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ABSTRACT Spectrum prediction is a promising technology in cognitive radio networks, since it can reduce
considerable time and energy consumed in spectrum sensing process. Many spectrum prediction algorithms
have achieved good performance, but majority of them with shallow architecture cannot capture the inherent
correlations of spectrum data very well. Long short-term memory (LSTM) neural network in deep learning
has been validated to have strong capability of solving time series problems. In this paper, we develop a
spectrum prediction framework with a deep learning approach on two real-world spectrum datasets. For
the first dataset to predict channel occupancy states, we firstly employ the taguchi method to determine the
best optimized configuration of neural network for certain spectrum point and then analyze the effect of
each design hyper-parameter. Next, we build LSTM neural networks with two perspectives of regression
and classification for spectrum prediction. For the second dataset to predict channel quality, we compare the
prediction performance of the LSTM neural network and conventional multilayer perceptron (MLP) neural
network. For both of our datasets, results show that the prediction performance varies with frequency bands.
From the point of statistics, the LSTM neural network has better prediction performance than the MLP
neural network and is more stable as well. Furthermore, we find that the performance of the LSTM neural
network with classification perspective is slightly better than that with regression perspective in our first

dataset.

INDEX TERMS Deep learning, LSTM neural network, spectrum prediction, taguchi method.

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Spectrum demand increases along with the development of
communication traffic and mobile devices, but a large number
of spectrum measurements show that the spectrum band is
underutilized due to the static allocation strategy [1]. Cogni-
tive radio network (CRN) is therefore introduced, permitting
unlicensed users to communicate in idle time slots with no
harmful interference to licensed users [2], [3]. Spectrum sens-
ing and spectrum prediction are both the methods to explore
the spectrum access opportunities in CRN. Spectrum sens-
ing determines the current radio spectrum state (RSS) using
various signal detection methods [4]-[7] which consume a
lot of time and energy, while spectrum prediction infers

the future possibly unknown/unmeasured RSS from histori-
cally known/measured spectrum data by exploiting the inher-
ent correlations and/or regularities [8]. Spectrum prediction
can alleviate the processing delay and energy consumption
occurred in spectrum sensing [9], and has wide applications
in future wireless networks, such as CRNs, cooperative relay
networks [10], [11], and 5G networks [12].

Recently, there have been a few interesting studies on
spectrum prediction, and a recent comprehensive survey
can be found in our work [13]. However, majority of the
existing studies are based on conventional statistical tech-
niques or shallow architecture models to predict channel
quality or states. In recent years, deep learning has attracted
wide attention in industrial and academic field with the
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development of computing power and the arrival of big data
era. It is developed from neural network! as a branch of
machine learning. Its deep architecture and ingenious struc-
tural design make deep learning have better power to model
and tackle certain problem, achieving outstanding perfor-
mance in computer vision [14], natural language process-
ing [15] and other fields [16], [17]. One kind of the main
architecture in deep learning is convolutional neural network.
It behaves very excellent in image classification and target
recognition task [14], but the input data are required to be of
the same dimension which prevents its direct application on
time series of various lengths [18]. Recurrent neural network
(RNN), another main architecture, is more suitable for solv-
ing problems related to time series problem. Long short-term
memory (LSTM) network is an improved version of RNN
to overcome the drawback of long-term dependency, intro-
ducing several gates into single neuron to better coordinate
historical and current information. These observations moti-
vate us in this paper to consider leveraging LSTM network in
deep learning techniques for developing powerful spectrum
prediction scheme.

B. RELATED WORK

Majority of existing studies on spectrum prediction can be
divided into two groups: i) prediction of channel quality and
ii) prediction of channel occupancy. Prediction of channel
quality is from the perspective of regression, where prediction
models are often performed by an autoregressive integrated
moving average (ARIMA) [19] or support vector regres-
sion (SVR) [20]. An inconvenience of ARIMA is that its
natural tendency to concentrate on the mean values of the
past series data, while SVR has a limitation of the absent
structured means to determine some key parameters in the
model [21]. For the studies on prediction of channel occu-
pancy, binary time series are often considered to represent the
channel occupancy state. In [9], spectrum sensing process is
modeled as non-stationary hidden markov model and states
are predicted through bayesian inference method according
to the duration of channel state and accuracy of sensing.
Reference [22] proposes partial periodic pattern mining based
model to predict real-world Wi-Fi and personal communica-
tion service activities, considering that patterns of real-world
signals do not repeat perfectly due to noise, sensing errors,
and irregular behaviors. In [23], the author analyzes the spec-
trum occupancy in CRNs using different machine learning
algorithms including supervised learning and unsupervised
learning techniques. Reference [24] designs artificial neural
network with three layers to predict channel status in dif-
ferent traffic scenarios. The biggest disadvantage of binary
time series prediction lies in that the conversion of observed
data into binary series is largely dependent on the threshold
setting, which undoubtedly leads to errors [8]. More related

1Hereinafter, if not specifically mentioned, the network means neural
network, rather than mobile network or telecommunications network.
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work on spectrum prediction can be found in our recent
survey and tutorial work [13].

