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ABSTRACT Many basic scientific works use wireless sensor networks (WSNs) to collect environmental
data and use the observations for scientific research. The completeness and accuracy of the collected
environmental observations determine the reliability of the research results. However, due to the inherent
characteristics of WSNs, data loss, and data error usually occur during the process of data collection.
Therefore, it is necessary to design an effective method to reconstruct the environmental data from the
incomplete and erroneous observations. In this paper, we propose a novel data reconstruction scheme via
temporal stability guided matrix completion. First, based on the low-rank feature of sensory environmental
data, we formulate the data reconstruction problem as a matrix completion with structural noise. We also
introduce a constraint about short-term stability to the matrix completion problem for further reducing the
reconstruction error. We then, design an algorithm based on the block coordinate descent method and the
operator splitting technique to solve the problem. Finally, simulation results on real sensory data sets show
that the proposed approach not only significantly outperforms existing solutions in terms of reconstruction
accuracy but also can recognize the sensor nodes with erroneous sensory data.

INDEX TERMS Wireless sensor networks, data collection, matrix completion, data reconstruction.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) have been widely used
in many applications, including environmental monitoring,
habitat monitoring, scientific exploration, infrastructure pro-
tection, health monitoring, and so on. Data collection is a
crucial operation in WSNs, where sensor nodes are respon-
sible for collecting all sensory data and delivering them to
a Sink node [1]. To understand the physical world in depth,
many scientific researchers use the collected observations to
reconstruct the environment in cyber space. The reliability
of scientific research and decision-making heavily depends
on the completeness and accuracy of the environmental
observations [2].

However, due to the inherent characteristics of WSNs,
data error and data loss are very common in sen-
sor network deployments [3]. They affect the ability of
scientists to make meaningful conclusions. For example,

Koushanfar and Potkonjak [4] analyzed the sensor data traces
across 3 weeks collected from the Intel Berkeley research
lab [5]. The results showed that almost 40% of the data was
missing and that approximately 8% of the data was faulty.
There are a number of reasons for data loss and error. For
example, the reasons for data loss include wireless chan-
nel instability, inter-channel interference, network conges-
tion, node damage or accidental failure [6], [7]. In addition,
the duty-cycle technique used to save energy is also an impor-
tant reason for data loss [8]. Influenced by some factors dur-
ing the data-collecting, such as quantization, channel noise,
node failure, receiver or base station error, uncertainty of node
deployment area, external signal interference, etc.,the data
collected by some sensor nodesmay deviate from the true rep-
resentation of the physical phenomenon to be measured [9].
Data error occurs when this deviation happens in a sensor
node. Data loss and error present significant challenges in
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accurately reconstructing the physical world. Therefore, it is
necessary to devise an effective method to reconstruct the
environmental data from incomplete and erroneous observa-
tions to reconstruct the physical world accurately in cyber
space.

A great deal of existing work has been devoted to recov-
ering the missing data. K-Nearest-Neighbor (KNN) [10] is
a classic interpolation method, which utilizes the adjacent
values to estimate the missing data. Delaunay Triangula-
tion (DT) [11] is a typical global refinement method, which
treats the gathered data as vertices. DT takes advantage of
these vertices and their global errors to build virtual trian-
gles for data interpolation. Multi-channel Singular Spectrum
Analysis (MSSA) [12] is a nonparametric and data-adaptive
interpolation method based on the embedded lag-covariance
matrix, which is a branch of principal component analysis.
It is often used in geographic data recovery. The recovery
quality of the above methods is generally poor when the
data missing rate is high. Moreover, these schemes cannot be
applied to handle data error well.

Compressive sensing (CS) is an advanced method
to recover the whole data with just a few measure-
ments [13], [14]. Chen et al. [15] developed a Multi-
Attribute-assistant Compressive Sensing (MACS) algorithm
to optimize the recovery accuracy. They proposed a joint
sparse decomposition method to find the cross features
among multiple attributes based on two real datasets and
used the correlation features to jointly recover multi-attribute
datasets. Kong et al. [18] analyzed the real environmental data
and revealed four features of sensory data, such as low-rank,
time stability, space similarity and multi-attribute correlation.
Based on these observations, they designed an Environmental
Space Time Improved Compressive Sensing (ESTI-CS) algo-
rithm with a Multi-Attribute Assistant (MAA) component for
estimating the missing data. ESTI-CS calculated the minimal
low-rank approximations of the incomplete environmental
data matrix, refined the interpolation with spatiotemporal
features, and leveraged the strong correlation of multiple
attributes from the same dataset for better reconstruction
accuracy.

