algorithm generated more accurate solutions than naively
selecting the top seeds with the highest degrees.

Liu et al. [14] proposed a Group-PageRank based algo-
rithm, where the influence from seed set S to a node v is
modeled as the combination of influence of its neighbors,
which can be recursively computed. Based on the IC model,
the authors proposed a compact upper bound of the influence
spread function and used the lazy-forward heuristic to find
the best seeds.

Recently, Zhu et al. [22] proposed SHIM, a structure hole-
based influencemaximization algorithmwhich utilized struc-
ture hole as the centrality measurement. They first identified
structure hole spanners whose structure hole value was above
the given threshold, followed by computing the influence
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capability of each structure hole spanner. After that, they
selected the top-k seeds by combining the structure hole value
and influence value.

Liu et al. [15] proposed a closeness centrality-based algo-
rithm, where they defined a generalized closeness central-
ity (GCC) index by generalizing the closeness centrality
index from a single node to a set of nodes.

Riquelme et al. [23] mainly considered the centrality mea-
sures under the LT diffusion model, and proposed a new
centrality measure named LTR (Linear Threshold Rank) to
rank the users of the network.

Some centrality based algorithms have linear time com-
plexity, for example, the time complexity of the naive degree-
based algorithm is O(m + n log n). However, since they take
little consideration of the diffusion process, they usually
generate inaccurate solutions. Other centrality-based meth-
ods may have high time complexity. For example, the the
structure-hole based algorithm [22] requires O(n3) time to
compute the structure-hole values, the closeness-centrality
based method [15] needs to determine the Laplacian matrix
and calculate its eigenvectors, making themselves unable to
scale to large networks.

C. INFLUENCE PATH-BASED METHODS
The general idea behind influence path-based algorithms is
to reduce the randomness of diffusion models by restrict-
ing influence propagation on specific paths, such that the
objective function can be efficiently calculated without MC
simulations.

Chen et al. [9], [24] studied influence path-based methods
under both IC and LT models. For the IC model, they pro-
posed MIA (Maximum Influence Arborescence) and PMIA
(Prefix excluding MIA) [9], both of which were based on
arborescence, a local tree structure defined for a node to
approximate its influence area. Specifically, it was a node-
centralized subgraph where the influence propagation from
the center node to other individuals in the subgraph was
restricted on the paths with the maximum propagation proba-
bilities. The algorithm iteratively selected new seed nodes and
updated the arborescence structure for other candidates, until
k seeds were found. For the LT model, they proposed LDAG
(Local Directed Acyclic Graphs) [24], which was a local
graph structure centered around a node to represent its local
influence area. Based on LDAG, the influence of a candidate
can be recursively computed without MC simulations. The
seed selection procedure was similar to MIA and PMIA.

One limitation of Chen et al.’s approach [9] is that they only
considered the influence paths with the maximum propaga-
tion probabilities, which may affect the solution accuracy on
some datasets. To address this issue, Kim et al. [16] proposed
IPA (Independent Path Algorithm), an influence path-based
method which simultaneously considered multiple influence
paths and assumed that their propagations were independent
of each other. Consequently, the overall influence spread can
be more efficiently calculated in a distributed way and the
objective function can be more accurately approximated.

Liu et al. [17] proposed influence path-based algorithms to
solve the time-constrained influence maximization problem.
In their approach they first constructed influence spreading
paths, which were defined as the paths from seed nodes to
non-seed nodes. The length of a path was the cumulated
time delay of edges on that path, while the probability of a
path was the product of propagation probabilities of edges
constituting the path. Then the paths with length longer than
T or probability smaller than θ were pruned to reduce the
computational overload. Based on the influence spreading
paths, they further proposed a parallel algorithm to mine the
seed nodes.

Ko et al. [25], [26] considered the ICmodel and proposed a
target-oriented estimation (TOE) method for influence max-
imization, which can remedy the drawback of existing path-
based algorithms. Unlike previous path-basedmethods which
utilize influence path to approximate the amount of influence
a seed node can exert to non-seed nodes, their approach
focused on the amount of influence a non-seed node can
receive from a given seed set. They showed their approach
achieved higher accuracy as compared to existing path-based
algorithms.

Compared with simulation and centrality-based algo-
rithms, influence path-based algorithms reach a tradeoff
between running time and solution quality. However, a crit-
ical deficiency of these methods is that they usually require
a huge amount of memory to maintain the influence paths,
which restricts their space efficiency, making themselves
unscalable to very large networks.

D. RIS-BASED ALGORITHMS
Under the IC model, Borgs et al. [27] proposed the first
RIS (Reverse Influence Sampling) based algorithm, which
used ‘‘node-centric’’ sampling strategies to approximate the
objective function. The general framework is: select a node
v uniformly at random, and determine the set of nodes that
would have influenced v. If this process is repeated multiple
times, and a certain node u appears often as an ‘‘influencer’’,
then u is likely a good candidate for the most influential
node. The authors theoretically proved that the probability a
node u appeared in a set of influencers was proportional to
its expected influence on the network. To compute the influ-
ence objective function, one only had to repeat the sampling
process multiple times until an approximation guarantee was
achieved.