Though deep learning approach is quite popular in recent
years, its applications in communication field are still in its
infant stage [25]-[28]. How to take advantage of deep learn-
ing algorithm to efficiently and effectively make spectrum
prediction is an emerging research point. There are relatively
few studies considering the application of deep learning in
spectrum prediction. One pioneering study is found in [29],
which applies deep learning to predict spectrum availability
in cognitive aerospace communications, however, real-world
data are transformed into binary channel states like other
prediction algorithms. Another study is our recent work [30],
which is, to our best knowledge, the first work to apply
LSTM for spectrum prediction in frequency hopping com-
munication. However, in our previous work [30], frequency
hopping sequence is also the binary time series artificially
generated. In addition, the hyper-parameters of the LSTM
network haven’t been optimized, which have a significant
impact on prediction accuracy that will be validated in this
paper through real-world spectrum analytics.

C. CONTRIBUTIONS
The main contributions of this paper are summarized as
follows:

o We develop a spectrum prediction framework with a
deep learning approach, which is the first time to predict
on the real-world power spectral density (PSD) values.
It is interesting for us to apply LSTM network to tackle
time series problems in spectrum prediction because
LSTM network can have a memory of historical data
when it works.

o« We design several main trials, leveraging taguchi
method with K-fold cross validation, to determine the
optimized structure and analyze the effect of each design
hyper-parameter of neural network. Taguchi method is
introduced here to effectively reduce requirements of
time consumption and computational resources.

« We present extensive experiment results with real-world
spectrum data analytics. Several interesting insights are
found as follows: i) Hyper-parameters of neural network
have varying degrees of influence and the depth of
network is observed to be more significant; ii) LSTM
network is found more stable than multilayer percep-
tron (MLP) network; ii7) LSTM network with regres-
sion and classification perspective both outperforms the
MLP network, and LSTM network with classification
perspective is observed slightly better than another one.

The remainder of this paper is organized as follows.
Section II introduces the process of spectrum prediction.
Section IIT mainly presents the structure of two different
network type respectively and the metrics to evaluate network
performance. Section IV lists some design hyper-parameters
involved in network design and the main trials using
taguchi method to determine the optimized architecture.
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Section V shows the experimental results, followed by con-
clusions in Section VI.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

In CRN, the secondary user (SU) perceives the channel at
the beginning of time slot. Once the collected PSD data are
above certain threshold, SU thinks that the licensed users are
communicating and then gives up this time slot. Otherwise,
SU starts transmission of information until the end of this
time slot. We consider that historical data collected by SU
are arranged in a 2-D matrix (f}, #;) for each band, where each
row represents the measured data at each spectrum point in
chronological order, whereas each column represents the data
at different time instants of each spectrum point. We have
known that each spectrum point has their unique evolution
trajectory. It is possible to impose the negative effect on each
other if time-frequency combined prediction is carried out.
Because of this, data of single spectrum point with temporal
correlation are used to make prediction. Spectrum prediction
is to predict the spectrum state in next slot by mining the
internal relationship of historical spectrum data. That is to say,
given historical data of T slots, measured spectrum data in
current time slot ¢ and previous slots X;—741,X—742, ..., X;
are used as input of neural network which has been trained to
discover the internal relationship. Then, the output of neural
network is the prediction value in next slot 7 + 1.

Neural network is trained to capture inherent correlations
of spectrum data dependent on the training set before it is
used to predict. Fig. 1 shows the dataset construction of single
spectrum point for prediction briefly. go, g1, - ... .. , q7 refer
to the alternative channel measured value in a time slot. Mea-
sured data can be received over time, so dataset is constructed
by sliding a window with the fixed length T accordingly for
single spectrum point. As illustrated in Fig. 1, fixed window
whose length is set five keeps moving a time slot forward to
construct multiple samples in the dataset. S; means the input
of the jth sample and L; means the corresponding label. The
spectrum prediction is tackled using the supervised learning,
and the neural network is trained to make the predicted
value ij as close as possible to the real value L;. The whole
dataset is shuffled in advance and then divided into training
set and testing set to avoid sample distribution imbalance.

Ill. A DEEP LEARNING FRAMEWORK FOR SPECTRUM
PREDICTION

Neural network has been well recognized as a powerful tool
for spectrum prediction. The neural network usually consists
of the input layer, multiple hidden layers and the output layer.
By increasing or decreasing the number of hidden layers and
the number of hidden layer neurons, any complex nonlinear
function can be constructed. In theory, the network with sin-
gle hidden layer and different number of neurons can fit out
any function. Neural network mainly can be classified into
two types: feed-forward neural network and RNN. On behalf
of these two types, the MLP network and LSTM network are
respectively introduced as follows.
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FIGURE 1. Dataset construction of single spectrum point for prediction.
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FIGURE 2. Structure of MLP network and its neuron.

A. MLP NETWORK

MLP network is a fully connected feed-forward neural net-
work based on back propagation algorithm. As illustrated in
the left of Fig. 2, there are only full connections between
adjacent layers, but no connection among the nodes within
the same layer. It can only handle the data within the fixed-
size window once. It reveals that it is unsuitable for modeling
historical dependencies and provides limited capability of
temporal modeling and spectrum state prediction. Supposing
the size of input data is C x T which means each one of
C channels has data of length T, inputs must be reshaped
to a column vector. Fig. 2 also illustrates a mathematical
model of one ordinary neuron in MLP network in details [31].
When inputs are xp, x2, ..., X, the output of the neuron is
calculated as:

0:¢<Zw,~xi+b> €))
i=1

where @ with different subscripts is called weights and b is
called bias. ¢(-) represents the activation function which often
employs sigmoid or tanh.

