
Received June 21, 2018, accepted July 22, 2018, date of publication August 7, 2018, date of current version August 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2864253

Revisiting Genetic Network Programming (GNP):
Towards the Simplified Genetic Operators
XIANNENG LI , HUIYAN YANG, AND MEIHUA YANG
Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China

Corresponding author: Xianneng Li (xianneng@dlut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 71601028, Grant 71671024,
Grant 71421001, and Grant 71431002, in part by the Fundamental Research Funds for the Central Universities under Grant DUT17JC12,
and in part by the Economic & Social Development Foundation of Liaoning under Grant 2018lslktqn-015.

ABSTRACT Genetic network programming (GNP) is a relatively new type of graph-based evolutionary
algorithm, which designs a directed graph structure for its individual representation. A number of studies
have demonstrated its expressive ability to model complicated problems/systems and explored it from the
perspectives of methodologies and applications. However, the unique features of its directed graph are
relatively unexplored, which cause unnecessary dilemma for the further usage and promotion. This paper
is dedicated to uncover this issue systematically and theoretically. It is proved that the traditional GNP
with uniform genetic operators does not consider the ‘‘transition by necessity’’ feature of the directed
graph, which brings the unnecessary difficulty of evolution to cause invalid/negative evolution problems.
Consequently, simplified genetic operators are developed to address these problems. Experimental results on
two benchmark testbeds of the agent control problems are carried out to demonstrate its superiority over the
traditional GNP and the state-of-the-art algorithms in terms of fitness results, search speed, and computation
time.

INDEX TERMS Directed graph, evolutionary algorithms, genetic network programming, invalid/negative
evolution, transition by necessity.

I. INTRODUCTION
Evolutionary algorithms (EAs) are a family of optimization
techniques which take inspirations from the theory of bio-
logical evolution via natural selection and genetic operations.
Over the past decades, numerous EAs have been developed
to solve different types of optimization problems. In addition
to the original inspirations of different algorithms, one of
the most important features to distinguish each EA from one
another is the individual representation (also known as the
chromosome structure), hence different problem types fitted.

The typical representatives of EAs include genetic algo-
rithm (GA) [1], evolution strategy (ES) [2], particle swarm
optimizer (PSO) [3], differential evolution (DE) [4], and
genetic programming (GP) [5], etc. GA is initially designed
to evolve bit-string individuals [1], and later extends to
real-coded variants [6]. ES, PSO, and DE represent their
individuals by real-coded variables to directly optimize
the continuous variables. Genetic programming (GP) [5],
as another typical example, designs trees as its individual
representation. It explores EAs for the automatic evolution of
computer programs, consequently allowing modeling more
complicated problems. Different EAs are generally suitable

for their own particular problems, which cannot guarantee the
superiority in all problems, so called No-Free-Lunch (NFL)
theorem [7]. Therefore, there has always been interest to
develop new algorithms when focusing on some particular
sorts of problems. Although it is theoretically impossible to
have a best, general, and universal optimization technique,
with prior knowledge one can develop a particular algorithm
to suit specific classes of optimization problems.

Following the NFL theorem, one successful path of
exploring EAs is extending the individual representation
from bit-strings, real-coded variables, and trees to graphical
structures [8]–[10]. Unlike the other structures, graphs allow
to model more complicated problems through the arbitrary
connections among nodes. Among different graphical EAs,
we focus on a relatively novel one, named genetic network
programming (GNP) [9], [11]. In GNP, a unique directed
graph is designed to represent its individual, which consists of
two types of nodes: judgment node and processing node. The
judgment/processing nodes constitute the unique directed
graph structure to efficiently and flexibly generate compact
programs, which derive a sequence of ‘‘IF-THEN’’ decision-
making rules.

43274
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-4130-6930

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

GNP has been successfully applied to various sorts
of problems, such as agent control [11], [12], elevator
control [13], robot control [14], stock trading [15], and data
mining [16], etc, along with many methodological enhance-
ments. However, the systematic and theoretical study of GNP
with respect to its unique directed graph is unexplored in
the literature, which remains the major gap to support its
further usage and promotion. Most importantly, when the dis-
tinguished features of GNP’s directed graph are not taken into
account, the unnecessary difficulty of evolution will appear,
especially when using the traditional genetic operators.1

To address the above issues, an in-depth discussion of
GNP is provided in this paper, so that its unique features
and advantages become clear. By a systematic and theoretical
study of the directed graph, ‘‘transition by necessity’’ feature
of GNP is presented. Ignoring such a feature, it is proved that
traditional genetic operators tend to cause the serious draw-
backs of evolution, named invalid evolution and negative evo-
lution. To solve them, novel evolution strategies— simplified
genetic operators — are proposed, which explicitly take the
above feature into account. The proposed genetic operators
are capable of relaxing the negative effect of invalid/negative
evolution and reducing the search dimensions of GNP, which
consequently provide better evolution results with faster
search speed. This work is a significant extension of a con-
ference version [18]. The major contributions of this work
differing from reference [18] include the following parts:
1) We reveal GNP’s unique directed graphs systematically
and theoretically to demonstrate its distinguished ‘‘transition
by necessity’’ feature; 2) The invalid evolution and negative
evolution problems caused by uniform genetic operators are
theoretically proved and measured, where the early work [18]
only presented a descriptive study; 3) Simplified genetic
operators are enhanced with slight modifications of [18]
to take the ‘‘transition by necessity’’ feature into account
more appropriately (details refer to section III); 4) The the-
oretical study of simplified genetic operators is provided;
5) The experimental studies are significantly enhanced via
two benchmark testbeds of the agent control problems,
i.e., maze problems [19] and Tileworld [20].

The paper is organized as follows. GNP, its evolution, and
its drawbacks are revisited in section II. The proposed simpli-
fied genetic operators are described in section III. Section IV
presents the experimental studies in two benchmark testbeds
of the agent control problems, i.e., maze problems [19] and
Tileworld [20]. Finally, the conclusions are drawn.

II. REVISITING GENETIC NETWORK
PROGRAMMING (GNP)
A. INDIVIDUAL REPRESENTATION: DIRECTED GRAPH
GNP designs a unique structure — directed graph — for its
individual representation. In the directed graph, two types of
nodes are defined:

1Uniform genetic operators are considered in this paper, since it is the
standard and most-widely used option in GNP literature [11], [17].

• Judgment node: It plays the role of judging the informa-
tion from the environments.

• Processing node: It plays the role of processing actions
in accordance to the results of its antecedent judgments.

Each judgment node consists of a judgment function, which
deals with a specific input of the problems, i.e., the sensory
results in robot control. Each processing node enforces a pro-
cessing/action function, such as themovement speed or direc-
tion in robot control. In general, GNP represents the directed
graph by symbol G as follows.

G = (Snode,LIBRARY), (1)

where,
Snode: the set of nodes included in G;
LIBRARY: the set of judgment/processing functions defined
by the problems.

For a specific node i ∈ Snode, it is represented as follows.

i = (NTi,NFi,B(i),Ci), (2)

Ci = {Ci1,Ci2, . . . ,CiLi}, (3)

where,
NTi: the node type (judgment or processing node);
NFi: the node function which is defined in LIBRARY;
B(i): the set of branches;
Ci: the connection information, represented by a set
Ci = {Ci1,Ci2, . . . ,CiLi};
Cik : the node connected from the kth (1 ≤ k ≤ Li) branch of
node i;
Li: the total number of branches in node i, and Li = |B(i)|.
The judgment nodes have multiple branches, referring

to all the possible judgment results, while the processing
nodes only consist of one branch (means ‘‘no conditional
branch’’). Therefore, the size of B(i) is equal to 1 for pro-
cessing nodes (Li = 1) or a value larger than 1 for judgment
nodes (Li > 1).
When GNP is applied to solve a problem, the number of

judgment/processing nodes is pre-designed by users (usually
by the hand-tuning strategy). During evolution, the node type,
node function, and number of branches per each node are
unchangeable. In other words, GNP evolution only endorses
the node connections to be evolved. That is, only the connec-
tion information Ci of each node i is evolved. Accordingly,
we have the search dimensions (reflecting the search space)
of GNP as follows.
Definition 1: Given a directed graph g of GNP, the set

of search dimensions D is defined by the total number of
branches, i.e.,D =

⋃
i∈Snode

B(i). Since Li = |B(i)|, we have

|D| =
∑

i∈Snode
Li.