Tang et al. [18] proposed the TIM+ (Two-phase Influ-
ence Maximization) algorithm which generalized the RIS
framework from IC model to both IC and LT models. Their
approach consisted of two phases where the first phase esti-
mated an approximation parameter θ while the second phase
generated θ samples to derive to best seed set. The algorithm
has a parameter ε which controls its accuracy. Tang et al. [19]
further proposed the improved version of TIM+, i.e., IMM
(Influence Maximization via Martingales) algorithm, which
took advantage of martingales to improve its time and
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memory efficiency. Similarly, the accuracy of IMM was con-
trolled by a parameter ε.

Based on the idea of RIS, Nguyen et al. [28] pro-
posed the SSA (Stop and Stare Algorithm) and D-SSA
(Dynamic SSA) algorithms which focused on characterizing
the minimum number of RIS samples needed to achieve
(1 − e − ε) approximation. The algorithm kept generating
samples and stopped at exponential check points to verify
(stare) if there was adequate statistical evidence on the solu-
tion quality for termination. The authors claimed that their
approach largely outperforms the IMM algorithm. However,
in a recent research, Huang et al. [29] conducted a rigorous
theoretical and experimental analysis of SSA andD-SSA, and
proposed a revised version.

Recently, Wang et al. [30] proposed a novel bottom-k
sketch based RIS framework, namely BKRIS, which brought
the order of samples into the RIS framework. By applying the
sketch technique, they derived early termination conditions to
significantly accelerate the seed set selection procedure.

Although the RIS based algorithms exhibit competitive
performance in terms of effectiveness and efficiency, they still
have their inherent drawbacks. Despite that these algorithms
can find a seed set S with approximation guarantee, they
cannot make sure that the subsets of S will also provide the
same approximation guarantee.

E. OTHER STUDIES
Besides the above introduced methods, there are also many
other influence maximization methods, such as the multi-
ple selectors combination based algorithm [31], community-
based algorithm [32], multi-objective optimization based
method [33], competitive influence maximization [34],
location-based influence maximization [35], [36], etc.

III. PRELIMINARIES
A. INFLUENCE MAXIMIZATION PROBLEM
Kempe et al. [8] first formulated influence maximization as
the following discrete optimization problem:
Definition 1 (Influence Maximization, IM [8]): Given a

social graph G(V ,E) where V is the set of nodes and E is
the set of edges, an integer budget k , under a predefined
diffusion model, the influence maximization problem aims
to find a subset S ⊆ V of k seed nodes such that targeting
them as diffusion sources will trigger the maximum number
of influenced individuals under the diffusion model, i.e.,

S∗ = argS⊆V∧|S|=k max σ (S) (1)
where σ (S) is the influence spread defined as the overall

number of activated individuals at the end of influence prop-
agation triggered by S.
As we have introduced in Section I-B, Kempe et al. [8]

proved that under both LT and IC models, the IM problem is
NP-hard and its objective function, i.e., σ (S), is submodular
about S. So they further proposed a ‘‘hill-climbing’’ greedy
algorithm to solve the problem, the pseudo code of which
is shown in Algorithm 1. From the code we see that the

Algorithm 1 The Hill-Climbing Greedy Algorithm
(Kempe et al. [8])
Require:

Network G, number of seed nodes k
Ensure:

Seed set S
1: Initialize: Let S ← 8.
2: for i = 1 to k do
3: v = argumax{σ (S ∪ {u})− σ (S)}
4: // σ (∗) is computed using Monte-Carlo simulations
5: S ← S ∪ {v}
6: end for
7: return S

algorithm starts with S = 8, and then iteratively adds a new
seed nodewhich has themaximummarginal gain with respect
to the current seed set, until k seed nodes are successfully
discovered.

Kempe et al. [8] proved that the greedy algorithm provides
a factor of (1 − 1/e − ε) approximation ratio to the optimal
solution, as shown in Theorem 1.
Theorem 1 (Kempe et al. [8]): For the influence maxi-

mization problem defined inDefinition 1, the solution of Algo-
rithm 1 provides a factor of (1−1/e−ε) approximation ratio
to the optimal solution S∗, i.e., σ (S) ≥ (1− 1/e− ε)σ (S∗).

As shown in Algorithm 1, the greedy algorithm requires
MC simulations to approximate the objective function. Chen
et al. [11] proved that the time complexity of the greedy
algorithm is O(knRm), as shown in Theorem 2.
Theorem 2 (Chen et al. [11]): For the influence maxi-

mization problem defined in Definition 1, if Monte-Carlo
simulations are used to approximate the objective function,
then the greedy algorithm defined in Algorithm 1 has time
complexity O(knRm), where n and m are the number of nodes
and edges, k is the number of seed nodes to be mined, and R
is the number of MC simulations used to estimate σ (S).