B. LSTM NETWORK

RNN network is distinguished from feed-forward network
where neurons in hidden layers receives feedback, which is
from the previous state to current state. Fig. 3 shows a simple
RNN architecture with two hidden layers and unfolded in
time domain for three time steps. The input vectors are fed
into the RNN, one element at one timestep. This kind of
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FIGURE 3. Structure of RNN network.
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FIGURE 4. Structure of LSTM memory unit.

architecture shows the concept of chronological order while
the feed-forward network processes an input vector of fixed
length, so it can be seen that RNN is superior in solving
time series problems. RNN network allows the information
of historical inputs to be stored in the network’s internal
state, and thereby take advantage of all the available input
information up to the current time. In theory, RNN can learn
the characteristics of any length of time series. However,
it is proved by experiments that the performance of RNN
network can be restricted due to gradient vanishment or gra-
dient explosion [32]. To tackle the gradient problems faced
by RNN network, LSTM network is designed by introducing
a key component named memory unit [33]. As illustrated
in Fig. 4, memory unit contains a memory cell and three gates
which are named depending on their corresponding practical
functionalities. The memory cell has the responsibility to
remember the current state of the unit to be used in next
timestep. Gates impose controls on the ratio of forgetting and
storing related information. The input gate indicted by i con-
trols how much much new information flows into the memory
cell. The forget gate indicted by f decides how much of the
memory cell should be abandoned in current memory cell.
The last gate denoted as o, named by output gate, controls
the amount of information to compute the output activation
of the memory unit and further flows into the rest of the
network. The mathematical calculation of an LSTM unit is as
follows [33]:

i =0 (WL x, + W51+ 1) (@)
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f, = o(WL-x, + W, .5, +by) 3)
o =0 (W X, +WJ s, +hby) 4)
¢, = tanh (ch -X; + W s + bc) 5)
¢ =10¢+1f0Oc_| (6)
s; = 0; O tanh(c;) @)

where in the time slot 7 the input vector is Xx;, the hidden state
vector is s; and the memory cell is denoted as ¢;. © represents
the Hadamard product. W’ s W’ W W W9, W9, WS, WS
are the weights matrices and s1m11arly b;, bf, b,, b are blas
vectors.

C. EVALUATION METRICS

It is known that to predict the value of channel quality,
the usual perspective is regression. But spectrum predic-
tion can be realized not only by regression but also by
classification aspects if measured data are quantized ahead.
Accordingly from these two aspects, the evaluation metrics of
network performance are root of mean square error (RMSE)
and classification accuracy (CA), both of which are mathe-
matically formulated as equation (8) and (9):

N, test

-’ ®
test =1

RMSE = —10 % Ig

1 Ntest
CA =
Nies ;ﬂ “
1 Qt = Qt
= - 9
flag: {o O # 0, ®

where Ny is the number of testing samples. Q; and
0 represents the real and predicted category, respectively.

The outputs of neural network should be consecutive val-
ues in regression. Therefore, the activation in the output layer
is set to be linear and network parameters are adjusted to
optimize the target function mean square error. In contrast,
the outputs of neural network should be discrete category
in classification. In addition the labels of samples must be
converted to categorical one-hot encoding. The activation in
the output layer is set to be softmax which is able to transform
outputs to probability distribution. Cross-entropy function is
often selected as the optimization target for classification
task. The expression of cross-entropy is mathematically for-
mulated as:

cross_entropy = —% Zy(t ) - log(3(1)) (10)
r

where n is the number of training samples. y(¢) and 3(¢)
represent the probability distribution of true categories and
predicted categories, respectively.

IV. TAGUCHI METHOD-BASED HYPER-PARAMETER
OPTIMIZATION

As is known, design of the neural network is a quiet challeng-
ing task because the performance of the network is influenced
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by many hyper-parameters, mainly relying on the rich experi-
ence of the engineers. When designing optimized structure of
neural network, the hyper-parameters that are considered and
their corresponding levels are as follows and are presented
in Table 1.

TABLE 1. Design hyper-parameters for optimizing the model structure.

Design Level
Hyper-parameters 1 2 3 4
. Neurons in
¢ hidden layers 10 20 30 40
.. Number of
" hidden layer ! 2 3 4
1213 Initializer Uniform G}orot Normal Glorot
uniform normal
|  Activation Tanh | Sigmoid | Relu | Hard
sigmoid
v Learning rate 0.001 0.005 0.01 0.05

1) DESIGN HYPER-PARAMETER i

In terms of the neural network size, the number of neurons
in the hidden layer has a great impact on performance in
addition to the number of layers. We consider network width
of 10, 20, 30, 40 as Levels 1, 2, 3, 4 respectively for all hidden
layers.

2) DESIGN HYPER-PARAMETER ii

The second design hyper-parameter we consider is the num-
ber of hidden layers, which is also very important. The
deep architecture of hidden layers is set as 1, 2, 3 and 4.
The deeper the network is, and the stronger ability to model
the network has. But it may result in over-fitting if the net-
work has too many layers.

3) DESIGN HYPER-PARAMETER iii

The initial values of neural network parameters have great
influence on network performance. An inappropriate initial
value may result in failure to achieve optimal results. So we
look at four methods of initialization: uniform distribution,
glorot uniform distribution, normal distribution and glorot
normal distribution.

4) DESIGN HYPER-PARAMETER iv

Activation function which is called relu has been widely used
due to its outstanding behavior in deep learning. However,
sigmoid and tanh functions which are commonly used may
be more effective for different problems. Tanh, sigmoid, relu
and hard sigmoid are considered as Levels 1, 2, 3 and 4.