In Figure 1, we illustrate a typical example for a more
detailed analysis. It includes the phenotype expression
(directed graph structure) and genotype expression (bit-string
gene structure). The most distinguished features of GNP
arise from this directed graph, which can be summarized as
follows.

VOLUME 6, 2018 43275

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

• As the directed graph is designed with a fixed number
of nodes (|Snode| unchanged), the bloat problem of GP
will never happen in GNP.

• As the nodes can be connected arbitrary in the
directed graph, evolution power will gradually encour-
age the reuse of useful/important nodes to formulate the
module-like repetitive transitions/processes.

• Evolution is restricted within the node connections,
so that the compact programs can be efficiently gen-
erated and evolved through a relatively small size of
directed graph.

Example 1 (Directed Graph of GNP): In Figure 1, the
directed graph G of GNP consists of |Snode| = 6 nodes. The
LIBRARY has 4 judgment functions (J1, J2, J3 and J4) and
2 processing functions (P1 and P2). Each judgment node i
consists of 2 branches (i(1) and i(2)). The detailed node infor-
mation is listed in the right figure, where evolution is applied
to evolve the value of Ci for each node i. It can be explicitly
found that with the change of Ci, new node connections can
be formed, and the directed graph is changed consequently.
The number of search dimensions of this directed graph are
|D| = 4× 2+ 2× 1 = 10 (the total number of branches).

FIGURE 1. Directed graph of GNP. Left: Phenotype expression (directed
graph structure); Right: Genotype expression (bit-string gene structure)

B. COMPARISON WITH THE EXISTING GRAPH-BASED EA
GNP distinguishes itself from the large amount of EAs by the
above unique directed graph structure. Naturally, the directed
graph ensures higher expression ability and more flexibility
to potentially model more complicated problems than tradi-
tional EAs, such as GA, DE, and GP, etc. Notable results have
been found in various problems [11], [12], [21]. In addition
to GNP’s directed graph, various graph-based EAs have been
proposed in the literature [8], [22]–[24]. The main features of
GNP differing from the other graph-based EAs are as follows.

• There is no terminal node in GNP, where the GNP
programs terminate once the task is solved.

• GNP separates the nodes into judgment/processing
nodes, so that the ‘‘IF(necessary judgments), THEN

(processing)’’ 2 type decision-making rules can be easily
formulated through the node transitions of the directed
graph.

• With the above forms, GNP is particularly suitable
to model the behavior of intelligent agents, deriving
numerous real-world applications.

C. TRANSITION BY NECESSITY
When applying the directed graph to solve problems, the solu-
tions are formulated as compact programs through the
node transitions of the directed graph. More precisely,
the node transitions can efficiently generate the sequen-
tial ‘‘IF(necessary judgments), THEN(processing)’’ type
decision-making rules, which play the essential role for prob-
lem solving. In each rule, only some of the judgment func-
tions are made (necessary judgments) to make the action
determination (processing), where the necessity of judg-
ment is determined by evolution. With the above discussion,
we introduce the most important feature of GNP’s directed
graph — ‘‘transition by necessity’’. It is derived from the
functional distribution of neuroscience, that human brain usu-
ally activates a particular part of the neurons when perceiving
specific inputs [25]. Figure 2 illustrates a typical example of
problem solving by GNP’s directed graph through its node
transitions.

FIGURE 2. Problem solving by GNP’s directed graph (details
in Example 2).

Example 2 (Problem Solving by GNP): In the example of
Figure 2, the target problem is a two-step problems. The
GNP program starts from node 2, where the hereafter nodes
are transited in accordance to the interaction with the prob-
lem environments. For each judgment node (with multiple
branches), the next transited node is determined by the judg-
ment results. By following the node transitions, a sequence of
‘‘IF(necessary judgments), THEN(processing)’’ is generated
to form the compact programs of GNP, which can be derived
to the expressive decision-making rules. As shown in the
figure, two decision-making rules are generated to solve the
two-step problems.

In Example 2, only parts of the directed graph are transited
(node 6 is not used). Some important nodes are frequently
transited (node 2 is transited two times). Two decision-
making rules are consequently generated, within which only

2The word ‘‘necessary’’ indicates that not all judgment functions should
be judged.

43276 VOLUME 6, 2018

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

Algorithm 1: Procedure of GNP

1 define the directed graph structure (Nnode,LIBRARY);
2 define population size |Pop|, sets of elite, crossover, and
mutation individuals (Pope, Popc and Popm);

3 initialize population Pop;
4 repeat
5 preserve the best |Pope| individuals (elite selection);
6 for index i = 0; i < |Popc|/2; i++ do
7 execute uniform crossover in Popc;

8 for index i = 0; i < |Popm|; i++ do
9 execute uniform mutation in Popm;

10 until terminal conditions;

two judgments are made for processing. This explicitly
demonstrates the generalization ability of GNP over con-
ventional algorithms which take all judgments into account.
We further present an experiment in Tileworld testbed (prob-
lem description in section IV) in Figure 3. In this case, there
are total 220 branches in the directed graph, where only
less than 160 branches are transited. These two examples
essentially describe the ‘‘transition by necessity’’ feature
of GNP.

FIGURE 3. ‘‘Transition by necessity’’ of GNP (in Tileworld with ST = 60).

D. EVOLUTIONARY MECHANISM OF GNP
The procedure of GNP is shown in Algorithm 1. As the
other EAs, GNP (as well as its variants) iteratively evolves
a population Pop of directed graphs which are initialized ran-
domly. In each generation, Pop is divided into three groups:
elite, crossover and mutation individuals (Pope, Popc and
Popm, respectively). They are subject to evolution by elite
selection and genetic operators (crossover and mutation).
Any type of standard genetic operators can be used, such
as one-point, two-points, and uniform genetic operators, etc.
However, previous studies demonstrated that uniform genetic
operators are more favorable for GNP evolution than the
others [17]. Therefore, they have become the mostly used
option in GNP literature [11].

In uniform crossover, each branch of the parents is selected
with crossover rate pc, where the node connections are
exchanged with each other. Uniform mutation selects each
branch with mutation rate pm to randomly change its node
connections. The typical examples of uniform genetic oper-
ators are illustrated in Figure 4, including uniform crossover
and uniform mutation.
Example 3 (Uniform Crossover of GNP): In the left part

of Figure 4, Parent individuals P1 and P2 are selected for
uniform crossover, and each branch has equal probability pc
for crossover action. Here, the second branch of node 3,
i.e., branch 3(2), is selected for crossover. The corresponding
node connections (C32 = 4 in P1 and C32 = 5 in P2)
are exchanged with each other to generate two Offspring O1
and O2.

FIGURE 4. Uniform genetic operators of GNP.

Example 4 (Uniform Mutation of GNP): In the right
part of Figure 4, Parent P is selected for mutation, and
each branch has equal probability pm for mutation action.
In this example, the first branch of node 5, i.e., branch 5(1),
in P is selected for mutation. The corresponding node
connection (C51 = 3 in P) is randomly changed to
connect to another node, i.e., C51 = 6, to generate
offspring O.