With the rapid progress of sparse representation, matrix
completion has been used to recover the missing data in
WSNs recently. Chenget al. [16] presented an Efficient Data
Collection Approach (EDCA) for data collection in WSNs.
EDCA takes advantage of the low-rank feature to achieve
both less traffic and high accuracy. To reduce energy con-
sumption of sensors, EDCA randomly chooses the node and
time instance to sample data and then uses a matrix comple-
tion technique to recover the missing data. However, EDCA
only utilizes the low-rank feature of the data matrix. It cannot
achieve high accuracy when the data missing rate is high
and the empty columns exist in the data matrix. Therefore,
Spatiotemporal Compressive Data Collection (STCDG) pro-
posed in [17] made use of both the low-rank and short-term
stability features to reduce the amount of traffic and improve

the level of recovery accuracy. To avoid the optimization
problem involving empty columns, STCDG first removed the
empty columns and only recovered the non-empty columns,
then filled the empty columns using an optimization tech-
nique based on temporal stability. He et al. [19] proposed
a Data Recovery method with joint Matrix Completion and
Sparsity Constraints (DRMCSC). DRMCSC utilized both the
low-rank and sparsity features of sensory data to recover the
missing data. By utilizing the variable-splitting and penalty
techniques, they reformulated the data recovery problemwith
matrix completion and sparsity constraints as a half-quadratic
minimization problem and designed an alternating minimiza-
tion method to solve it. The algorithms mentioned above
only consider the problem of recovering the missing data.
However, the data errors and its negative impacts on recovery
accuracy of the missing data are not considered.

Since data errors are common problems in data collec-
tion, it is imperative to consider their impacts on the data
reconstruction. The detection and correction of erroneous
data in WSNs have been studied in many works [20], [21].
Ni et al. [2] provided a systematically characterized tax-
onomy of common sensor data faults and presented a sys-
tematic way of detecting sensor data faults. The outlier is a
pattern that does not match the expected trend in analyzed
data. Most outlier detecting algorithms in WSNs exploit the
correlation of the sensory data [22]–[24]. Kamal et al. [9]
proposed a framework for sensor data reliability assessment,
Packet-Level Attestation (PLA), which exploits the spatial
correlation of data sensed at nearby sensors. PLA is based
on the concept of nominating nearby data verifier nodes
for each node. A novel sequence-based detection approach,
named FIND, for discovering data faults in sensor networks
is given in [6]. FIND neither needs a priori knowledge about
the underlying distribution of sensed phenomena nor requires
costly event injections. In FIND, the faulty nodes are detected
based on their violation of the distance monotonicity property
in sensing, which is quantified by the metric of ranking dif-
ferences. Tang et al. [25] investigated the impact of outlying
sensor readings and broken links on high-fidelity data gather-
ing based on compressive sensing theory. They proposed an
approach based on the compressive sensing theory to identify
outlying sensor readings, derive the corresponding accurate
values, and infer the broken links.

The existing works only separately consider the data recov-
ery problem with missing entries and the data reconstruction
problem with erroneous entries, but not consider the mutual
influence of missing data and erroneous data in the data
reconstruction process. This paper focuses on designing an
approach to accurately reconstruct the environmental data
in the presence of data loss and data error in WSNs. Our
contributions can be summarized as follows:

(1) We propose a novel Data Reconstruction scheme
via Temporal Stability guided Matrix Completion, named
DRTSMC. To our knowledge, this is the first approach
that can simultaneously reconstruct the environmental data
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accurately and recognize the sensor nodes that have collected
erroneous data.

(2) We first take advantage of the low-rank feature of
the raw environmental data to model the data reconstruc-
tion problem as a matrix completion model with structural
noise. We also introduce the temporal stability to the matrix
completion model to further reduce the reconstruction error.
Then, we design an algorithm based on the block coordinate
descent method and the operator splitting technique to solve
the problem.

(3) Finally, we perform simulations with real-world sen-
sory datasets. The results show that the proposed approach
significantly outperforms the existing solutions in terms of
reconstruction accuracy. In particular, DRTSMC can not only
recognize the sensor nodes that have collected erroneous data
but also reduce the negative impact of erroneous data on
the recovery performance of missing data to improve data
reconstruction accuracy.

The rest of this paper is organized as follows: The basic
mathematical definitions and theorems are presented in
Section II. In Section III, we first introduce the problem
definition and system model and then present a data recon-
struction approach via temporal stability guided matrix com-
pletion. Finally, we evaluate the performance of the proposed
DRTSMC through extensive simulations in Section IV, and
we conclude the work in Section V.

II. MATHEMATICAL FOUNDATION
In this section, we first give some mathematical definitions
and then briefly introduce several theorems that are useful
for the subsequent analysis.
Definition 1 (Matrix Norm [26]): Suppose the Singular

Value Decomposition (SVD) of matrix X = (Xij) ∈ Rn1×n2

with rank r : X = U3VT, where U and V are the n1 × r
and r × n2 matrices, respectively, with orthogonal columns,
3 = diag {σi |1 ≤ i ≤ r } and σi is the i-th largest singular
value; then,

(1) The Frobenius norm of matrix X is defined as

‖X‖F =
√∑n1

i=1

∑n2

j=1
X2
ij .

(2) The nuclear norm of matrix X is defined as

‖X‖∗ =
∑r

i=1
σi.

(3) The L2,1 norm of matrix X is defined as

‖X‖2,1 =
∑n1

i=1

∥∥∥X (i)
∥∥∥
2
=

∑n1

i=1
(
∑n2

j=1
X2
ij )

1/2.