5) DESIGN HYPER-PARAMETER v

Learning rate decides the span at which the parameters of
networks are updated. If learning rate is set too small, then
more iterations should be carried out until convergence.

VOLUME 6, 2018

—
K Start )
—

‘ Data processing ‘

!

Divide dataset .
(Xpun i} and x,,, Determine th.e best
model setting
‘ Main trial

Y

!

‘ K-fold cross validation }47

Train themodel]

-

-
The last main trial>

| | Initialize model |

!

Ist LSTM layer: return
vectors at each timestep

Cross validation
finished?

|

[

|
| I
| I
I [
| I
| I
| I
| I
| |
E 2nd LSTM layer: i
I return vectors at last |
: timestep |
t ! |
: |
| I
I \
| I
| I
| I
| I
| I
I 1
! I
| I
! I
I

Output layer:
Compute the
optimization target
'
Tune parameters of the
model (Adam
algorithm)

Test the
corresponding subset

FIGURE 5. Process of taguchi method combined with cross validation.

But being too large will result in missing of the optimal
parameters. We consider four levels: 0.001, 0.005, 0.01, 0.05.

These involved hyper-parameters have a combined effect
on the performance of neural network and cannot be consid-
ered separately. Grid search method is often used to select
the optimized structure. It is a kind of violent search method
and lists all the possible combinations of the considering
hyper-parameters. The training set is divided into K sub-
sets which are denoted as Xyqgini, i = 1,2,...,K at first.
Then, for each possible combination of the hyper-parameters,
one certain subset is used to test and evaluate this model
while others are used for training. Finally, the mean value
of K testing performances is considered as evaluation per-
formance of network with this combination. This is what we
call the K -fold cross validation, which can find the relatively
superior hyper-parameter settings of the network.

Five design hyper-parameters which can influence the
performance of network are set as four levels respectively
in this paper. Totally, there are 1024 (4°) possible com-
binations to be analyzed if we use grid search method.
It is conceivable that so many experiments will consume
much time and require more computational resources. The
taguchi method [34] is introduced to find the optimized
structure through the orthogonal combination of influencing
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TABLE 2. Main orthogonal array L,¢ trial and experimental results.

Main Trial | 2SS0 HY?er'p?rameters Zeraino CA | Zeraina CA | Zirain2 CA | Mean Value
1 27 71 A v
1 tle ][] 0.7133 0.6997 0.7273 0.7134
2 1222 2 0.7183 0.6997 0.7236 0.7139
3 11313 (3] 3 0.7065 0.6892 0.7267 0.7075
4 1l 4] 44| 4 0.7065 0.6898 0.7106 0.7023
5 21|23 4 0.7065 0.6898 0.7106 0.7023
6 202114 3 0.7065 0.7040 0.7106 0.7070
7 2034 1] 2 0.7071 0.7022 0.7223 0.7105
8 2043 2| 1 0.7065 0.6898 0.7106 0.7023
9 31|34 2 0.7133 0.7040 0.7217 0.7130
10 324 (3| 1 0.7096 0.6997 0.7236 0.7110
11 3031 2] 4 0.7065 0.6898 0.7106 0.7023
12 31421 3 0.7065 0.6898 0.7106 0.7023
13 40142 3 0.7133 0.7022 0.7205 0.7120
14 412031 4 0.7065 0.6898 0.7174 0.7046
15 40130214 1 0.7090 0.6898 0.7223 0.7070
16 4141 ]3] 2 0.7158 0.6898 0.7106 0.7054

hyper-parameters, saving a lot of time. It is an orthogonal
experimental design method, which originates from quality
control method in the engineering field. When evaluation
metric is influenced by ¢ design factors and each design factor
has b levels, the experimental arrangements can be represent
by the orthogonal table L,(b¢), whose subscript a means the
quantity of trials. Actually, L,(b°) is a table with @ rows and
¢ columns, where all levels of each design factor for each
column appear at the same frequency. Meanwhile, occurrence
frequency of a certain level between any two columns is the
same. These two characteristics can be found in Table 2.
It skillfully uses the orthogonal experimental arrangements
to deal with the non-linear relation between design factors
and evaluation metric, and determines the optimized combi-
nation of these factors by selecting the level of design fac-
tors. An orthogonal array L;6(4°) is used for the trial design
combining the cross validation, listed in Table 2. The whole
process of taguchi method combined with cross validation is
shown in Fig. 5.

V. EXPERIMENT EVALUATION

In this section, we use two real-world spectrum datasets to
demonstrate the effectiveness of the proposed scheme. One
dataset is from the terrestrial networks and the other is from
the satellite networks.

A. CASE STUDY I: TERRESTRIAL DATA ANALYTICS
In this case, we try to make predictions from the perspective
of classification. We use spectrum data from the RWTH

45928

Aachen University spectrum measurement campaign [35].
After analysis in our previous work [36], the correlation of
time domain in GSM1800 downlink band is strong. There-
fore, spectrum data in this frequency band which ranges from
1820.0MHz to 1875.5MHz serve as the dataset in this part.
Fig. 6 shows the evolution trajectories of a thirteen day RSS,
that is, measured PSD values [37].