E. PROBLEM DESCRIPTION
Uniform genetic operators (as well as the others) do not
consider the ‘‘transition by necessity’’ feature of GNP at
all. This provides the advantage of easy implementation,
however, which tends to cause the serious drawbacks of
evolution, potentially deteriorating the evolution efficiency.
In this paper, we address them by deriving two problems,
named invalid evolution and negative evolution, which are
discussed hereafter.

VOLUME 6, 2018 43277

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

1) INVALID EVOLUTION PROBLEM
Given a directed graph (individual) g ∈ Pop, after its execu-
tion, we have two sets of branches: transited branches (TBg)
and untransited branches (UBg). These two sets satisfy

TBg ∩ UBg = ∅; (4)

TBg ∪ UBg = D. (5)

Supposing the fitness result of g are denoted as f (g), based
on the ‘‘transition by necessity’’ feature, f (g) is only influ-
enced by the evaluation of TBg (the set of transited branches).
UBg (the set of untransited branches) has not any effect on
the calculation of f (g). Ideally, evolving UBg or not does
not cause any reasonable and theoretical influence of f (g).
However, in uniform genetic operators, all branches have
equivalent opportunity to be evolved, regardless the fact that
evolving UBg is meaningless, causing a serious problem –
‘‘Invalid evolution’’.
Definition 2: ‘‘Invalid evolution’’ problem is defined by

the phenomenon of evolving the untransited branches in each
generation.

To present a quantitative study, this problem can be mea-
sured by a metric named invalid evolution rate (IER).
Definition 3: IER is defined by the rate that the untransited

branches are evolved over the entire evolved branches in each
generation.

With the above definition, we can analyze the IER of
uniform genetic operators, i.e., IER(uniform), as follows.

Given a uniform crossover individual g, the theoretical
number of untransited branches to be evolved is |UBg| × pc,
and that of a uniform mutation individual g is |UBg| × pm.
If we define the total number of untransited branches to be
evolved in each generation as evol_UB, it can be calculated
as follows.

evol_UB =
∑
g∈Popc

|UBg| × pc +
∑

g∈Popm

|UBg| × pm. (6)

For each uniform crossover individual, the theoretical
number of evolved branches is pc ×

∑
i∈Snode

Li, and that

of each uniform mutation individual is pm ×
∑

i∈Snode
Li.

Multiplied by the number of crossover/mutation individuals,
we have the total number of evolved branches, i.e., evol,
as follows.

evol = |Popc| × pc×
∑

i∈Snode

Li+|Popm| × pm ×
∑

i∈Snode

Li

= (|Popc| × pc + |Popm| × pm)×
∑

i∈Snode

Li. (7)

According to Definition 3, we can obtain IER(uniform) of
each generation as follows.

IER(uniform) =
evol_UB
evol

× 100%. (8)

With the increase of unused sub-graph region (untransited
branches UB), IER(uniform) tends to be increased, which

indicates that uniform genetic operators generally fall into
meaningless evolution of GNP. Removing these evolution
actions would not have any negative influence of the evolu-
tion performance.

2) NEGATIVE EVOLUTION PROBLEM
Invalid evolution problem is carried out when we analyze
the evolution behavior of a single generation. In this section,
we relax the analysis to multiple generations to propose
the second problem caused by uniform genetic operators —
‘‘negative evolution’’.

We consider two different generations, i.e., generation t1
and t2 (t1 < t2). For each directed graph g, the sets of
transited/untransited branches generally vary in generation t1
and t2, that,3

TBg(t1) 6= TBg(t2), and UBg(t1) 6= UBg(t2). (9)

Suppose we have a specific branch b of directed graph g,
which satisfies the following three conditions:

1) b ∈ TBg(t1): b is transited (used) in an early
generation t1;

2) b ∈ UBg(t2): b is not transited (used) in a later genera-
tion t2 (> t1);

3) b is not evolved from generation t1 to t2 (b remains
unchanged until t2).

Although b is not used in generation t2, it was previously
used in the early generation t1 and remained unevolved
until t2. This reflects the necessity of node transitions
that b can adapt some particularly perceived environments.
In other words, the node connection of branch b represents a
sort of building-blocks (BBs) 4 in the early generation t1. This
information (b) is remained unchanged (unevolved) during
t1 and t2, meaning that the corresponding BBs are preserved.

If we consider to evolve b in generation t2, invalid evolu-
tion problem will be caused. This is obvious since b is unused
in generation t2. Evolving b in generation t2 is meaningless,
since this branch is not used (and evaluated) in this genera-
tion. Meantime, this evolution action can also break the BBs
obtained in the previous generation t1 without evaluation.
If many branches like b are evolved in this way, the frequent
breakage of BBs will be caused seriously. This significantly
increases the uncertainty of evolution, since the evolution and
evaluation are not synchronized. The frequent breakage of
BBs will lower the evolution efficiency, and eventually dete-
riorate the generalization ability of the directed graph (since
worse final solution is obtained and the high-quality sub-
graphs, i.e., BBs, are easily destroyed without evaluation).

In short, the brute-force evolution of uniform genetic oper-
ators in GNP can easily break the BBs without evaluation
(‘‘Without evaluation’’ will make us hard to judge this evolu-
tion is good or not), and we name this problem via negative
evolution.

3This phenomenon is normal in GNP execution, and it can be easily
explained by the ‘‘transition by necessity’’ feature that different sub-graphs
are activated to suit the particular scenarios of different generations.

4Building-blocks (BBs) refer to the partial solutions with high quality [1].

43278 VOLUME 6, 2018

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

Definition 4: ‘‘Negative evolution’’ problem is defined by
the phenomenon of evolving the untransited branches which
were transited in the previous generations.

This problem can be quantitatively studied by measuring
the negative evolution rate (NER) metric.
Definition 5: In each generation, supposing the set of

untransited branches which were transited in the previous
generations but remained unevolved until now is denoted as
NB (branches causing negative evolution, and NB ⊆ UB),
NER is defined by the rate that the branches ofNB are evolved
over the entire evolved branches.

With the above definition, we can analyze the NER of
uniform genetic operators, i.e., NER(uniform), as follows,
which is similar to IER(uniform).
Given a uniform crossover individual g, the theoretical

number of evolved branches causing negative evolution is
|NBg| × pc, and that of a uniform mutation individual g is
|NBg|×pm. If we define the total number of evolved branches
causing negative evolution in each generation as evol_NB,
it can be calculated as follows.

evol_NB =
∑
g∈Popc

|NBg| × pc +
∑

g∈Popm

|NBg| × pm. (10)

Dividing evol_NB by the total number of evolved branches,
i.e., evol of Equation (7), we can obtainNER(uniform) of each
generation based on Definition 5.

NER(uniform) =
evol_NB
evol

× 100%. (11)

Since NB ⊆ UB, NER(uniform) is generally smaller than
IER(uniform) in each generation. In other words, negative
evolution has relatively smaller effect than invalid evolution
when using uniform genetic operators. However, it will cause
worse effect to deteriorate the evolution performance than
invalid evolution. The reason is as follows: invalid evolution
will only increase the unnecessary search dimensions, while
negative evolution can potentially break the BBs and deteri-
orate the generalization performance.

III. SIMPLIFIED GENETIC OPERATORS OF GNP
The appearance of invalid evolution and negative evolution
arises from the fact that uniform genetic operators do not
consider the ‘‘transition by necessity’’ feature of GNP at all,
resulting in meaningless and negative effect. To address these
problems, we develop new genetic operators — simplified
genetic operators. We name the proposal as GNP_simplified.

The fundamental concept of our proposal is to strictly
restrict the evolution behavior within the experienced/activated
sub-graph of each directed graph. In each generation,
the untransited branches are retained as many as possible.
The procedure of GNP_simplified is shown in Algorithm 2.