Definition 2 (Matrix Shrinkage operator [27]): For any
τ > 0, matrix shrinkage operator Dτ (X) is defined as

Dτ (X) = USτ (3)VT,

where Sτ (3) = diag({max(0, σi − τ ) |i = 1, 2, . . . r }).
Theorem 1: For any τ, µ > 0 and Z ∈ Rn1×n2 , the matrix

shrinkage operator Dτ /µ(Z) obeys

Dτ /µ(Z) = arg min
X∈Rn1×n2

{
τ ‖X‖∗ +

µ

2
‖X − Z‖2F

}
. (1)

Theorem 2 (Proximal Forward Backward Splitting,
PFBS) [28]: Given the following unconstrained convex
problem

min
X∈H

F(X) = F1(X)+ F2(X), (2)

where H is a Hilbert space, both F1(X) and F2(X) are proper
lower semi-continuous functions, and F2(X) is smooth with
a Lipschitz continuous gradient. Then, the following iterative
sequence will converge to aminimizer of convex problem (2):

Xk+1
= arg min

X∈H
δF1(X)+

1
2

∥∥∥X − (Xk
− δ∇F2(Xk ))

∥∥∥2
F
,

(3)

where δ is the step size of iteration and satisfies 0 < δ < 1
/
Lf

and Lf is the Lipschitz continuous gradient of F2(X),
i.e., ∃Lf > 0, for ∀X1,X2:

‖∇F2(X2)−∇F2(X1)‖F ≤ Lf ‖X2 − X1‖F . (4)

Theorem 3 [29]: For any τ, µ > 0 and W ∈ Rn1×n2 ,
the function H (X) = τ ‖X‖2,1 +

µ
2 ‖X −W‖

2
F has a global

minimum point X∗ = J τ/µ (W ):(
J τ/µ(W )

)(i)
= max

{∥∥∥W(i)
∥∥∥
2
− τ

/
µ, 0

}
·W(i)

/∥∥∥W(i)
∥∥∥
2

i = 1, 2, · · · , n1, (5)

where
(
J τ/µ(W )

)(i) represents the i-th row of matrix
J τ/µ (W ) and ‖·‖2 denotes the L2-norm of the vector.

III. DATA RECONSTRUCTION VIA TEMPORAL
STABILITY GUIDED MATRIX COMPLETION
In this section, we first introduce the problem definition
and system model and then present the data reconstruction
scheme.

A. PROBLEM DEFINITION
A large number of sensor nodes are deployed in a monitoring
area, such as indoors, in a forest or ocean,etc., to collect
environmental data to a Sink node. The environmental data
reflecting the physical characteristics of the monitoring area
can be applied to scientific research. Consider a WSN con-
sisting of one Sink and N sensor nodes, i.e., v1, v2, ..., vN .
Each sensor node is equippedwith one ormore environmental
sensors for sensing different types of environmental data,
such as temperature, humidity, and so on.We employ periodic
data collection. The sensor nodes sense and transmit the
environmental data to the Sink once every τ time. We call the
time interval τ as a time slot. The monitoring time includes
T time slots. Therefore, the total amount of data is N × T .
These data can be represented by a matrix:

X =


x(1, 1) x(1, 2) x(1, 3) · · · x(1,T )
x(2, 1) x(2, 2) x(2, 3) · · · x(2,T )
· · · · · · · · · · · · · · ·

x(N , 1) x(N , 2) x(N , 3) · · · x(N ,T )


∈ RN×T (6)
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where x(i, j) denotes the sensory data of node vi at time
slot j. We define the matrix X as a raw environmental matrix.
A complete environmental matrix represents that all envi-
ronmental data are successfully collected, i.e., there are no
missing data.

However, due to the presence of missing data, the Sink
node in fact obtains an incomplete matrix. We define this
incomplete matrix as a sampling matrix, denoted by R. Let
� ⊆ {1, · · · ,N } × {1, · · · ,T } denote the subscripts set of
the observed entries in R and P�(·) denote the element-wise
projection function as

[P�(R)]ij =

{
R(i, j) if (i, j) ∈ �,
0 otherwise.

(7)

where R(i, j) is a sampling entry of matrix R.
As mentioned in Section I, oss, data error may occur during

the data collection. Therefore, there are two types of sampling
data. They are raw environmental data and erroneous data.
Any sampling data R(i, j) collected by node vi at time slot j
can be expressed as

R(i, j) =

{
X (i, j) the raw environmental data
F(i, j) the erroneous data

(8)

We can represent the erroneous data as the raw environmental
data adding a noise value. Therefore, the erroneous data
F(i, j) can be represented as

F(i, j) = X (i, j)+ Z (i, j), (9)

where Z (i, j) is a noise value corresponding to node vi at time
slot j. Therefore, we can define a noise matrix Z. Any entry
Z (i, j) of matrix Z satisfies: if node vi collected an erroneous
data at time slot j, Z (i, j) 6= 0; otherwise, Z (i, j) = 0. In the
real application scenario, data collected by some sensor nodes
are prone to be errors, that is, the entries in some rows of
the sampling matrix are prone to be errors. Therefore, some
rows in the noise matrix contain nonzero entries, and the
remaining rows are all zero entries. We also consider the
noise matrix Z as a row-structural noise matrix. Based on
the above definitions and analyses, the sampling matrixR can
be described by the following equation:

P�(R) = P�(X + Z). (10)

For ease of understanding, we give a simple example of
data collection, as shown in Fig. 1. A WSN consists of
4 sensor nodes, v1, v2, v3, v4. They collect data for 6 time