The total amount of original dataset is so large that it
will consume long time to fully process the data. Based on
this consideration, the original data are sampled in the same
interval. The new time series achieved by sampling should
be tested for stationarity. Stationarity test is necessary due
to that supposing a time series is stationary, it is easier for
us to model and therefore to predict. If the series doesn’t
satisfy the requirements of stationarity, differential opera-
tions must be included in data processing. The augmented
dickey-fuller (ADF) test is employed here which belongs to
root test methods [38]. When p value is above 0.05, null
hypothesis test is received. So, the time series has unit root
and it is non-stationary. Conversely, the alternate hypothesis
test is accepted, indicating that the time series is stationary.
After our analysis, the evolution trajectory of RSS for each
spectrum point in the GSM 1800 downlink band is station-
ary and that’s what we expected. Through quantization the
continuous spectrum data are transformed into finite discrete
values, that is to say, quantization interval is determined

21n the ori ginal datasets [35], the resolution bandwidth of each individual
spectrum band is 200 kHz and the inter-sample time is 1.8 seconds, which
results in 48000 samples one day [36].
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FIGURE 7. Effects of each design hyper-parameter at each four levels.

according to the maximum and minimum values of the mea-
sured data as well as quantization level which is chosen as
8. The reason why quantization level equals 8 is a tradeoff
between prediction accuracy and prediction error. Too large
quantization level will increase prediction difficulty and lead
to poor prediction accuracy due to quantized spectrum values
are close to each other, while too small quantization level may
bring out the large discrepancy between quantized value and
measured value, which means loss of spectrum information.
Next, we should determine the optimized structure of net-
work. Taking the spectrum point of 1863.6MHz from the
perspective of classification as an example, the training set
is split into 3 subsets Xyqin,0, Xtrain, 1, Xtrain,2 at first. For each
main trial in Table 2, 3-fold cross validation is carried out
and the corresponding prediction accuracy is listed in the
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same table. Because the model is a classification one, only the
classification accuracy is shown in the table. The last column
lists the mean accuracy of cross validation for each trial.
We can see that the top two of accuracy are achieved by the 1st
and 2nd trial, whose mean accuracy are 0.7139 and 0.7134.
The setting of all considered hyper-parameters is in bold
when neural network achieves the best performance and as
follows: the neurons of the hidden layers are 10, the number
of layers is two, learning rate should be 0.005, activation
function is chosen sigmoid and the initialization of parame-
ters would better to obey glorot uniform distribution. Finally,
the accuracy of testing set achieves 0.7145 with the optimized
hyper-parameters setting.

Next, we analyze what effect single design hyper-
parameter may have on the prediction performance, still using
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experimental results above. The effects of each design hyper-
parameter can be separated since for each trial the combi-
nations of design hyper-parameters are orthogonal [39]. The
effects of each design hyper-parameter at each level are calcu-
lated by taking the corresponding average from Table 2. For
example, the Level 3 of the design hyper-parameter iii is in the
3th, 8th, 9th and 14th main trials, and the average accuracy of
this level is 0.7069. Here we introduced range analysis [40]
to find the sensitivity of the design hyper-parameters for the
spectrum point. Sensitivity of one design hyper-parameter
means the difference between the maximum mean accuracy
and the minimum mean accuracy, and the results are shown
in Table 3. The effects of each design hyper-parameter at each
of the four levels are displayed in Fig. 7. We find that among
these design hyper-parameters, the learning rate has the most
important influence on the prediction performance. What’s
more, the depth of network has more effects on the network
performance than the width of network. Both of initializer
and activation function have few influences on prediction
performance of single spectrum point. So when we design
LSTM network for spectrum prediction of all spectrum points
in the GSM1800 downlink band, more attention is paid to
learning rate and the depth of neural network. The depth of
neural network should be one or two layers and the learning
rate should be less than 0.005.

Due to the different parameters of neural network during
initialization, the results of each experiment will be different.
We further compare the stability of three neural networks.
LSTM CA model represents the LSTM network with clas-
sification perspective and LSTM Linear model represents
network from the regression aspect. MLP Linear model is
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TABLE 3. Influence of each design hyper-parameter and sensitivity.

Design Levels .
Sensitivity
Hyper-parameters 1 2 3 4

% 0.7093| 0.7055| 0.7072| 0.7073 0.38%

i 0.7102| 0.7091| 0.7068 | 0.7031 0.71%

14 0.7070| 0.7064| 0.7069| 0.7090| 0.26%

v 0.7077| 0.7076| 0.7066| 0.7073 0.11%

v 0.7084| 0.7107| 0.7072| 0.7029 0.78%

a traditional one as a baseline. The configuration of three
models is according to the optimized combination of those
design hyper-parameters, and total ten experiments are con-
ducted at the above spectrum point. The experimental and
statistical results are shown in Fig. 8, showing results of
each experiment and statistical stability respectively. As can
be seen from the figure, the prediction performance of two
LSTM models is higher and more stable than MLP model.
As mentioned above, RSS varies from spectrum point to
spectrum point. Some spectrum points do not have very
obvious tidal effects while some spectrum points are always
stationary with PSD value essentially unchanged. It can be
assumed that the prediction performance of each spectrum
point may not be consistent. Fig. 9 shows the accuracy per-
formance of three models on the same testing set in the
GSM1800 downlink bands. For total spectrum points, a little
small portion of prediction performance of the MLP network
is superior to the LSTM network, which is possible due to
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FIGURE 11. RMSE performance of two networks.

different initialization values or optimization targets. In some
spectrum points, the performance difference is large while in
others the performance is close to each other. It is related
to the features of RSS which can be further studied. In the
sense of statistics, Fig. 10 shows the cumulative distribution
function (CDF) curves of CA performance. We can also
conclude that LSTM network with classification aspect is a
little better than that with regression aspect.