After the execution of each directed graph g, we record
a set of its transited branches TBg. For the entire popula-
tion Pop, evolution is strictly restricted only to these sets
of transited branches TBg, g ∈ Pop, in each generation.
The simplified genetic operators consist of two operators:

Algorithm 2: Procedure of GNP_Simplified

1 initialize population Pop;
2 repeat
3 for each individual g ∈ Pop do
4 execute g to obtain a set of transited branches

TBg;

5 preserve the best |Pope| individuals (elite selection);
/* simplified crossover: step 6 to

10 */
6 for index i = 0; i < |Popc|/2; i++ do
7 select two parent individuals P1 and P2 from

Popc;
8 for each branch b ∈ TBP1 ∪ TBP2 do
9 if random_seed< pc then

10 swap the connection information of b
between the parents;

/* simplified mutation: step 11 to
15 */

11 for index i = 0; i < |Popm|; i++ do
12 select a parent individual P from Popm;
13 for each branch b ∈ TBP do
14 if random_seed< pm then
15 randomly set the connection information

of b at [1, |Snode|];

16 until terminal conditions;

simplified crossover and simplified mutation. In simplified
crossover (step 6–10), a branch is considered to be evolved
only if it is transited in at least one of the parent individuals
(step 8). In simplified mutation (step 11–15), only the tran-
sited branches can be evolved (step 13).

It is explicit that the proposal is simple and straightforward.
Even though, we endorse the largest possibility to reduce
the effect of invalid evolution. Figure 5 provides a graphical
illustration of the search dimensions in simplified genetic
operators. First, invalid evolution can be 100% avoided by
simplified mutation, since a branch of mutation individual P
can be evolved only if it is transited (belongs to TBP, right
part of Figure 5). Second, given two crossover individuals
P1 and P2, a branch can be evolved only if it is either transited

FIGURE 5. Search dimensions in simplified genetic operators.

VOLUME 6, 2018 43279

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

in P1 or P2 (belongs to TBP1 ∪ TBP2, left part of Figure 5).
If evolution behavior happens within TBP1 ∩ TBP2 region,
no invalid evolution appears since the branches are transited
in both crossover individuals. However, if crossover happens
outside the intersection region (the blank region of left fig-
ure), one of the crossover branches will cause the invalid
evolution. Therefore, simplified crossover can at least 50%
reduce the invalid evolution (50%happens in the extreme case
that TBP1 ∩ TBP2 = ∅).

Summarizing the above discussion, we can calculate the
IER of simplified genetic operators, i.e., IER(simplified),
as follows.

For each simplified crossover action (with two crossover
individuals P1 and P2), invalid evolution appears only if the
branches satisfying ∈ TBP1 ∪ TBP2 and /∈ TBP1 ∩ TBP2
are evolved. We denote the total number of these branches
by |IB|, that,

IB = {b|b ∈ TBP1 ∪ TBP2 and b /∈ TBP1 ∩ TBP2}.

(12)

The theoretical number of untransited branches to be evolved
is 0.5×|IB|×pc.5 Considering |Popc|/2 crossover actions in
each generation, the total number is 0.5×

∑|Popc|/2
i=1 |IBi|×pc.

Since there is no invalid evolution in simplified mutation,
the total number of untransited branches to be evolved in
each generation, i.e., evol_UB(simplified), can be calculated
as follows.

evol_UB(simplified) = 0.5×
|Popc|/2∑
i=1

|IBi| × pc. (13)

Simplified genetic operators restrict the evolution within
the transited branches. Therefore, for each simplified
crossover individual, the theoretical number of evolved
branches is |TBg| × pc, and that of each simplified muta-
tion individual is |TBg| × pm. Multiplied by the number of
crossover/mutation individuals, we have the total number of
evolved branches, i.e., evol(simplified), as follows.

evol(simplified) =
∑
g∈Popc

|TBg| × pc +
∑

g∈Popm

|TBg| × pm.

(14)

According to Definition 3, we can obtain IER(simplified)
of each generation as follows.

IER(uniform) =
evol_UB(simplified)
evol(simplified)

× 100%. (15)

With respect to the negative evolution issue, it appears
when the set of untransited branches which were previ-
ously transited (denoted as NB in Definition 5) is evolved
for the first time. In simplified genetic operators, the size
of NB dramatically decreases, since the antecedence of
negative evolution is the evolution of untransited branches

50.5 denotes that only one branch in either P1 or P2 is an untransited
branch causing invalid evolution.

(invalid evolution) and it rarely happens in our proposal.
Only simplified crossover will potentially cause the negative
evolution, but with very small possibility. The calculation of
NER(simplified) for simplified genetic operators is similar
to that of NER(uniform) (denominator is slightly different),
which is omitted here.

From the perspective of search dimensions, simplified
genetic operators dramatically reduce the search dimensions
comparing with uniform genetic operators.
Definition 6: Given a directed graph g of GNP, the set

of search dimensions D in simplified genetic operators
is defined by the total number of transited branches,
i.e., D = TBg.

Comparing with Definition 1, the number of search dimen-
sions decreases from

∑
i∈Snode

Li to |TBg|, resulting in sig-
nificant relaxation of problem complexity.

It is specifically notable that the proposal described in this
paper is an enhanced version of an early work [18]. In the
early work, the set of transited branches TBg for each g is
maintained throughout the entire generations. In each gener-
ation, TBg is updated by adding new transited branches and
removing the evolved ones (the branches become untransited
once evolved). This will potentially increase the appearance
of negative evolution to break the BBs without evaluation.
Therefore, in the enhanced version, TBg is generated per each
generation, so that the negative evolution effect is reduced and
the number of search dimensions also decreases accordingly.

As discussed previously, the fundamental motivation of
this work arises from the theory of neuroscience and evolu-
tionary Biology.

• Introns — First, evolution behavior is only carried
out within the experienced/activated sub-graphs, whose
qualities have been appropriately evaluated through the
fitness calculation. The untransited sub-graphs can be
considered as some kinds of unknown or potential skills,
viewed as introns in neuroscience and evolutionary
Biology. Because the qualities of introns are unknown,
evolving them cannot result in meaningful improvement
in the nature sense (invalid evolution), and might bring
too much evolution pressure to deteriorate the evolution
performance (negative evolution).

• Atavism — Second, simplified genetic operators are
inspired by the atavism feature of evolutionary Biol-
ogy. Atavism reflects that the phenotypically disap-
peared traits do not necessarily disappear from the DNA
sequence. The traits often remain genotypically, but
are inactive [26]. In each generation, the untransited
branches refer to the phenotypically disappeared traits,
which may (with high possibility) be experienced in
the previous generations. Simplified genetic operators
remain them as many as possible to keep the dormant
genes to preserve the ability of atavism. Accordingly,
the frequent breakage of BBs is avoided.

Conclusively, although only slight modifications of uni-
form genetic operators are made in our proposal, ‘‘transition

43280 VOLUME 6, 2018

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

TABLE 1. LIBRARY of maze problems and Tileworld.

by necessity’’ feature of GNP is explicitly considered for
evolution. The systematic and theoretical analysis provides
necessary evidences to demonstrate the superiority of simpli-
fied genetic operators: 1) The invalid evolution and negative
evolution problems are significantly reduced; 2) The number
of search dimensions is significantly reduced; 3) The BBs are
retained as many as possible.

IV. EXPERIMENTAL STUDY
The experiments are carried out in two benchmark testbeds
of the agent control problems, i.e., maze problems [19] and
Tileworld [20].

A. BENCHMARK TESTBEDS
1) MAZE PROBLEMS
Maze problems consist of an artificial agent and a grid world.
The agent has eight sensors to recognize the surrounding
cells, and makes eight possible actions for the adjacent move-
ment. There are three kinds of cells — obstacle, floor or goal
cell. The target of this problem is to control the agent to
find the goal cell with the fewest number of steps wherever
it is initially located. In other words, it is a minimization
problem with fitness defined as steps to goal. As shown
in Figure 6, two well-known maps are studied, named
Woods1 and Maze5 [19], where the optimal steps are 1.7
and 4.6 steps, respectively.