FIGURE 1. The sensory data collected by 4 sensor nodes for 6 time slots.

slots. The raw environmental matrix X is expressed as

X =


x11
x21
x31
x41

x12
x22
x32
x42

x13
x23
x33
x43

x14
x24
x34
x44

x15
x25
x35
x45

x16
x26
x36
x46

. (11)

Assume that some of the data collected by node v2 and v4
are errors. Data loss and data error are shown in Fig. 1.
The corresponding row-structural noise matrix Z is

Z =


0
0
0
0

0
0
0
z42

0
z23
0
0

0
0
0
0

0
z25
0
z45

0
0
0
0

. (12)

Therefore, the sampling matrix R collected by the WSN is

R =


x11
x21
0
x41

0
x22
x32

x42 + z23

x13
x23 + z23
x33
0

0
x24
x34
x44

x15
x25 + z25

0
x45 + z45

0
0
x36
x46

. (13)

The key problem to be solved in this paper is how to
reconstruct the environmental data matrix from the sampling
matrix R. In the following section, we will propose a novel
Data Reconstruction scheme via Temporal Stability guided
Matrix Completion (DRTSMC) to solve the data reconstruc-
tion problem.

B. MODEL CONSTRUCTION
According tomatrix completion theory, a low-rank or approx-
imately low-rankmatrix can be accurately reconstructed from
a relatively small number of sampling entries [30], [31].
Based on the analysis of the real environmental datasets
gathered by the Intel indoor experiment, GreenOrbs, and
Ocean-Sense projects, performed by literature [3], [7], [17],
we know that the environmental matrix exhibits the fea-
tures of low-rank structure and temporal stability. Therefore,
the problem of reconstructing the environmental matrix from
incomplete and erroneous sensory data can be modeled as a
matrix completion problem.

To effectively smooth the structural noise and alleviate its
negative impacts on data recovery, DRTSMC introduces the
L2,1-norm regularized parameter to the standard matrix com-
pletion problem. It applies the L2,1-norm regularized term
of the structural noise to the objective function to formulate
the data reconstruction as a L2,1-norm regularized matrix
completion problem:

min
X,Z∈RN×T

‖X‖∗ + λ ‖Z‖2,1

s.t. P�(R) = P�(X + Z) (14)

where R ∈ RN×T is a sampling matrix collected by a
Sink node and λ is a tunable parameter used to balance the
structural noise and the low-rank of the matrix.

Furthermore, the environmental data collected by WSNs
usually change slowly over time. In [3], [7], and [17],
the researchers explored the feature of temporal stability in
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sensory data. They calculated the gap between each pair of
adjacent readings for each sensor node, then compared the
difference between each pair of adjacent gaps, and found
that the sensor readings do not change much in the short
term. We introduce a term about temporal stability,

∥∥XST∥∥2F ,
to the matrix completion problem (14) to further reduce the
recovery error, where S = Toeplitz(0, 1, -2, 1), which denotes
the Toeplitz matrix with a central diagonal given by 1, the first
upper diagonal given by −2 and the second upper diago-
nal given by 1. In detail, S can be defined using following
equation:

S =


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
0 0 1 −2 · · · 0
· · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 1


T×T

(15)

Finally, we arrive at the following minimization problem:

min
X,Z∈RN×T

‖X‖∗ + λ ‖Z‖2,1 +
τ

2

∥∥∥XST∥∥∥2
F

s.t. P�(R) = P�(X + Z), (16)

where τ is another tunable parameter.

C. MODEL OPTIMIZATION
In this section, we design an efficient optimization algo-
rithm to solve the proposed matrix completion model (16) by
employing the block coordinate descent method [26] and the
operator splitting technique [28]. Without loss of generality,
we reformulate problem (16) as the following equivalent
penalty function form:

min
X,Z∈RN×T

µ(‖X‖∗ + λ ‖Z‖2,1 +
τ

2

∥∥∥XST∥∥∥2
F
)

+
1
2
‖P�(R− X − Z)‖2F . (17)

Furthermore, for ease of description, we let:

L(X,Z) = µ(‖X‖∗ + λ ‖Z‖2,1 +
τ

2

∥∥∥XST∥∥∥2
F
)

+
1
2
‖P�(R− X − Z)‖2F (18)

Based on the block coordinate descent method, prob-
lem (17) can be solved iteratively as follows:X

k+1
= arg min

X∈RN×T
L(X,Zk )

Zk+1 = arg min
Z∈RN×T

L(Xk+1,Z).
(19)

1) For sub-problem 1:

Xk+1
= arg min

X∈RN×T
L(X,Zk ) (20)

We have:

Xk+1
= arg min

X∈RN×T
µ(‖X‖∗ +

τ

2

∥∥∥XST∥∥∥2
F
)

+
1
2
‖P�(R− X − Z)‖2F (21)

Furthermore, let:

F1(X) = µ ‖X‖∗ , (22)

F2(X) =
µτ

2

∥∥∥XST∥∥∥2
F
+

1
2

∥∥∥P�(R− X − Zk )∥∥∥2
F
. (23)

We can see that both F1(X) and F2(X) are lower semi-
continuous convex functions, and F2(X) is differentiable
on RN×T . According to the Theorem 2, we have