B. CASE STUDY II: SATELLITE DATA ANALYTICS

In this case, we’re going to do the spectrum prediction from
a regression aspect. The spectrum data used in this part
of experiments are not from open source and are collected
from satellite. There are in total 86 frequency bins whose
bandwidth is all 20MHz and each frequency bin is split into
32 spectrum points. Satellite measurement campaign starts on
2017-12-01 and ends on 2017-12-11, which can sweep whole
frequency band in only 0.8s. Due to the measuring equipment,
missing of spectrum data in the whole band occurs in some
time periods, so the average value of one spectrum point is
filled into those blank slots of that point.

The spectrum data are predicted from the perspective of
regression, therefore the evaluation metric of network per-
formance is equation (8). The RMSE function in this paper
is monotonically decreasing. In other words, the larger the
prediction error of certain frequency point is, the smaller the
corresponding RMSE value is.
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Here we employ LSTM Linear and MLP Linear network
to make prediction from 5270MHz to 5290MHz. Fig. 11
shows the prediction performance of these 32 frequency
points and Fig. 12 shows the corresponding CDF curve.
As shown in Fig. 11, the performance advantage of LSTM
Linear network is obvious at some frequency points, while the
prediction performance at other frequency points is similar
to that of MLP Linear network or even worse. As with case
study I, the performance difference of these two networks is
related to the using rule of frequency point and initialization
value of network. In Fig. 12, RMSE of LSTM Linear network
is less than 15.2 for about 90% of the frequency points,
and that of MLP Linear network is less than 11.8. On this
dataset from the perspective of regression, we further verify
the superiority of the LSTM network.

VI. CONCLUSION

In this paper, we develop a spectrum prediction framework
with a deep learning approach. We predict real-world spec-
trum data through the emerging LSTM neural network and
the conventional MLP neural network. It is widely known
that determining the architecture of a neural network is a
very complex problem. Here, we introduce taguchi method
instead of grid search method to reduce time consump-
tion and computational resources when we design the best
optimized configuration of neural network. For the first
dataset, the LSTM network is constructed from classifica-
tion and regression aspects to evaluate prediction accuracy.
For the second dataset, the LSTM network is constructed
from regression to evaluate prediction error. The experimen-
tal results have demonstrated that LSTM network has some
advantages in time series problems and better prediction
performance than MLP network. For both LSTM network,
network with classification aspect performs slightly better
than the one with regression aspect.

REFERENCES

[1] “Shared spectrum company general survey of radio frequency bands
(30 Hz to 3 GHz),” Vienna, VA, USA, Tech. Rep. 20100323, Sep. 2009.
[Online]. Available: http://www.sharedspectrum.com/papers/spectrum-
reports/

45931



IEEE Access

L. Yu et al.: Spectrum Prediction Based on Taguchi Method in Deep Learning With LSTM

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. Mitola, III, ““Cognitive radio for flexible mobile multimedia communi-
cations,” Mobile Netw. Appl., vol. 6, no. 5, pp. 435-441, Sep. 2006.

Q. Wu, G. Ding, J. Wang, and Y. D. Yao, “Spatial-temporal opportu-
nity detection for spectrum-heterogeneous cognitive radio networks: Two-
dimensional sensing,” IEEE Trans. Wireless Commun., vol. 12, no. 2,
pp. 516-526, Feb. 2013.

G. Ding, Q. Wu, Y.-D. Yao, J. Wang, and Y. Chen, “Kernel-based learning
for statistical signal processing in cognitive radio networks: Theoretical
foundations, example applications, and future directions,” IEEE Signal
Process. Mag., vol. 30, no. 4, pp. 126-136, Jul. 2013.

V. Jamali, A. Ahmadzadeh, and R. Schober, “On the design of matched
filters for molecule counting receivers,” IEEE Commun. Lett., vol. 21,
no. 8, pp. 1711-1714, Aug. 2017.

H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc.
IEEE, vol. 55, no. 4, pp. 523-531, Apr. 1967.

X.F.Zhang, L. Y. Xu, L. Xu, and D. Z. Xu, “Direction of departure (DOD)
and direction of arrival (DOA) estimation in MIMO radar with reduced-
dimension MUSIC,” IEEE Commun. Lett., vol. 14, no. 12, pp. 1161-1163,
Dec. 2010.

G. Ding et al., “On the limits of predictability in real-world radio spectrum
state dynamics: From entropy theory to 5G spectrum sharing,” IEEE
Commun. Mag., vol. 53, no. 7, pp. 178-183, Jul. 2015.

X. Xing, T. Jing, Y. Huo, H. Li, and X. Cheng, ““Channel quality prediction
based on Bayesian inference in cognitive radio networks,” in Proc. IEEE
INFOCOM, Turin, Italy, Apr. 2013, pp. 1465-1473.

Z. Zhang, J. Shi, H. H. Chen, M. Guizani, and P. Qiu, “A cooperation
strategy based on Nash bargaining solution in cooperative relay networks,”
IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2570-2577, Jul. 2008.

G. Zhu, C. Zhong, H. A. Suraweera, G. K. Karagiannidis, Z. Zhang, and
T. A. Tsiftsis, “Wireless information and power transfer in relay systems
with multiple antennas and interference,” IEEE Trans. Commun., vol. 63,
no. 4, pp. 1400-1418, Apr. 2015.