FIGURE 6. Tested maze maps.

a: FITNESS CALCULATION
When performing each individual run, twenty instances are
tested. In each instance, the agent is randomly assigned in the
world, and the instance is finished once the agent finds the
goal cell or reaches the predefined maximal steps, i.e., 2000.
The fitness of each individual is calculated by the average
steps to goal of twenty instances.

b: DIRECTED GRAPH DESIGN
For maze problems, we design eight judgment functions to
judge the agent’s eight adjacent cells. The judging results
could be obstacles, floors or a goal, so resulting in three
branches. Eight processing functions are performed to move
the agent to its adjacent cells. The LIBRARY of maze prob-
lems are defined in Table 1.

2) TILEWORLD
Tileworld benchmark testbed represents a more complex sys-
tem than maze problems. It is constructed by a grid world
with agents, obstacles, floors, holes and tiles (Figure 7). There
are plural agents, where each agent is moved simultaneously.
The target of this problem is to control the agents to work in
a cooperative way to push tiles into holes within predefined
maximal steps. As presented in Figure 8, ten Tileworld maps
are tested. In these cases, the number of agents are three.
The worlds are designed with the same positions of agents,
obstacles and holes, where the tiles are initially placed in
different cells. Ten worlds are learned simultaneously when
evolving each individual.

FIGURE 7. Tileworld environment and the agent’s directional recognition
ability.

a: FITNESS CALCULATION
The fitness of an individual per each map is calculated by:

f = 100× DT + 3× (ST − STused)

+ 20×
∑

t∈Tile
(Dt − dt). (16)

DT refers to the number of tiles dropped into holes. ST is the
predefined constrained steps. STused is the number of used
steps. Tile is the set of tiles. Dt represents the initial distance
from tile t to its nearest hole, and dt denotes the final distance
from t to its nearest hole after ST steps.

VOLUME 6, 2018 43281

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

The three terms of function f correspond to three targets of
Tileworld: 1) We should drop tiles into holes as many as pos-
sible, denoted by 100×DT ; 2)We should drop tiles into holes
using as few steps as possible, denoted by 3× (ST −STused);
3) If we cannot drop all tiles within ST steps, we should push
the remaining ones to holes as near as possible, represented by
20 ×

∑
t∈Tile(Dt − dt). Since ten Tileworld maps are tested

simultaneously, and so the final fitness value is counted by∑10
world=1 f (world).

b: DIRECTED GRAPH DESIGN
For Tileworld, we design eight judgment functions to
judge the agent’s surrounding environment, which are listed
in Table 1. The agents are designed with four abilities of
directional recognition (forward, backward, left, and right),
where the definitions are shown in the example of Figure 7
(right). With judgment functions J1 ∼ J4, the agent can
perceive the surrounding cells of four directions. Judgment
functions J5 ∼ J8 are designed to judge the directional
information of the nearest or second nearest tiles/holes. Each
agent has four action abilities, i.e., move forward, turn left,
turn right and stay.

3) COMPARISON METRICS
We specifically note that all the experimental results are the
average of 30 independent trials in order to eliminate the
random bias for fair comparison. Two comparison metrics are
performed in the paper.

a: METRIC 1—FITNESS RESULTS
The first and primary metric to compare different algorithms
is the final fitness result after user-defined terminal criteria,
i.e., reaching the maximal fitness evaluations, which is com-
monly used in the vast majority of evolutionary computation
studies.

b: METRIC 2—REQUIRED FITNESS EVALUATIONS
In order to testify the search speed, the second comparison
metric is the required fitness evaluations (RFEs). The RFEs
are calculated in the following way: for each successful trial,6

the used FEs are counted; for each failed trial, the max-
imal FEs are counted; Afterwards, we average the RFEs
of 30 independent trials for comparison.

Both metrics are counted to conduct a comprehensive val-
idation of the proposal to compare with the state-of-the-art
algorithms. In addition, two-tailed, paired t-test [12], [27] is
performed to demonstrate the statistical significance.

B. EXPERIMENTAL STUDIES ON MAZE PROBLEMS
1) STUDIED ALGORITHMS AND PARAMETER
CONFIGURATION
To demonstrate the superiority of the proposed algorithm,
four state-of-the-art algorithms are selected as follows.

6A successful trial is defined by: (1) Maze problems: for twenty instances
with randomly initial positions, the agent can find the goal cell using the
optimal steps; (2) Tileworld: all tiles can be dropped into the holes within
ST steps.

Extended classifier system (XCS) [28]: XCS is the most
well-known evolutionary classifier system (learning classifier
system, or LCS) [29] which learns and evolves a popula-
tion of classifiers for decision making. Its classifiers are
represented as ‘‘IF-THEN’’ type decision rules. The rules
are encoded by ternary alphabet, i.e., {0, 1, #}. Symbol #
means ‘‘don’t care’’ which matches with 0 and 1. From this
perspective, XCS formulates its solutions in a similar way
as GNP, which ensures strong generalization ability through
decision rules to cover plural perceptions. XCS has per-
formed outstandingly to solve the maze problems [30]. The
parameter settings of XCS are carried out based on the sug-
gestion [31] to perform the best results, which are presented
in Table 2.

Genetic programming (GP) [5]: GP is selected as the
representative of conventional EAs. Different from GNP,
GP applies trees as its individual representation. The non-
leaf nodes of GP trees work in a way as GNP’s judgment
nodes, while the leaf nodes are composed of processing
functions.We encode the complete three-ary trees for GP pro-
grams since all the judgment functions have three arguments.
In order to obtain the best GP performance, the maximal
tree-depth is defined to five (tested and selected from tree-
depth three, four, five and six). In this case, GP tree consists
of 361 nodes. FULL initialization, one-point crossover and
point mutation [32] are used.7

Sarsa learning (Sarsa) [33]: Sarsa is selected as the
representative of reinforcement learning (RL) technique.
We define the Sarsa states as the total possible observa-
tions of each agent in its eight directional cells. Accord-
ingly, the total number of states is 38 = 6561. The
actions are defined as the processing functions of Table 1,
which are eight. ε-greedy policy is used for the selection of
actions.

GNP_uniform and GNP_simplified: standard GNP with
uniform genetic operators (GNP_uniform for short) is
selected as the baseline to compare with the proposed
GNP_simplified. The overall parameters of GNP variants
include: population size (elite size, crossover size, and muta-
tion size); the directed graph G (node size |Snode|, and node
size for each judgment/processing function); crossover rate
and mutation rate.

Hand-tuning strategy is applied to determine the parame-
ters of each compared algorithm, which are listed in Table 2.
That is, a large number of parameter settings are tested, and
the ones achieving the best performance are used to ensure
the fair comparison.

All the experiments are performed on a PC with Intel
Core i7 running at 3.40GHz with 8 GB RAM. The complier
is Eclipse Neon (ver. 4.6.3) of Windows 10. Several open
source codes are used to implement the compared algorithms,
including XCSJava 1.0 [31] for XCS and ECJ library [34]
for GP.

7We tested different initialization, crossover and mutation methods, and
used the best options for the studied testbeds.

43282 VOLUME 6, 2018

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

TABLE 2. Parameter settings of the compared algorithms.

FIGURE 8. Tileworld maps.