B. NETWORK PRELIMINARIES
Without loss of generality, we define a directed social graph1

as G(V ,E), where V is the set of nodes and E is the set of
edges. Generally, G can be described through an adjacency
matrix A, where:

Ai,j =

{
1 if i and j are connected
0 otherwise

(2)

For any node v, its outgoing neighbor set is:

N (u) = {v|Au,v > 0} (3)

Before introducing our LAIM approach, we give the fol-
lowing definitions:
Definition 2 (γ -th Layer Neighbor): Given a network, for

any node u and nonnegative integer γ ≥ 0, we define u’s γ -th

1Our approach is also applicable to undirected networks.
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layer neighbor set as:

Nγ (u) =

{⋃
v∈Nγ−1(u) N (v) γ > 0

{u} γ = 0
(4)

From definition 2 we can easily see that N0(u) = {u}
and N1(u) = N (u). Intuitively, the γ -th layer neighbor set
indicates the set of individuals whose distance to u is γ .
Definition 3 (γ Neighborhood): Given a network, for any

node u and nonnegative integer γ ≥ 0, node u’s γ neighbor-
hood N≤γ (u) is defined as:

N≤γ (u) =
γ⋃
`=0

N`(u) (5)

Intuitively, u’s γ neighborhood represents the set of nodes
whose distance to u is less than or equal to γ .
Definition 4 (Node Influence): For any node u ∈ V , its

influence on network G(V ,E) is denoted by IG(u). Similarly,
u’s influence on network G− v is denoted by IG−v(u), where
G− v is the subgraph induced from G by V ’s subset V \ {v}.
Definition 5 (Local Influence): For any node u ∈ V , its

influence within its γ neighborhood N≤γ (u) on network G
and G − v are denoted by I≤γG (u) and I≤γG−v(u), respectively.
Similarly, u’s influence to its γ -th layer neighbor Nγ (u) on
network G and G − v are denoted by IγG (u) and IγG−v(u),
respectively.

IV. LINEAR TIME ALGORITHM
In this article, we mainly focus on the IC model. Our LAIM
framework has two steps: (1) influence approximation; and
(2) seed set selection. In the first step we propose an iterative
algorithm to compute the local influence of a node based on a
recursive formula, and use the local influence to approximate
its global influence. In the second step, the k influential seed
nodes are mined based on the approximated influence in the
first step. In the following part we will present our two step
approach in detail.

A. INFLUENCE APPROXIMATION
The approximation of influence spread is motivated the
following observation: for any node u, if it is selected as a
seed node, then the influence will firstly propagate from u
to its first layer neighbors N (u), and then to its 2, 3, · · · ,
n-th layer neighbors, i.e., N2(u),N3(u), · · · ,Nn(u), until the
influence propagation process finally stops. Under the IC dif-
fusion model, in many real-world applications it is commonly
observed that the propagation probabilities between individ-
uals are small, so the influence cannot propagate far away
from u, which means we may use the influence of u within
its local neighborhood (local influence) to approximate its
influence on the overall network.

Based on the above idea, given network G(V ,E), for any
node u ∈ V and nonnegative integer γ ≥ 0, we approximate
u’s overall influence on G by:

IG(u) ' I≤γG (u) =
γ∑
`=0

I `G(u) (6)

Since u must first influence its first layer neighbor N (u) in
order to influence others nodes in N≤γ (u), and from Eq. 4
we see that u’s γ -th layer neighbors are included in the
γ − 1-th layer neighbors of N (u), so we may represent IγG (u)
(the influence of u to its γ -th layer neighbors) as a function
of N (u)’s influence to their γ − 1-th layer neighbors:

IγG (u) = f
(
Iγ−1G (v1), I

γ−1
G (v2), · · · , I

γ−1
G (vq)

)
(7)

where N (u) = {v1, v2, · · · , vq}. In the IC diffusion model
we know that node u will successfully activate each of its
inactive neighbor v with probability puv, so we can further
formulate IγG (u) as:

IγG (u) =
∑
v∈N (u)

puv · I
γ−1
G (v) (8)

Given that the γ − 1-th layer neighbors of different nodes
in N (u) may overlap, the above formula is an approximate
evaluation. In ICmodel, each node can be activated only once
(no repeated activations allowed), so we should eliminate u
from v’s γ −1-th layer neighbor set in computing Iγ−1G (v) for
any v ∈ N (u) to avoid the re-computation of influence of u.
As a result, IγG (u) can be further represented as:

IγG (u) =
∑
v∈N (u)

puv · I
γ−1
G−u (v) (9)

where γ ≥ 1. New we prove that Eq. 9 can be effectively
approximated by a recursive formula.
Theorem 3: Eq. 9 can be approximated by the following

recurvise formula:

IγG (u) =


0 γ = −1
1 γ = 0∑
v∈N (u)

puv
(
Iγ−1G (v)− pvuI

γ−2
G (u)

)
γ ≥ 1

(10)
Proof: We give the proof by considering γ = 0, γ = 1

and γ > 1 separately.
(1) If γ = 0, since N0(u) = u, node u only influence itself,

so its influence is a unit.
(2) If γ = 1, according to Eq. 10, it is easy to see that:

I0G(v) = I0G−u(v) = 1, so we have:

I1G(u) =
∑
v∈N (u)

puv
(
I0G(v)− pvuI

−1
G (u)

)
=

∑
v∈N (u)

puv · I0G(v)

=

∑
v∈N (u)

puv · I0G−u(v)

Eq. 9 satisfies. Intuitively, when γ = 1, we have N1(u) =
N (u), so node u only influences its first layer neighbors, and
activate each neighbor v ∈ N (u) with probability puv.
(3) If γ > 1, according to Eq. 10, we have:

IγG (u) =
∑
v∈N (u)

puv
(
Iγ−1G (v)− pvuI

γ−2
G (u)

)
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Algorithm 2 Influence Approximation
Require:

Network G(V ,E), diffusion parameters {puv}, iterative
parameter γ

Ensure:
Local influence: I≤γG (u),∀u ∈ V

1: Initialize: Let I−1G (u) = 0, I0G(u) = 1, I≤γG (u) = 0,
∀u ∈ V .

2: for ` = 1 to γ do
3: for u ∈ V do
4: I `G(u) =

∑
v∈N (u)

puv
(
Iγ−1G (v)− pvuI

γ−2
G (u)

)
5: I≤γG (u)← I≤γG (u)+ I `G(u)
6: end for
7: end for
8: return I≤γG (u),∀u ∈ V

By substituting Iγ−1G (v) according to Eq. 10 again, we fur-
ther have:

IγG (u) =
∑
v∈N (u)

puv

[ ∑
z∈N (v)\{u}

pvz
(
Iγ−2G (z)− pzvI

γ−3
G (v)

)
+ pvu

(
Iγ−2G (u)− puvI

γ−3
G (v)

)
− pvuI

γ−2
G (u)

]
'

∑
v∈N (v)

puv

[ ∑
z∈N (v)\{u}

pvz
(
Iγ−2G (z)− pzvI

γ−3
G (v)

)]
=

∑
v∈N (v)

puv · I
γ−1
G−u (v)

where the last equation of the formula is achieved by
ignoring the smaller item pvupuv · I

γ−3
G (v), so Eq. 9 satisfies.

In sum, Eq. 9 can be approximated by Eq. 10. �
Based on theorem 3, we give the following iterative algo-

rithm to recursively compute the local influence of all nodes.
Line 1 initializes the local influence. Line 2-7 iteratively
calculate the local influence for all the nodes according to
the recursive formula defined in Eq. 10.

B. SEED SET SELECTION
Based on the influence approximation algorithm of Algo-
rithm 2, we further propose our LAIM algorithm which
iteratively chooses top k influential seed nodes in a greedy
manner. Specifically, the LAIM algorithm first applies Algo-
rithm 2 to calculate the local influence for all individuals, base
on which it further chooses the node with the maximum local
influence I≤γG (v) and add it to the seed set S. After that the
selected seed node is removed from the social graph G and
Algorithm 2 is re-executed to update the local influence of the
rest individuals. After k seed nodes are successfully selected,
the LAIM algorithm will stop and output the seed set. The
pseudo code of LAIM is shown in Algorithm 3.

To further accelerate the algorithm, we provide the simple
fast version of LAIM, namely, FastLAIM, which directly
selects top k individuals with the maximum values of I≤γG (v)

Algorithm 3 The LAIM Algorithm
Require:

Network G(V ,E), diffusion parameters {puv}, iterative
parameter γ

Ensure:
Seed set S

1: Initialize: Let S ← 8

2: for i = 1 to k do
3: Compute I≤γG (u),∀u ∈ V with Algorithm 2
4: v = argu∈V max{I≤γG (u)}
5: S ← S

⋃
{v}

6: V ← V \ {v}
7: end for
8: return S

calculated by Algorithm 2 in the first step and output them as
the seed nodes.

C. TIME AND SPACE COMPLEXITY
Here we give the time and space complexity analysis of our
proposed approach.
Theorem 4 (Time Complexity): The time complexity of the

LAIM algorithm is O(kγm), where m = |E| is the number
of edges, γ is the iterative parameter, and k is the number of
seed nodes.

Proof: We first show the time complexity of local
influence calculation. As show in Algorithm 2, the initial-
ization in line 1 requires (n) time, where n = |V | is the
number of nodes. In each iteration, for any node u ∈ V , we
need to traverse all the neighbors of u in order to compute
IγG (u) according to formula 10. Traversing the neighbors of u
requiresO(|N (u)|) time. So the time complexity of one round
of iteration is O(

∑
u∈V |N (u)|) = O(m). Since Algorithm 2

contains γ round of iterations, its time complexity is O(γm).
From Algorithm 3 it is easy to see that the LAIM algorithm
will repeat Algorithm 2 for k times to select the best k seed
nodes. So the overall time complexity of the LAIM algorithm
is O(kγm). �
Theorem 5 (Time Complexity): The time complexity of the

FastLAIM algorithm is O(γm + n log n), n = |V | is the
number of nodes, m = |E| is the number of edges, and γ
is the iterative parameter.