Xk+1

= arg min
X∈RN×T


µδX ‖X‖∗

+
1
2

∥∥∥∥∥X −
(
Xk
− δXµτXkSTS

+δXP�(R− Xk
− Zk )

)∥∥∥∥∥
2

F
(24)

Let Uk
= Xk

− δXµτXkSTS + δXP�(R − Xk
− Zk ); then,

Eq. (18) can be simplified to

Xk+1
= arg min

X∈RN×T
µδX ‖X‖∗ +

1
2

∥∥∥X − Uk
∥∥∥2
F
. (25)

According to Theorem 1, Xk+1 can be expressed as

Xk+1
= DµδX (U

k ), (26)

where δX is a step size. Specifically, since we have the fol-
lowing inequation:

‖∇F2(X1)−∇F2(X2)‖2F

=

∥∥∥P�(X1 − X2)+ µτ (X1 − X2)STS
∥∥∥2
F

≤ 2 ‖P�(X1 − X2)‖2F + 2µ2τ 2σ 2
1 (S

TS) ‖X1 − X2‖
2
F

≤

(
2+ 2µ2τ 2σ 2

1 (S
TS)

)
‖X1 − X2‖

2
F (27)

where σ1(STS) is the largest singular value of matrix STS,
we can set the Lipschitz continuous gradient of F2(X) as

Lf =
√
2+ 2µ2τ 2σ 2

1 (S
TS) (28)

In this paper, according to Theorem 2,we set

δX =
1√

2+ 2µ2τ 2σ 2
1 (S

TS)
(29)

Therefore, Sub-problem 1 can be solved by the following
iterative method:{

Uk
= Xk

− δXµτXkSTS+ δXP�(R− Xk
− Zk )

Xk+1
= DµδX (U

k ).
(30)

2) For Sub-problem 2:

Zk+1 = arg min
Z∈RN×T

L(Xk+1,Z) (31)
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We have:

Zk+1 = arg min
Z∈RN×T

µλ ‖Z‖2,1 +
1
2

∥∥∥P�(R− Xk+1
− Z)

∥∥∥2
F

= arg min
Z∈RN×T

µλδZ ‖Z‖2,1 +
1
2

∥∥∥Z− V k
∥∥∥2
F
, (32)

where V k
= Zk + δZP�(R − Xk+1

− Zk ) and δZ satisfy
the Lipschitz continuous gradient, which is determined as
follows:∥∥∥P�(X1 + Zk − R)− P�(X2 + Zk − R)

∥∥∥2
F

= ‖P�(X1 − X2)‖2F
≤ ‖X1 − X2‖

2
F (33)

i.e., the Lipschitz constant Lf = 1. The step size of iteration
satisfies 0 < δZ < 1.

According to Theorem 3, Zk+1 can be solved as follows:

Zk+1 = J µλδZ (V
k ). (34)

Finally, Sub-problem 2 can be solved by the following itera-
tive method, i.e.,{

V k
= Zk + δZP�(R− Xk+1

− Zk )
Zk+1 = J µλδZ (V

k )
(35)

D. ALGORITHM IMPLEMENTATION
Based on the above analyses, we can get the iterative solu-
tion of the minimization problem (13). The data recovery
algorithm based on the operator splitting technique is shown
in Algorithm 1. The input of Algorithm 1 is the sampling
matrix R collected by the WSN, the maximum number of
iterations R , and various parameters, such as µ, λ, τ , etc.
The output ofAlgorithm 1 is recovered data matrix Xopt and
recovered noise matrix Zopt . In Algorithm 1, we first set the
initial matrix X0 and Z0 as 0 (line 1). Sub-problems 1 and 2
are solved in lines 3-4 and lines 5-6, respectively.

Algorithm 1 Data Recovery Algorithm Based on the Block
Coordinate Descent Method

Input: sampling matrix R, µ, λ, τ , maximum number of
iterations Max
Output: XoptZopt
1) Initialization δZ = 1

2 ,

δX =
1√

2+ 2µ2τ 2σ 2
1 (S

TS)
, X0

= 0, Z0 = 0;

2) FOR k = 0 to Max
3) Uk

= Xk
− δXµτXkSTS+ δXP�(R− Xk

− Zk );
4) Xk+1

= DµδX (U
k );

5) V k
= Zk + δZP�(R− Xk+1

− Zk );
6) Zk+1 = J µλδZ (V

k )
7) END FOR
8) RETURN Xopt ← XMax+1, Zopt ← ZMax+1

Using matrix Xopt and Zopt , DRTSMC reconstructs the
environment matrix X rec through the following two steps:
Step 1: We first recover the missing data by inserting the

entries of the recovered data matrix Xopt in the
corresponding missing point. Any entry in X rec
satisfies

Xrec(i, j) =

{
R(i, j) (i, j) ∈ �
Xopt (i, j) otherwise.