Z. Feng, C. Qiu, Z. Feng, Z. Wei, W. Li, and P. Zhang, “An effective
approach to 5G: Wireless network virtualization,” IEEE Commun. Mag.,
vol. 53, no. 12, pp. 53-59, Dec. 2015.

G. Ding et al., “Spectrum inference in cognitive radio networks: Algo-
rithms and applications,” IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 150-182, 1st Quart., 2018.

L. Wang, T. Liu, G. Wang, K. L. Chan, and Q. Yang, *“Video tracking using
learned hierarchical features,” IEEE Trans. Image Process., vol. 24, no. 4,
pp. 1424-1435, Apr. 2015.

Y. Xiang, Q. Chen, X. Wang, and Y. Qin, “Answer selection in community
question answering via attentive neural networks,” IEEE Signal Process.
Lett., vol. 24, no. 4, pp. 505-509, Apr. 2017.

T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical
layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563-575,
Dec. 2017.

J. Li, H. Bu, and J. Wu, “Sentiment-aware stock market prediction: A deep
learning method,” in Proc. IEEE Int. Conf. Syst. Service Manage., Dalian,
China, Jun. 2017, pp. 1-6.

Y. Tang, J. Xu, K. Matsumoto, and C. Ono, ““Sequence-to-sequence model
with attention for time series classification,” in Proc. IEEE 16th Int.
Conf. Data Mining Workshops (ICDMW), Barcelona, Spain, Dec. 2016,
pp. 503-510.

Z. Wang and S. Salous, “Spectrum occupancy statistics and time series
models for cognitive radio,” J. Signal Process. Syst., vol. 62, no. 2,
pp. 145-155, Feb. 2011.

C.J. Yu, Y. Y. He, and T. F. Quan, “Frequency spectrum prediction method
based on EMD and SVR,” in Proc. 8th Int. Conf. Intell. Syst. Design Appl.,
Kaohsiung, Taiwan, Nov. 2008, pp. 39-44.

Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang. (2017). “Traffic
prediction based on random connectivity in deep learning with long short-
term memory.” [Online]. Available: https://arxiv.org/abs/1711.02833

P. Huang, C.-J. Liu, X. Yang, L. Xiao, and J. Chen, “Wireless spectrum
occupancy prediction based on partial periodic pattern mining,” [EEE
Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1925-1934, Jul. 2014.

F. Azmat, Y. Chen, and N. Stocks, ““Analysis of spectrum occupancy using
machine learning algorithms,” IEEE Trans. Veh. Technol., vol. 65, no. 9,
pp. 6853-6860, Sep. 2016.

V. K. Tumuluru, P. Wang, and D. Niyato, “Channel status prediction for
cognitive radio networks,” Wireless Commun. Mobile Comput., vol. 12,
no. 10, pp. 862-874, Jul. 2012.

45932

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]
(33]

(34]

(35]

(36]

(371

(38]

(391

[40]

C. Zhang, P. Patras, and H. Haddadi. (2018). “Deep learning in
mobile and wireless networking: A survey.” [Online]. Available:
https://arxiv.org/abs/1803.04311

Y. He et al., “Deep-reinforcement-learning-based optimization for cache-
enabled opportunistic interference alignment wireless networks,” IEEE
Trans. Veh. Technol., vol. 66, no. 11, pp. 10433-10445, Nov. 2017.

Y. He, F. Richard Yu, N. Zhao, V. C. M. Leung, and H. Yin, “Software-
defined networks with mobile edge computing and caching for smart cities:
A big data deep reinforcement learning approach,” IEEE Comm. Mag.,
vol. 55, no. 12, pp. 31-37, Dec. 2017.

T. Wang, C.-K. Wen, H. Wang, F. Gao, T. Jiang, and S. Jin, “Deep
learning for wireless physical layer: Opportunities and challenges,” China
Commun., vol. 14, no. 11, pp. 92-111, 2017.

L. Yu, Q. Wang, Y. Guo, and P. Li, “Spectrum availability prediction
in cognitive aerospace communications: A deep learning perspective,” in
Proc. IEEE Cogn. Commun. Aerosp. Appl. Workshop (CCAA), Cleveland,
OH, USA, Jun. 2017, pp. 1-4.

L. Yu, J. Chen, and G. Ding, “Spectrum prediction via long short term
memory,” in Proc. 3rd IEEE Int. Conf. Comput. Commun. (ICCC),
Chengdu, China, Dec. 2017, pp. 643-647.

D. C. Plaut, S. J. Nowlan, and G. E. Hinton, “Experiments on learn-
ing by back propagation,” Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-CS-86-126, Jun. 1986.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436444, May 2015.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

G. Taguchi and Y. Yokoyama, Taguchi Methods: Design of Experi-
ments(Taguchi Methods Series), vol. 4. Tokyo, Japan: American Supplier
Institute, Nov. 1993.

M. Wellens, “Empirical modelling of spectrum use and evaluation of
adaptive spectrum sensing in dynamic spectrum access networks,” Ph.D.
dissertation, Inst. Netw. Syst., RWTH Aachen Univ., Aachen, Germany,
May 2010.

G. Ding et al., “Robust online spectrum prediction with incomplete and
corrupted historical observations,” IEEE Trans. Veh. Technol., vol. 66,
no. 9, pp. 8022-8036, Sep. 2017.

J. Sun, L. Shen, G. Ding, R. Li, and Q. Wu, ““Predictability analysis of spec-
trum state evolution: Performance bounds and real-world data analytics,”
IEEE Access, vol. 5, pp. 22760-22774, Oct. 2017.