Proof: As we have shown in the former theo-
rem, the time complexity of local influence approximation,
i.e., Algorithm 2, is O(γm). After the local influence of
all nodes are calculated, the FastLAIM algorithm first sorts
the nodes according to their local influence, which requires
O(n log n) time, and then directly output the top k nodes with
the maximum local influence. So the overall time complexity
of the FastLAIM algorithm is O(γm+ n log n). �
Theorem 6 (Space Complexity): If we use adjacency list to

represent the network, then the space complexity of the LAIM
algorithm will be O(m+γ n), where n = |V | is the number of
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TABLE 1. Statistical properties and the parameter values (γ ) of FastLAIM and LAIM of eight real world datasets.

nodes, m = |E| is the number of edges, and γ is the iterative
parameter.

Proof: To store the network with adjacency list, we need
O(m) space. Since Algorithm 2 requires γ rounds of itera-
tions, and each round of iteration needs O(n) space to main-
tain the IγG (u) information of all nodes, the space complexity
of Algorithm 2 is O(γ n). So the overall space complexity of
the LAIM algorithm is O(m+ γ n) which is necessarily O(m)
when m� γ n �
From the above theorems it is easy to see that our proposed

approach has linear time and space complexity.

V. EVALUATION
A. DATASET
We test our proposed approaches, i.e., LAIM and FastLAIM,
on eight real-world datasets with different sizes and cat-
egories, including scholar cooperation networks, customer
review networks, products co-selling networks, etc. We give
a brief introduction about these datasets as follows:
NetHEPT: NetHEPT [11] is a scholar cooperation dataset

from the arXiv electronic preprint platform.2 The network
consists of 15K nodes and 31K edges, where nodes represent
the scholars in the High Energy Physics Theory area while
edges represent the co-authorships among different scholars.
NetPHY: Similar to NetHEPT, NetPHY is another scholar

cooperation dataset from the arXiv platform consisting of the
co-authorships among researchers in the field of Physics. The
dataset has 37K authors and 174K edges.
Epinions: Epinions [37] is a who-trust-whom social net-

work from the customer reviewer site Epinions.com. If a
customer trust the review of another one, an edge will be
established between them. The network consists of 76K ver-
tices and 406K edges, after all repeated edges were combined.
Amazon: The Amazon dataset was collected by Yang and

Leskovec [38] from Amazon,3 an online shopping site in
America. If a product is frequently co-purchased by cus-
tomers with another product, then an undirected edge is
established between them. The network has 335K vertices
and 926K links.
DBLP: DBLP is another dataset collected by Yang and

Leskovec [38] from the DBLP platform4 and provides co-
authorships among scholars in the field of computer science.

2http://www.arxiv.org/
3http://www.amazon.com/
4https://dblp.uni-trier.de/

The network has 317K vertices and 1M edges where each
edge indicates that the corresponding two scholars (vertices)
have coauthored at least one paper.
Pokec: Pokec is a popular online social platform from Slo-

vakia and the dataset covers the overall social relationships
among Slovakia users. The network has 1.6M vertices and
22.3M edges, collected by Takac and Zabovsky [39].
LiveJournal: LiveJournal is a free online social platform

where users can keep a blog, journal or diary. The users
can also declare friendships with each other, forming the
edges of the network. The dataset was collected by Yang and
Leskovec [38] and has about 4M nodes and 35M edges.
Orkut: Orkut is another free online social platform which

was previously operated by Google. It aims to help users
maintain existing relations with old friends and establish
new relations with new friends. This network, which consists
of 3.1M users and 117M relations, was collected by Yang and
Leskovec [38] and is the largest one in our experiments.

Most of our datasets are obtained form the Stanford large
network dataset collection platform (SNAP).5 For simplicity,
we treat all the network graphs as undirected ones. The statis-
tical properties of these datasets are summarized in Table 1,
together with the parameter values (γ ) of FastLAIM and
LAIM. We experiment with different parameter values, and
those with good performance in terms of both influence
spread and running time are chosen and shown in Table 1.

B. BASELINE METHODS
We compare our approach with the following five baseline
methods:
IMM: IMM [19] (InfluenceMaximization viaMartingales)

is an extension of the RIS-based TIM+ method proposed
by Tang et al. [18]. It provides the same (1 − 1/e − ε)-
approximation solution while significantly improves time
efficiency by utilizing martingales. Compared to TIM+’s
two-phase approach, IMM adds an extra intermediate step
to heuristically refine θ into a tighter lower bound. The
algorithm has a parameter ε controlling its accuracy. In this
paper, we use the default setting ε = 0.1 as the authors
recommended in their paper.
BKRIS: BKRIS (Bottom-k sKetch-based RIS) is another

RIS-based algorithm proposed by Wang et al. [30], which
brought the order of samples into the RIS framework.
By applying the sketch technique, they derived early