(36)

Step 2: The faulty nodes can be recognized through analyz-
ing the recovered noise matrix Zopt . In matrix Zopt ,
the rows, whose entries are all zeros, correspond
to the sensor nodes without erroneous data. Oth-
erwise, the rows with nonzero entries correspond
to the faulty sensor nodes. After recognizing the
faulty nodes, we can replace the rows containing
erroneous data in the reconstructed matrixX rec with
the corresponding data rows of matrixXopt , i.e., any
raw in X rec satisfies

X (i)
rec

=


X (i)
rec Zopt (i, j) = 0∀Zopt (i, j) ∈ Z

(i)
opt ,

j = 1, . . .T ,

X (i)
opt otherwise

(37)

whereX (i)
rec andX

(i)
opt represent the i-th row of matrix

X rec and Xopt , respectively.
As the example given in Subsection A, the method

of reconstructing the environmental data matrix X rec can
be illustrated by Fig. 2. The sampling matrix is shown
in Fig. 2 (a). Fig. 2 (b) and (c) are matrix Xopt and Zopt ,
respectively. The reconstructed environmental matrix X rec is
shown in Fig. 2 (d).

FIGURE 2. The method of reconstructing the environmental matrix.

E. CONVERGENCE ANALYSIS
Theoretically, for the jointly convex problem with the separa-
ble non-smooth terms, Tseng [32] has demonstrated that the
block coordinate descent method is guaranteed to converge to
a global optimum, as long as all sub-problems are solvable.
In our model, it is obvious that the model’s non-smooth parts,
i.e., both µ ‖X‖∗ and λ ‖Z‖2,1, are separable, and based on
Theorem 2 we can see that both the two sub-problems are
solvable. Furthermore, we can also prove that the objective
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function of this model is jointly convex for X and Z by using
Proposition 1. Therefore, based on this fact, we can easily
draw a conclusion that our proposed optimization algorithm
also has the provable convergence.
Proposition 1: The model proposed in our work:

L(X,Z) = µ(‖X‖∗ + λ ‖Z‖2,1 +
τ

2

∥∥∥XST∥∥∥2
F
)

+
1
2
‖P�(R− X − Z)‖2F (38)

is a jointly convex model, where S ∈ RT×T .
Proof: Obviously, the domain of this model

{
(X,Z)|

X,Z ∈ RN×T
}

is a convex set.Meanwhile, from [26],
we know that the nuclear norm and L2,1-norm are convex,
and a nonnegative weighted sum of convex functions is also
convex. Therefore, to prove that L(X,Z) is jointly convex,
we only need to prove that:

τµ

2

∥∥∥XST∥∥∥2
F
+

1
2
‖P�(R− X − Z)‖2F (39)

is jointly convex.
For ease of description, formula (39) can be simplified as:

G(X,Z) =
k
2
‖XM‖2F +

1
2
‖P�(R− X − Z)‖2F (40)

where k=τµ,M = ST .
Next, we will demonstrate that G(X,Z) is jointly convex

by proving that it obeys the following first-order conditions
of convex function for any X1,X2, Z1,Z2 ∈ RN×T [33]:

G(X2,Z2) ≥ G(X1,Z1)+ 〈∇G(X1,Z1),
[
X2 − X1
Z2 − Z1

]
〉

(41)

Obviously, for G(X,Z), we have:

∇G(X,Z) =
[
kXMMT

0N×T

]
−

[
P�(X + Z− R)
P�(X + Z− R)

]
(42)

Then:

G(X2,Z2)− G(X1,Z1)− 〈∇G(X1,Z1),
[
X2 − X1
Z2 − Z1

]
〉

=
k
2
‖X2M‖2F −

k
2
‖X1M‖2F +

1
2
‖P�(X2 + Z2 − R)‖2F

−
1
2
‖P�(X1 + Z1 − R)‖2F

− tr
(
P�
(
(X2 − X1)T (X2 + Z2 − R)

+ (Z2 − Z1)T (X2 + Z2 − R)
))

− k · tr
(
(X2 − X1)T (X1MMT )

)
=

k
2
· tr
(
(X2M− X1M)T (X2M+ X1M)T

)
− k · tr

(
(X2M− X1M)T (X1M)

)
+

1
2
tr
(
P�
(
(X2 + Z2 − X1 − Z1)T

× (X2 + Z2 + X1 + Z1 − 2R)
) )

− tr
(
P�
(
(X2 − X1)T (X1 + Z1 − R)

+ (Z2 − Z1)T (X1 + Z1 − R)
))

=
k
2
· tr
(
(X2M− X1M)T (X2M+ X1M− 2X1M)

)
+

1
2
tr
(
P�
(
(X2+Z2−X1−Z1)T (X2+Z2−X1−Z1)

))
=

k
2
· tr
(
MT (X2 − X1)T (X2 − X1)M

)
+

1
2
‖P�(X2 + Z2 − X1 − Z1)‖2F

=
k
2
‖(X2 − X1)M‖2F +

1
2
‖P�(X2 + Z2−X1−Z1)‖2F ≥0

(43)

Therefore, we draw a conclusion that:

G(X2,Z2) ≥ G(X1,Z1)+ 〈∇G(X1,Z1),
[
X2 − X1
Z2 − Z1

]
〉

(44)

That is, the function G(X,Z) is jointly convex, which means
that our proposed model is jointly convex.

IV. PERFORMANCE EVALUATIONS
To evaluate the performance of our scheme, we perform
the extensive simulations driven by real-world environmental
datasets and compare the proposed DRTSMC with the state-
of-the-art STCDG [17], DRMCSC [19] and RPCA [34] in
this section.