2) RESULTS AND ANALYSIS
a: FITNESS RESULTS
In maze problems, the maximal fitness evaluations are set to
5,000 to terminate each experimental trial. The fitness curves
in Woods1 and Maze5 are shown in Figure 9 and 10, where
the detailed fitness results are listed in Table 3. In Woods1,
XCS, GP, Sarsa, GNP_uniform and GNP_simplified are all
capable of reaching the goal cell with the optimal steps
(1.7 steps). In Maze5, GP and GNP_uniform fail to achieve
the optimal steps, while XCS, Sarsa and GNP_simplified
converge to the optimum (4.6 steps).

b: REQUIRED FITNESS EVALUATIONS
The RFEs are further counted to reflect the search speed.
The results are listed in Table 3. In Woods1, both

GNP_uniform and GNP_simplified achieve faster search
speed than the other compared algorithms. In Maze5, GP and
GNP_uniform cannot solve the task, which are surpassed by
XCS, Sarsa and GNP_simplified. Throughout the two maze
maps, GNP_simplified can successfully find the goal cell
with the fewest RFEs.

c: STATISTICAL TEST
The t-test results (with 95% confidence level) are shown in
the ‘‘Sig.’’ columns of Table 3. Except GP and GNP_uniform
for Maze5 map, the ‘‘Sig.’’ results of fitness show that all
the compared algorithms identically reach the optimal steps
with no statistical difference. The ‘‘Sig.’’ results of RFEs
demonstrate the statistically significant difference between
GNP_simplified and the compared algorithms.

VOLUME 6, 2018 43283

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

TABLE 3. Detailed results in maze problems.

FIGURE 9. Performance in Woods1 map.

FIGURE 10. Performance in Maze5 map.

d: PERFORMANCE ANALYSIS
In the simple Woods1, GNP family achieves better per-
formance than the compared state-of-the-art algorithms in
the early stages of evolution (faster search speed). After a
small number of fitness evaluations (less than 550 FEs), all
the compared algorithms quickly locate the optimal fitness
results with stable and smooth convergence. Maze5 is a
much more difficult problem since much less generalizations
are possible [30]. Different from Woods1 whose left and
right edges are connected, Maze5 places the four edges with
obstacles, formulating much more complicated scenarios.
In this map, GNP family also performs faster convergence
than the compared algorithms in the early fitness evaluations.

However, XCS and Sarsa gradually achieve better perfor-
mance than GP and GNP_uniform, which eventually con-
verge to the optimal steps. GP and GNP_uniform can only
reach the near optimal steps.

Overall, the proposed GNP_simplified statistically
achieves the best performance in terms of both final fit-
ness results and RFEs comparing with the state-of-the-art
XCS, GP, Sarsa and GNP_uniform. From this perspective,
it is empirically proved that the proposed GNP_simplified
overcomes the drawbacks of traditional genetic operators
(GNP_uniform) to achieve the best performance.

C. EXPERIMENTAL STUDIES ON TILEWORLD
1) STUDIED ALGORITHMS AND PARAMETER
CONFIGURATION
To further demonstrate the effectiveness of the proposed
algorithm, a more complicated system Tileworld benchmark
testbed is performed, and the following state-of-the-art algo-
rithms are selected for comparison.

GP: The complete five-ary trees are encoded for GP pro-
grams since all the judgment functions have five arguments.
Themaximal tree-depth is defined to four (tested and selected
from tree-depth three, four and five) to perform the best
results of GP. In this case, GP tree consists of 781 nodes.
FULL initialization, one-point crossover and point muta-
tion [32] are used.

Sarsa [33]: We define the Sarsa states as the total possi-
ble observations of each agent in its four directional cells.
Accordingly, the total number of states is 54 = 625. The
actions are defined as the processing functions of Table 1,
which are four. Overall, there are 625×4 = 2500 sate-action
pairs to be learned in Sarsa. ε-greedy policy is used for the
selection of actions.

GNP_uniform is performed as the baseline to compare
with the proposed GNP_simplified. All the detailed param-
eters of the compared algorithms are set by hand-tuning
strategy, presented in Table 2. As the experiments on maze
problems, a large number of parameter settings are tested,
where the ones with the best results are used for the fair
comparison.

2) RESULTS AND ANALYSIS
a: PROBLEM DIFFICULTY AND SCALABILITY
Given a specific Tileworld map, our target is to drop tiles
into holes within a user-defined constrained steps, that is,

43284 VOLUME 6, 2018

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

TABLE 4. Detailed fitness results in Tileworld under different ST values.

FIGURE 11. Performance in Tileworld under different ST values. (a) ST = 40. (b) ST = 60. (c) ST = 80. (d) ST = 100.

parameter ST in the fitness Equation (16). Therefore, ST
plays the essential role to control the problem difficulty of
Tileworld. With the decrease of ST values, we should use
smaller steps to solve the tasks. In other words, smaller ST
values indicate more difficult problems. Different ST values
allow us to validate the algorithm scalability under different
problem difficulty. For this purpose, we set four ST values to
design the experiments, that, ST = {40, 60, 80, 100}.

b: FITNESS RESULTS
In Tileworld, the maximal fitness evaluations are set to
300,000 to terminate each experimental trial. The fitness
curves under different ST values are shown in Figure 11,
where the detailed fitness results are listed in Table 4.
Throughout the studied four cases, GNP family surpasses
the state-of-the-art GP and Sarsa, where the proposed
GNP_simplified achieves the best fitness results.

VOLUME 6, 2018 43285

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

TABLE 5. Detailed RFEs in Tileworld under different ST values.

FIGURE 12. Graphical illustration of RFEs in Tileworld under different
ST values.

c: REQUIRED FITNESS EVALUATIONS
The results of RFEs are shown in Table 5. Meantime, we plot
the graphical illustration of RFEs under different ST values
in Figure 12. In the difficult problems of ST = 40 or 60, GP
and Sarsa fail to solve the tasks, and they can only solve the
simpler problems but with large RFEs. Overall, the proposed
algorithm requires the fewest RFEs.

d: STATISTICAL TEST
The t-test results of fitness and RFEs are shown in the
‘‘Sig.’’ columns of Table 4 and 5, respectively. The ‘‘Sig.’’
results show that there are statistically significant differences
between GNP_simplified and the other algorithms in terms
of both fitness results and RFEs.

e: PERFORMANCE ANALYSIS
In order to evaluate the success/failure of problem solving,
we further count the the number of dropped tiles for compar-
ison, explicitly reflecting whether all tiles have been dropped
into holes within ST steps. The results are reported in the
‘‘DT ’’ columns of Table 4. When setting ST to small val-
ues (i.e., 40), it is difficult to drop tiles within such small
constrained steps. All methods cannot 100% solve the task
throughout 30 independent trials. Particularly, GP and Sarsa
cannot achieve a single successful trial, resulting smallest
fitness results and 300,000 RFEs (maximal FEs), while GNP
family succeeds in some trials. When increasing ST values,

the problem difficulty is relaxed that we have more steps to
push tiles. The ‘‘DT ’’ results show that GNP_simplified can
drop more tiles into holes than the other algorithms, which
indicates that our proposal has more chance to successfully
solve the Tileworld tasks.

Considering all the presented results as a whole, the exper-
iments explicitly demonstrate the statistical superiority of
GNP_simplified over the other state-of-the-art algorithms
throughout different problem difficulties.

D. GENERALIZATION PERFORMANCE
In addition to compare the fitness results and RFEs in the
given (training) environments, we further testify the trained
best solutions of each algorithm under inexperienced (testing)
environments to demonstrate the generalization performance.

In maze problems, since the agent’s initial location is ran-
domly placed, the fitness results (average steps) presented
in Table 3 are capable of reflecting not only the evolution
efficiency of the studied algorithm, but also its generalization
performance 8 in certain degrees. In Table 3, the experi-
mental results demonstrate that the proposedGNP_simplified
reaches the best generalization performance with the fewest
RFEs comparing with the other compared state-of-the-art
algorithms.