5http://snap.stanford.edu/data/
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termination conditions to significantly accelerate the seed set
selection procedure. Compared to IMM, BKRIS has better
time efficiency. Similar to IMM, we set ε = 0.1 for the
BKRIS algorithm.
CoFIM: The CoFIM (Community based Framework for

Influence Maximization) is a community based influence
maximization framework [32], which assumes that influence
first propagates from seed nodes to their neighbors and then
from these neighbors to other nodes within the same com-
munity. This algorithm has been proved to have good perfor-
mance in large scale networks.
IPA: IPA [16] (Independent Influence Path Algorithm)

is a path based influence maximization algorithm mainly
designed for IC model. It approximates the influence func-
tion through independent influence paths whose propagation
probability is higher than a threshold parameter θ . The prop-
agation probability of an influence path is defined as the
product of propagation probabilities along that path. As the
authors did in their paper, we set θ = 1/320.
TOE: TOE [26] (Target-Oriented Estimation) is another

path based influence maximization algorithm. Unlike tradi-
tional methods’ source-oriented strategy, TOE takes a target-
oriented approach to estimate the influence spread received
by each target node from the given seed set. As the authors
declared, this approach can remedy the inaccuracy problem of
existing path based methods. We set the threshold parameter
θ = 1/160, as recommended by the authors.
SD: The SD [11] (Single Discount) algorithm is a node

centrality-based method which selects seed nodes according
to node degree. Specifically, it iteratively selects a new seed
node with the maximum degree. When a node is chosen,
the degree of each of its neighbor will decreased (discounted)
by a unit, in order to avoid influence overlap.

Our baseline methods cover a wide spectrum of method-
ologies, including RIS based algorithms, influence path based
approach, community-based methods, and node centrality
basedmethods. The simulation-based greedy algorithms such
as Greedy, CELF or CELF++ are not considered since none
of them can find the seed nodes within a rational time in the
larger datasets of our experiments.

C. EVALUATION METRICS
To test the effectiveness and efficiency of our proposed
approach, we utilize three measures, which were widely used
in [9], [16], and [32].
Influence Spread: influence spread is defined as the

expected number of overall individuals which can be success-
fully activated through influence propagation. It is a widely
used metric to evaluate the accuracy and effectiveness of an
influence maximization algorithm. Since we have previously
shown that calculating the exact value of influence spread
is #P-hard, an alternative way is through Monte-Carlo sim-
ulations. In this article, we calculate the influence spread by
averaging over 10,000 MC simulations.
Running Time & Memory Usage: Running time and mem-

ory usage are widely used measures to evaluate the time

and space efficiency of an influence maximization algorithm.
In this article, we focus on the overall time and memory
consumptions of different algorithms in mining k = 50 seed
nodes and use them to as time and space measures.

D. EXPERIMENTAL PROCEDURE
1) DIFFUSION MODEL
The diffusion model used in this article is the weighted cas-
cade (WC) model, i.e., the independent cascade model with
propagation probability from u to v defined by puv = 1/kv,
where kv is the degree of v.

2) EXPERIMENTAL ENVIRONMENT
Our experiments are conducted on a workstation with Intel
Xeon E3 3.5GHz CPU and 32GB memory, running the
Ubuntu Linux operating system. Our algorithm is pro-
grammed using C/C++ and the codes are available online.6

The baseline methods are also programmed in C/C++, and
we thank the authors for sending us their codes so that we can
have a comprehensive and fair experimental comparison.

VI. RESULTS
A. INFLUENCE SPREAD
We first compare the influence spread values of different
methods on the eight datasets, as shown in Figure 1, which
exhibits the change of overall influence spread calculated by
Monte-Carlo simulations along with k . From Figure 1, it can
be easily observed that our LAIM algorithm and its fast ver-
sion (FastLAIM) always outperform other baseline methods
in terms of influence spread across different values of k . The
path-based IPA algorithm, on the contrary, exhibits the worst
overall performance. Its best performance is observed on the
Epinions dataset (Figure 1(c)), while on the other datasets its
performance is visibly inferior to the other baselines. TOE,
as another path-based method, performs better than IPA. This
is because it takes a target-oriented strategy, which provides
more accurate estimation of the influence spread. However,
its performance is far from satisfactory when compared with
our proposed approach, as shown in Figure 1 (b), (e), (g). The
node centrality based method, i.e., SD, performs well on a
few networks (e.g., Amazon and Pokec). However, on most
of the datasets, it is unable to provide stable solutions with
high quality. For example, from the influence values on four
datasets, i.e., NetHEPT, NetPHY, LiveJournal and Orkut,
we can observe significant gaps of influence spread values
between the SD and our LAIM/FastLAIM approaches. On the
NetPHY dataset, the influence spread value (k = 50) of
SD is 951, while that of the LAIM and FastLAIM algo-
rithms are 1365 and 1356, respectively, about 50% improve-
ment. The difference between our approach and the node
centrality-based algorithm indicates that incorporating the
diffusion parameters in influence approximation can signif-
icantly improve the quality of solutions.