A. EXPERIMENTAL ENVIRONMENT
We use the real-world environmental datasets from the Intel
Indoor project [5] to perform the simulations. In the Intel
indoor experiment, there are 54 Mica2Dot nodes placed in a
40m× 30m room. Each node reports once every 30 seconds.
The sensory data include temperature, light, and humidity.
We select temperature data as the raw experimental dataset.
The experimental dataset contains the data collected by
52 sensor nodes in 300 consecutive time slots, i.e., N = 52,
T = 300. The temperature range is [15.8195, 27.7836].

Let n be the number of missing entries in the sampling
matrix; then, the data missing rate pn can be expressed as
pn = n

/
N × T . We define the data sampling rate Ps as

ps = 1 − pn. The ratio of the number of faulty sensor nodes
to the total number of sensor nodes is called the rate of faulty
sensor nodes. Let m be the number of faulty sensor nodes.
Then, the rate of faulty sensor nodes pm = m

/
N .

To evaluate the reconstruction performance, we generate
a data matrix with random data missing as well as structural
data error from the raw experimental data matrix. We denote
the raw data matrix as XN×T . From the raw data, we generate
the synthesized experimental data, denoted as RN×T . The
synthesized data RN×T are generated through the following
two steps:
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FIGURE 3. The comparison of data matrix. (a) The raw environmental data. (b) Data reconstructed by DRMCSC. (c) Data reconstructed by DRTSMC.

Step 1: According to the data sampling rate ps, we deter-
mine the random subscripts set � of the observed entries.
We then sample the entries from the raw matrix XN×T
according to the subscripts set �. After this step, the synthe-
sized data R can be expressed as follows.

Rij =

{
Xij (i, j) ∈ �
0 otherwise,

(45)

Step 2: Based on the given rate of faulty sensor nodes
pm, we can determine the number of faulty sensor nodes,
i.e., m = bpm × Nc. To generate structural erroneous data,
we randomly selectm rows from R, in which 50% of nonzero
entries are set as erroneous data by adding randomly gen-
erated noise. Denote the erroneous data location set as. The
synthesized sampling data can be expressed as

Rij =

{
Rij + Zij (i, j) ∈ �
Rij otherwise,

(46)

where Zij is the generated noise at location (i, j) following a
zero-mean normal distribution with variance δ2, i.e., Zij ∼
N (0, δ2). In this simulation, we set δ2 = 4.
After the above two steps, the synthesized data matrix is

obtained. We then use the synthesized data matrix RN×T as
the samplingmatrix for reconstructing the environmental data
matrix. Finally, we verify the performance of our proposed
DRTSMC by comparing the reconstruction data matrix with
the raw data matrixXN×T .
In Algorithm 1, the theoretical research for adaptive set-

ting of tunable parameters µ, λ and τ has not yet been carried
out. In the simulation process, we cross-validate the tunable
parameters λ and τ based on the prior knowledge of the
problem that we are dealingwith. At the same time, in order to
speed up the convergence of the algorithm, the initial value of
the parameter µ is set to the L2 norm of the sampling matrix,
and then, it iterates to 0.01 at the rate of 0.25.

B. DEFINITIONS OF PERFORMANCE PARAMETERS
To measure the performance, some definitions of perfor-
mance parameters are given in this subsection.
Definition 3. Recovery Error of Missing Data (εmiss) is a

metric for measuring the error in the recovery of the missing

entries in the matrix:

εmiss =

√∑
i,j:(i,j)∈�M (X (i, j)− Xrec(i, j))2√∑

i,j:(i,j)∈�M (X (i, j))2
, (47)

where �M denotes the subscripts set of the missing-data
points in the sampling matrix. The εmiss reflects the ability
of the algorithm to recover the missing data.
Definition 4: Recognition Rate of Faulty Sensor Node

(rnode) is a metric to measure the ability to recognize the
faulty sensor node:

rnode =
2 · precision · recall
precision+ recall

(48)

precision =
m_true
m_all

(49)

recall =
m_true
m

, (50)

where m_all represents the number of faulty sensor nodes
recognized by the proposed method, and m_true denotes the
number of true faulty nodes among them, m is the actual
number of faulty sensor nodes, i.e., m = bpm × Nc
Definition 5: Reconstruction Error of Erroneous

Row (εrow). As described in Section III, we replace the erro-
neous data rows of matrix X rec with the corresponding data
rows in matrix Xopt . The error caused by this replacement
is defined as reconstruction error of erroneous row. It can be
expressed as

εrow =

√∑
i,j:i∈2,j∈[1,...,T ](X (i, j)− Xrec(i, j))2√∑

i,j:i∈2,j∈[1,...,T ](X (i, j))2
(51)

where 2 is the set of faulty sensor nodes. The εrow reflects
the ability of the algorithm to recover erroneous data.

C. PERFORMANCE COMPARISONS
In this section, we compare the proposed DRTSMC with the
state-of-the-art STCDG [17], DRMCSC [19] and RPCA [34].
We report an average of 30 random runs.