S. E. Said and D. A. Dickey, “Testing for unit roots in autoregressive-
moving average models of unknown order,” Biometrika, vol. 71, no. 3,
pp. 599-607, Dec. 1984.

M. S. Phadke, Quality Engineering Using Robust
Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

H.-F. Yang, T. S. Dillon, and Y.-P. P. Chen, “Optimized structure of the
traffic flow forecasting model with a deep learning approach,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2371-2381, Oct. 2017.

Design.

LING YU received the B.S. degree in information
engineering from Southeast University, Nanjing,
China, in 2016. She is currently pursuing the M.S.
degree with the College of Communications Engi-
neering, Army Engineering University of PLA,
Nanjing. Her research interests include deep learn-
ing, wireless communications, and cognitive radio
networks.

JIN CHEN received the B.S. degree in wireless
communication and the M.S. and Ph.D. degrees in
communications engineering and information sys-
tem from the Institute of Communications Engi-
neering, Nanjing, China, in 1993, 1996, and 1999,
respectively. She is currently a Professor with the
Institute of Communications Engineering, Army
Engineering University of PLA, Nanjing. Her cur-
rent research interests include wireless communi-
cations networks and cognitive radio networks.

VOLUME 6, 2018



L. Yu et al.: Spectrum Prediction Based on Taguchi Method in Deep Learning With LSTM

IEEE Access

GUORU DING (S’10-M’14-SM’16) received the
B.S. degree (Hons.) in electrical engineering from
Xidian University, Xi’an, China, in 2008, and
the Ph.D. degree (Hons.) in communications and
information systems from the College of Commu-
nications Engineering, Nanjing, China, in 2014.
From 2014 to 2017, he was an Assistant Professor
with the College of Communications Engineering
and a Research Fellow with the National High
Frequency Communications Research Center of
China, where he is currently an Associate Professor. Since 2015, he has been
a Post-Doctoral Research Associate with the National Mobile Communica-
tions Research Laboratory, Southeast University, Nanjing. His research inter-
ests include cognitive radio networks, massive MIMO, machine learning, and
big data analytics over wireless networks.

Dr. Ding has acted as a Technical Program Committee (TPC) member for
anumber of international conferences, including the IEEE Global Communi-
cations Conference, the IEEE International Conference on Communications,
and the IEEE Vehicular Technology Conference (VTC). He is a Voting
Member of the IEEE 1900.6 Standard Association Working Group. He was
a recipient of the Best Paper Award from the EAI MLICOM 2016, the IEEE
VTC 2014, and the IEEE WCSP 2009. He received the Alexander von
Humboldt Fellowship in 2017 and the Excellent Doctoral Thesis Award of
the China Institute of Communications in 2016. He has served as a Guest
Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (Special
issue on spectrum sharing and aggregation in future wireless networks).
He is currently an Associate Editor of the Journal of Communications and
Information Networks, the KSII Transactions on Internet and Information
Systems, and the AEU-International Journal of Electronics and Communi-
cations.

YA TU received the B.S. degree from the
College of Computer Science and Technol-
ogy, Taiyuan University of Technology, Taiyuan,
China, in 2016. He currently holds a doctoral posi-
tion with the College of Information and Commu-
nication Engineering, Harbin Engineering Univer-
sity, Harbin, China. His current research interests
include signal processing, machine learning, and
data analysis.

VOLUME 6, 2018

JIAN YANG (S’14-M’17) received the B.S.
degree in information countermeasure technol-
ogy and the M.S. degree in communications and
information systems from the Nanjing Univer-
sity of Science and Technology, Nanjing, China,
in 2006 and 2010, respectively, the Ph.D. degree in
information and communication engineering from
the PLA University of Science and Technology,
Nanjing, in 2017. Since 2017, he has been a Post-
Doctoral Research Associate with the 63rd Insti-
tute, National University of Defense Technology, Nanjing. His research inter-
ests include cognitive radio networks, spectrum prediction, and intelligent
spectrum management.

JIACHEN SUN received the B.S. degree in infor-
mation engineering from Southeast University,
Nanjing, China, in 2016. She is currently pursuing
the M.S. degree with the College of Communica-
tions Engineering, Army Engineering University
of PLA, Nanjing. Her research interests include
data analytics, wireless communications, and cog-
nitive radio networks.

45933



	INTRODUCTION
	BACKGROUND AND MOTIVATION
	RELATED WORK
	CONTRIBUTIONS

	SYSTEM MODEL AND PROBLEM FORMULATION
	A DEEP LEARNING FRAMEWORK FOR SPECTRUM PREDICTION
	MLP NETWORK
	LSTM NETWORK
	EVALUATION METRICS

	TAGUCHI METHOD-BASED HYPER-PARAMETER OPTIMIZATION
	DESIGN HYPER-PARAMETER i
	DESIGN HYPER-PARAMETER ii
	DESIGN HYPER-PARAMETER iii
	DESIGN HYPER-PARAMETER iv
	DESIGN HYPER-PARAMETER v


	EXPERIMENT EVALUATION
	CASE STUDY I: TERRESTRIAL DATA ANALYTICS
	CASE STUDY II: SATELLITE DATA ANALYTICS

	CONCLUSION
	REFERENCES
	Biographies
	LING YU
	JIN CHEN
	GUORU DING
	YA TU
	JIAN YANG
	JIACHEN SUN