6Source code: https://sourceforge.net/projects/linear-time-influ-max/
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FIGURE 1. Influence spread on eight real-world networks.

The IMM algorithm, which is based on the RIS frame-
work, exhibits competitive performance in terms of influ-
ence spread as compared with our LAIM and FastLAIM
algorithms when k is large (k ≥ 40), nevertheless, our
approach shows its robustness across different values of k .
When k is small (e.g., k ≤ 20), on almost all of the datasets,
it can be easily seen that the IMM method performs much
worse than the LAIM and FastLAIM algorithms. Take the
LiveJournal dataset for example, as shown in Figure 1(g),
when k = 10, the LAIM and FastLAIM algorithms achieve
influence spread values of 47,040 and 47,124 respectively,
while the corresponding value of the IMM algorithm is
27,024, only slightly over half of ours.

The most competitive baselines are BKRIS and CoFIM,
both were proposed very recently. The former is based on
the RIS framework while the latter is based on community
structure. From Figure 1, it can be observed that on most of
the datasets the two algorithms and our proposed approaches
cannot beat each other. However, if we take a close look at the
results (e.g., Figure 1 (a), (b), (e)), we can still observe some
gaps between the two baselines and our methods.

In sum, through the influence spread results on the eight
datasets, our approach achieves the best overall performance
and exhibits its superiority over the baseline methods in terms
of both effectiveness and robustness.

B. RUNNING TIME AND MEMORY USAGE
Time efficiency is the key evaluation metric for influence
maximization algorithms. Table 2 shows the running time
different methods used to find k = 50 seeds on the eight
real-world networks. Since the centrality-based algorithm
(i.e., SD) naively selects k seed nodes, the comparison of
its running time makes little sense, so we eliminate it from
the table. From the results we see that the fast version
of our linear time based approach, i.e., FastLAIM, always
outperforms all the baseline algorithms in terms of time
efficiency. Again, BKRIS and CoFIM are the most compet-
itive baselines in time efficiency. Together with FastLAIM,
the three methods require less than one second to find the
seed nodes for all the smaller five datasets. However, on three
datasets, i.e., NetHEPT, NetPHY, and Epinions, FastLAIM
is about one order of magnitude faster than BKRIS and
CoFIM.On the largest three datasets, i.e., Pokec, LiveJournal,
and Orkut, the difference between FastLAIM and BKRIS
becomes insignificant. For the other baselines, i.e, IPA, TOE,
and IMM, our FastLAIM algorithm is about 1-3 orders of
magnitude faster. For example, on the largest Orkut dataset
with more than 3 million nodes and 100 million edges,
the FastLAIM algorithm is about 28, 12, 13 times than the
IPA, TOE, and IMM algorithms, respectively. The LAIM
algorithm performs well on small datasets (e.g., NetHEPT,
NetPHY, Epinions), but it becomes less competitive on large
networks. From the largest three datasets, we see that the
FastLAIM algorithm is always about 40-50 times faster than
the LAIM algorithm, which is consistent with our theoretical
analysis about the time complexities of the two algorithms,
as shown in Theorems 4 and 5. From Table 2 we notice
an interesting phenomenon that the IPA algorithm performs
better on the Orkut dataset than on the LiveJournal dataset.
This is mainly because IPA takes a ‘‘node-centric’’ strategy
to build the influence paths, and LiveJournal has more nodes
(4 million) than Orkut (3.1 million).

To deal with large-scale networks, influence maximiza-
tion algorithms should also pay attention to space efficiency,
as evaluated by memory usage. Table 3 exhibits the bytes of
memory different methods use to find the k = 50 seed nodes
on the eight real-world datasets. In general, we see that LAIM
and FastLAIM algorithms exhibit their good scalability in
handling large-scale networks. As we have shown in Theo-
rem 6, the space complexity of our approach is linear to the
network size and it requires almost no extra memory except
for storing the graph. As shown in Table 3, on all the datasets,
LAIM and FastLAIM require the minimum memory usage
when compared with the baseline methods. For example,
on the NetHEPT network, both LAIM and FastLAIM require
6M bytes of memory, only about 2.3% and 6.3% to that of
the IPA and IMMmethods respectively. Themost competitive
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TABLE 2. Running time (in seconds) of different algorithms on eight real world datasets (k = 50).

TABLE 3. Memory usage of different algorithms on eight real world datasets (k = 50).

baselines are the TOE andCoFIMmethods, and their memory
usages are slightly over ours on the small networks. However,
on themillion-scale datasets (Pokec, LiveJournal, andOrkut),
our algorithms only require about half of the memory as
compared to TOE and CoFIM. The IPA algorithm exhibits the
worst overall performance in memory efficiency, and since it
takes a ‘‘node-centric’’ strategy to build the influence paths,
it performs better on the Orkut dataset (with less nodes) than
on the LiveJournal dataset, though the former is a larger
network with more edges.

In sum, the results in Table 2 and Table 3 show the
extremely high time and space efficiency of our proposed
approach as compared to the existing algorithms.