In Tileworld, the training experiments are carried out under
static environments. Therefore, we further design additional
testing experiments to demonstrate the generalization perfor-
mance. Two scenarios of testing environments are designed
based on the Tileworld maps of Figure 8.
• T1 (simple case): Randomly set the initial positions of
tiles, where the other objects are remained as the training
maps.

• T2 (complicated case): Randomly set the initial posi-
tions of tiles, holes and obstacles.

The testing experiments of each scenario are conducted
as follows. First, 1000 testing environments are randomly
generated. Second, each final solution obtained in the training
environment is applied to obtain an average testing result
(of 1000 testing environments). For each compared algo-
rithm, the final testing result is the average of its 30 final
training solutions obtained in the second step. Finally, we can
compare the generalization performance of each algorithm
via the final testing results.

For two different testing scenarios, the compared results
are shown in Table 6 and 7. The testing results of both simple
and complicated testing scenarios clearly demonstrate that
the proposed GNP_simplified achieve higher generalization
performance than the other compared algorithms.

Overall, the testing experiments constitutes our argument
that the proposed simplified genetic operators benefit to sig-
nificantly reduce the effect of negative evolution, so that
the BBs can be retained as many as possible to ensure the
generalization performance.

8The solution can adapt to the tested maze map, wherever the agent is
initially placed.

43286 VOLUME 6, 2018

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

TABLE 6. Detailed testing results of T1 scenario in Tileworld.

TABLE 7. Detailed testing results of T2 scenario in Tileworld.

E. DETAILED ANALYSIS OF GNP_SIMPLIFIED
The fundamental basis of the proposed algorithm relies on
the unique feature of GNP’s directed graph structure: ‘‘tran-
sition by necessity’’, targeting to solve the invalid evolu-
tion and negative evolution problems caused by the tradi-
tional uniform genetic operators. The following experiments
address the effects of the proposed simplified genetic oper-
ators through the discussion of the evolution behavior and
computation time. The experiments are carried out in Tile-
world (with four ST values studied in section IV-C).

1) ANALYSIS OF EVOLUTION BEHAVIOR
In order to demonstrate the positive effects of the simplified
genetic operators, its evolution behavior is analyzed in com-
parison with the uniform genetic operators.

As illustrated in Example 2, each directed graph of GNP
only transits some branches (activate a specific sub-graph)
to adapt to the perceived environments. When some untran-
sited branches are evolved, invalid evolution appears (detailed
analysis in section II-E.1). This problem is measured by
a metric — invalid evolution rate (IER), defined by the
rate that the untransited branches are evolved over the total
evolved branches (Definition 3). The first evidence to prove
the advantage of GNP_simplified over GNP_uniform arises
from the fact that simplified genetic operators would result
in much smaller IER values than the traditional uniform
genetic operators. The comparison of IER values is plotted
in Figure 13. Overall, GNP_uniform achieves 40% IER value,
which means that 40% evolution actions are invalid, resulting
meaningless evolution. Meantime, GNP_simplified endorses
the largest possibility to reduce the invalid evolution, where

FIGURE 13. Comparison of IER values in Tileworld under different ST
values.

only 6% evolution actions are invalid. The reason is straight-
forward as discussed in section III, that simplified mutation
can completely avoid the invalid evolution, and simplified
crossover can at least 50% reduce the problem.

In addition to the invalid evolution issue, another advantage
of GNP_simplified refers to the negative evolution prob-
lem. As discussed in section II-E.2, when the untransited
branches which were activated in the previous generations are
evolved, the frequent breakage of BBswould appears to result
in negative evolution. To quantitatively analyze this issue,
we measure negative evolution rate (NER, Definition 5) of
each algorithm for comparison. The comparison of NER val-
ues is plotted in Figure 14. Overall, 20.6% evolution actions
of GNP_uniform are negative (average NER = 20.6%).
Meantime, GNP_simplified significantly reduces this value
to only 3.1%.

VOLUME 6, 2018 43287

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

FIGURE 14. Comparison of NER values in Tileworld under different ST
values.

FIGURE 15. Change of search dimensions in Tileworld under different ST
values.

Furthermore, GNP_simplified tends to reduce the search
dimensions (defined by the evolvable branches) comparing
with GNP_uniform (Definition 1 and 6). GNP_uniform treats
all branches of the directed graph as the search dimensions,
regardless of whether they are transited or not. On the other
hand, GNP_simplified only evolves the activated branches
of the directed graph, which are adaptively changed gener-
ation by generation. Accordingly, GNP_simplified is capable
of significantly reducing the search dimensions, so that the
evolution power is biased towards recombining the experi-
enced sub-graphs, allowing higher evolution ability and effi-
ciency. As shown in the experiments of Tileworld (Figure 15),
the proposed algorithm reduce the search dimensions from
220 to 135 (38.6% reduction).

2) ANALYSIS OF COMPUTATION TIME
Finally, we compare the computation time between
GNP_uniform and GNP_simplified in Table 8. The experi-
ments are performed in Tileworld testbed on a PC with Intel
Core i7 running at 3.40GHz with 8 GB RAM. The complier
is Visual Studio 2012 of Windows 10.

GNP_simplified enforces the evolution actions within
the activated, experienced branches, resulting in the
reduction of search dimensions. This explicitly brings
the advantage of requiring less computation time than

TABLE 8. Comparison of computation time in Tileworld.

the traditional GNP_uniform. The results show that
GNP_simplified achieves 31.1% acceleration rate comparing
with GNP_uniform.

F. DISCUSSIONS
Considering the experimental studies in maze problems and
Tileworld as a whole, the proposed GNP_simplified is proved
to achieve better evolution results (higher fitness results) and
faster search speed (fewer RFEs) comparing with traditional
GNP_uniform and the state-of-the-art algorithms of LCS,
EAs, and RL. The detailed analysis of evolution behavior
demonstrates that

• The invalid evolution and negative evolution prob-
lems are widespread when evolving the directed graphs
of GNP.

• Based on the quantitative studies, it is empirically
proved that uniform genetic operators result in seri-
ous invalid evolution and negative evolution problems
(IER = 40.0% and NER = 20.6% in Tileworld).

• By explicitly taking the ‘‘transition by necessity’’ fea-
ture into account, simplified genetic operators achieve
the significant reduction of invalid/negative evolution
(IER = 6.0% and NER = 3.1% in Tileworld).

• With the proposal of simplified genetic operators,
the search dimensions of GNP are significantly reduced,
resulting the simplification of evolution and reduction of
computation time.

• All the experimental results provide empirical evidence
to support the theoretical analysis presented in this
paper.

V. CONCLUSIONS
GNP distinguishes itself from the vast majority of EAs by
its unique directed graph structure. However, the systematic
and theoretical studies with respect to this issue are rela-
tively unexplored in the literature. In this paper, we present a
detailed study of GNP from both of theoretical and empirical
viewpoints: 1) We explicitly reveal the ‘‘transition by neces-
sity’’ feature of GNP’s directed graph; 2) We proved that
when ignoring this feature, uniform genetic operators tend
to cause serious problems of invalid evolution and negative
evolution. Following our discovery, simplified genetic opera-
tors are developed, which only evolve the activated/transited
branches of GNP. We theoretically prove that our proposal
is capable of reducing the effect of invalid/negative evo-
lution. Meantime, the empirical studies in two benchmark
testbeds —maze problems and Tileworld — demonstrate the
effectiveness and superiority of our proposal over the state-
of-the-art algorithms.

43288 VOLUME 6, 2018

X. Li et al.: Revisiting GNP: Toward the Simplified Genetic Operators

The primary target of this work is to develop specific
genetic operators of GNP. However, it is expected that sim-
plified genetic operators can be considered as a general and
suitable strategy for GNP evolution due to its clear inspiration
and simple implementation. Therefore, the future work will
be to explore this study to the wide range of GNP variants and
their real-world applications.