We first give a straightforward comparison of the data
matrix reconstructed by the different algorithms. In Fig. 3,
we show the data reconstruction performance in the case
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FIGURE 4. Recovery error of missing data under different missing rates. (a) The data missing rate from
10% to 80%. (b) The data missing rate from 80% to 95%.

that the faulty rate pm = 10% and the data missing rate
pn = 30%. The 3D image of the raw environmental matrix is
shown in Fig. 3(a). Fig. 3 (b) and (c) show the 3D images of
the data matrices reconstructed by DRMCSC and DRTSMC
respectively. It can be seen intuitively that the data matrix
reconstructed by our method is closer to the raw data matrix,
that is, the missing data can be recovered and the erroneous
data rows can be corrected effectively. In addition, through
Fig. 3(b), we also find that the erroneous data have a signifi-
cant impact on the data reconstruction accuracy of DRMCSC.

Fig.4 shows the data recovery performance of several algo-
rithms in the case of the same faulty rate and different data
missing rates. In Fig. 4, the faulty rate pm is set to be 20%, and
the data missing rate pn ranges from 10% to 95%. To facilitate
observation, the comparison results are shown by two figures.
As shown in Fig. 4, the recovery error of DRTSMC is always
lower than that of other algorithms, i.e., our algorithm shows
the best recovery performance. When the data missing rate is
low, the recovery errors of all algorithms are relatively small.
The recovery error increases with the data missing rate. How-
ever, even when 90% of the data have been lost, the recovery
error of DRTSMC is still less than 5%, while the recovery
error of RPCA is more than 10%, and the other two algo-
rithms are close to 20%. When the data missing rate exceeds
90%, the recovery error increases dramatically. In addition,
when the data missing rate is relatively high, DRTSMC has a
more obvious advantage over other algorithms.

FIGURE 5. Recovery error of missing data under different faulty rates.

Fig.5 depicts the recovery error of missing data under
different faulty rates. In Fig. 5, the data missing rate pn is

fixed at 50%.We increase the rate of faulty sensor nodes from
5% to 50%. In general, the recovery error of the four algo-
rithms increases with the rate of faulty sensor nodes. It reveals
the fact that the erroneous data have a significant impact
on the recovery performance of the missing data. However,
DRTSMC is much better than other algorithms. With the
increase in the faulty rate, the performance of DRTSMC is
increasingly superior to the other algorithms.

FIGURE 6. Reconstruction error of erroneous rows under different faulty
rates.

The performance comparison of reconstruction error of
erroneous rows is shown in Fig. 6. Because the STCDG
and DRMCSC cannot recognize the faulty sensor nodes,
the reconstruction error is larger. As described in [34],
the RPCA algorithm works well for the outlier noise with
uniform or approximately uniform distribution, while the
noise we suffered from is the row-structural noise, which
does not obey uniform or approximately uniform distribution.
Therefore, the reconstruction error of RPCA is larger than
DRTSMC. The performance of DRTSMC is better than other
algorithms, which is also clearly shown in Fig. 3. In addition,
as the faulty rate increases, the reconstruction error of erro-
neous rows increases slightly.

We now explore the faulty-node recognition ability of
DRTSMC. First, we study the recognition rate of faulty sensor
nodes under different data missing rates. In Fig. 7, the faulty
rates are set to 40% and 60%. The data missing rate pn ranges
from 10% to 90%. When the data missing rate increases to
60%, the recognition rate of faulty sensor nodes is still close
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FIGURE 7. Recognition rate under different missing rates.

FIGURE 8. Recognition rate under different faulty rates.

to 100%. It indicates that DRTSMC has a strong ability to
recognize the faulty sensor nodes. With a further increase in
the data missing rate, the recognition rate decreased slightly.
Even if the data missing rate reaches 90%, the recognition
rate is still more than 80%. Then, we analyze the recognition
ability under different faulty rates. Fig. 8 shows the evolution
of the recognition rate of DRTSMC when the data missing
rate is 40% and 60%, and the faulty rate ranges from 10%
to 90%. In Fig. 8, even if the faulty rate rises to 60%,
the recognition rate can still be close to 100%. When the
faulty rate is further increased, the recognition rate decreases
slightly. From the above two figures, we can conclude that
DRTSMC can completely recognize the faulty sensor nodes
when the faulty rate and data missing rate are not too high,
i.e., our algorithm has strong recognition ability of faulty
sensor nodes.

In summary, DRTSMC outperforms STCDG, DRMCSC
and RPCA in terms of reconstruction accuracy. DRTSMC not
only can exactly recognize the sensor nodes that collected
erroneous sensory data but can also effectively reconstruct the
environmental data.

V. CONCLUSION
Aiming at the problem of data loss and error in the
process of data collection in WSNs, this paper proposes
a data reconstruction scheme based on matrix comple-
tion and temporal stability. The scheme applies matrix
completion to fully exploit the low-rank and tempo-
ral stability features of environmental data to reconstruct

environmental data. We formulate the data reconstruction
problem as a L2,1-norm regularized matrix completion
model. We also design an algorithm based on the block coor-
dinate descent method and the operator splitting technique to
realize the reconstruction of environmental data.

We have performed extensive simulations with real-world
sensory datasets. The simulation results demonstrate that our
DRMCSC can achieve very good reconstruction performance
when data loss and error exist simultaneously. Most impor-
tantly, our DRMCSC can recognize the faulty sensor nodes
and reduce the negative impact of erroneous data on data
reconstruction to improve data reconstruction performance.
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