C. IMPACT OF ALGORITHM PARAMETER γ

As shown in subsection IV-A, our LAIM algorithm depends
on an iterative parameter γ , which determines how we
approximate the influence of a node and plays plays an
important role for the solution quality. Figure 2 shows how
the influence spread value changes as the parameter γ varies
form 2 to 7 on eight real-world datasets in selecting k =
{10, 30, 50} seed nodes. As a whole, all the eight real-world
datasets exhibit an growing trend of influence spread as the
parameter γ increases. Moreover, the growing is more signif-
icant when γ is small, and the growth will slow down when γ
continues going up. As shown in Figure 2, if the parameter γ
is too small (e.g., γ = 2), the LAIM algorithm may generate
unsatisfactory solutions with low influence spread. Take the
DBLP dataset for example, the influence spread with respect
to k = 50 seeds is 4,232when γ = 2, while that value goes up
to 4,849 when γ = 3, as shown in Figure 2(e). The difference
becomes inconspicuous after γ ≥ 4. Recalling that γ is the
number of iterations in our LAIM algorithm, the results are
consistent with our model assumption, i.e., the influence of a
node mainly propagates within its local neighbors instead of
the remote neighbors.

FIGURE 2. The impact of parameter γ on influence spread on eight
real-world networks.

D. COMPARISON OF LAIM AND FASTLAIM
In this subsection, we further conduct experiments to com-
pare the performance of the LAIM algorithm and its fast ver-
sion, FastLAIM, in terms of both effectiveness (as evaluated
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FIGURE 3. The comparison of LAIM and FastLAIM in terms of influence
spread under different parameter γ (k = 50).

by influence spread) and efficiency (as evaluated by running
time).

1) COMPARISON OF INFLUENCE SPREAD
Different from the LAIM algorithm, the FastLAIM algo-
rithm directly select the top k seed nodes with the high-
est inf ≤γG (v) values, making it much faster than the LAIM
algorithm (as shown in Table 2). However, a potential draw-
back of this approach is that it may generate solutions of
inferior quality since the influence area of different seeds
may overlap with each other. We show the results in Fig-
ure 3, which exhibits how the influence spread values of
the two algorithms change along with different values of γ
in selecting k = 50 seeds. On several datasets (NetHEPT,
NetPHY, and Amazon) we find that the performance of the
FastLAIM algorithm becomes inferior to that of the LAIM
algorithm as the value of γ increases. However, the best per-
formances of the two algorithms are quite close to each other.
Inmost cases, the performances of the two algorithms achieve

FIGURE 4. The comparison of LAIM and FastLAIM in terms of running
time under different parameter γ (k=50).

significant improvements when γ increase from 2 to 3, and
then gradually become stable as γ continues going up, which
is consistent with the results in Figure 2. Based on the results
of Figure 3, we can come to the conclusion that, as compared
to the LAIM algorithm, the FastLAIM algorithm is able to
generate high quality solutions on real-world datasets.

2) COMPARISON OF RUNNING TIME
In Theorem 4 and Theorem 5, we have proved that the time
complexities of our LAIM and FastLAIM algorithms are
O(kγm) and O(γm + n log n), both of which are linear to
the network size. Figure 4 shows the relationship between
the running time of the two algorithms and the iterative
parameter γ on eight real-world datsets. From the results we
see that the FastLAIM algorithm significantly outperform the
LAIM algorithm in time efficiency. The running time of the
LAIM algorithm increase proportionally to the parameter γ ,
which is consistent with our theoretical analysis, while the
FastLAIM algorithm shows its superiority in time efficiency
across different values of γ . For example, on the largest Orkut
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dataset with 3.1 million nodes and 117 million edges, the run-
ning time of the LAIM algorithm rises from 494 seconds
to 3,229 seconds as γ changes from 2 to 9, while that of
the FastLAIM algorithm only grows from 13 seconds and
84 seconds, which is much more efficient.

VII. CONCLUSION
In this article, we studied the influence maximization (IM)
problem under the independent cascade (IC) diffusion model,
and proposed a new iterative approach which was proved to
have linear time and space complexity. Our approach has two
steps: (1) influence approximation; and (2) seed set selection.
In the first step we proposed an iterative algorithm to compute
the local influence of a node based on a recursive formula, and
used the local influence to approximate its global influence.
In the second step, the k influential seed nodes were mined
based on the approximated influence in the first step. We con-
ducted extensive experiments on eight real-world datasets,
and showed that our proposed approach significantly out-
performed existing methods in terms of both effectiveness
and efficiency. Moreover, benefit from the linear time and
space complexity, our approach can easily handle large-scale
networks with millions of vertices and hundreds of millions
of edges.

To the best of our knowledge, there are almost no influence
maximization algorithms which not only generate high qual-
ity solutions, but also has linear time and space complexity.
We believe our study makes significant contributions to the
research of influence maximization. One limitation of our
approach is that it is mainly designed for the independent
cascade diffusion model. In the future, we will try to extend
our approach to the linear threshold model, which also has
many real-world applications.
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