REFERENCES
[1] J. H. Holand, Adaptation in Natural and Artificial Systems. Ann-Arbor,

MI, USA: Univ. Michigan Press, 1975.
[2] N. Hansen, ‘‘The CMA evolution strategy: A comparing review,’’ in

Towards a New Evolutionary Computation (Studies in Fuzziness and Soft
Computing), vol. 192. Berlin, Germany: Springer, 2006, pp. 75–102.

[3] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, ‘‘Comprehensive
learning particle swarm optimizer for global optimization of multimodal
functions,’’ IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[4] S. Das and P. N. Suganthan, ‘‘Differential evolution: A survey of the state-
of-the-art,’’ IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31, Feb. 2011.

[5] J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[6] A. Blanco, M. Delgado, and M. C. Pegalajar, ‘‘A real-coded genetic
algorithm for training recurrent neural networks,’’ Neural Netw., vol. 14,
no. 1, pp. 93–105, 2001.

[7] D. H. Wolper and W. G. Macready, ‘‘No free lunch theorems for optimiza-
tion,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, Apr. 1997.

[8] A. E. Teller and M. Veloso, ‘‘PADO: Learning tree structured algorithms
for orchestration into an object recognition system,’’ Dept. Comput. Sci.,
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-95-
101, 1995.

[9] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu, and J. Murata, ‘‘Comparison
between genetic network programming (GNP) and genetic programming
(GP),’’ in Proc. Congr. Evol. Comput., May 2001, pp. 1276–1282.

[10] J. F. Miller, ‘‘Cartesian genetic programming,’’ Natural Comput., vol. 10,
no. 2, pp. 17–34, 2011.

[11] S. Mabu, K. Hirasawa, and J. Hu, ‘‘A graph-based evolutionary algorithm:
Genetic network programming (GNP) and its extension using reinforce-
ment learning,’’ Evol. Comput., vol. 15, no. 3, pp. 369–398, 2007.

[12] X. Li, S. Mabu, and K. Hirasawa, ‘‘A novel graph-based estimation of
the distribution algorithm and its extension using reinforcement learning,’’
IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 98–113, Feb. 2014.

[13] K. Hirasawa, T. Eguchi, J. Zhou, L. Yu, and S. Markon, ‘‘A double-deck
elevator group supervisory control system using genetic network program-
ming,’’ IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 4,
pp. 535–550, Jul. 2008.

[14] X. Li and K. Hirasawa, ‘‘Continuous probabilistic model building genetic
network programming using reinforcement learning,’’ Appl. Soft Comput.,
vol. 27, pp. 457–467, Feb. 2015.

[15] Y. Chen, S. Mabu, and K. Hirasawa, ‘‘A model of portfolio optimization
using time adapting genetic network programming,’’ Comput. Oper. Res.,
vol. 37, no. 10, pp. 1697–1707, 2010.

[16] S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa, ‘‘An intrusion-
detection model based on fuzzy class-association-rule mining using
genetic network programming,’’ IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., vol. 41, no. 1, pp. 130–139, Jan. 2011.

[17] H. Katagiri, K. Hirasawa, J. Hu, and J. Murata, ‘‘Comparing some
graph crossover in genetic network programming,’’ in Proc. SICE Conf.,
Aug. 2002, pp. 1263–1268.

[18] X. Li, W. He, and K. Hirasawa, ‘‘Genetic network programming with
simplified genetic operators,’’ in Proc. Int. Conf. Neural Inf. Process.
Berlin, Germany: Springer, 2013, pp. 51–58.

[19] S.W.Wilson, ‘‘Classifier fitness based on accuracy,’’Evol. Comput., vol. 3,
no. 2, pp. 149–175, 1995.

[20] M. E. Pollack and M. Ringuette, ‘‘Introducing the tile-world: Experimen-
tally evaluating agent architectures,’’ in Proc. AAAI, 1990, pp. 183–189.

[21] T. Eguchi, K. Hirasawa, J. Hu, and N. Ota, ‘‘A study of evolution-
ary multiagent models based on symbiosis,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 1, pp. 179–193, Feb. 2006.

[22] D. B. Fogel, ‘‘An introduction to simulated evolutionary optimization,’’
IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 3–14, Jan. 1994.

[23] R. Poli, ‘‘Parallel distributed genetic programming,’’ School Comput. Sci.,
Univ. Birmingham, Birmingham, U.K., Tech. Rep. CSRP-96-15, 1996.

[24] J. F. Miller and P. Thomson, ‘‘Cartesian genetic programming,’’ in Proc.
Eur. Conf. Genetic Program., 2000, pp. 121–132.

[25] K. Hirasawa, M. Ohbayashi, S. Sakai, and J. Hu, ‘‘Learning Petri network
and its application to nonlinear system control,’’ IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 28, no. 6, pp. 781–789, Dec. 1998.

[26] R. Collin and R. Cipriani, ‘‘Dollo’s law and the re–evolution of shell
coiling,’’Roy. Soc. London B, Biol. Sci., vol. 270, no. 1533, pp. 2551–2555,
2003.

[27] X. Li and G. Yang, ‘‘Artificial bee colony algorithm with memory,’’ Appl.
Soft Comput., vol. 41, pp. 362–372, Apr. 2016.

[28] M. V. Butz and S. W. Wilson, ‘‘An algorithmic description of XCS,’’ Soft
Comput., vol. 6, nos. 3–4, pp. 144–153, 2002.

[29] H. Williams, W. N. Browne, and D. A. Carnegie, ‘‘Learned action SLAM:
Sharing slam through learned path planning information between hetero-
geneous robotic platforms,’’ Appl. Soft Comput., vol. 50, pp. 313–326,
Jan. 2017.

[30] M. V. Butz, D. E. Goldberg, and P. L. Lanzi, ‘‘Gradient descent methods
in learning classifier systems: Improving XCS performance in multi-
step problems,’’ IEEE Trans. Evol. Comput., vol. 9, no. 5, pp. 452–473,
Oct. 2005.

[31] M. V. Butz, ‘‘XCSJava 1.0: An implementation of the XCS classifier
system in Java,’’ Illinois Genet. Algorithms Lab., UIUC, Champaign, IL,
USA, Tech. Rep. 2000027, 2000.

[32] R. Poli, W. Langdon, and N. McPhee. (2008). A Field Guide to Genetic
Programming (With Contributions by JR Koza). [Online]. Available:
http://lulu.com

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[34] S. Luke, ‘‘ECJ then and now,’’ in Proc. Genetic Evol. Comput. Conf.
Companion, 2017, pp. 1223–1230.

XIANNENG LI received the B.E. degree from
Nanjing University, China, in 2008, and the Ph.D.
degree from Waseda University, Japan, in 2013.

From 2013 to 2015, he was a JSPS Post-
DOCTORAL Research Fellow and a Researcher
(Lecturer) with Waseda University. He is cur-
rently an Associate Professor with the Faculty
of Management and Economics, Dalian Univer-
sity of Technology, China. He has authored over
40 papers in international journals and confer-

ences. His current research interest includes evolutionary computation, trans-
fer learning and their applications on control problems, data mining, and
e-commerce.

Dr. Li is currently an Editorial Board Member of Applied Soft Computing
journal, a referee of over 10 international journals, and a PC member of over
20 international conferences.

HUIYAN YANG received the B.E. degree from
Inner Mongolia University, China, in 2016. She is
currently pursuing the M.E. degree with the Fac-
ulty of Management and Economics, Dalian Uni-
versity of Technology, China. Her current research
interest includes evolutionary computation and its
applications on control problems.

MEIHUA YANG received the B.E. degree from
the University of Science and Technology Beijing,
China, in 2017. She is currently pursuing the M.E.
degree with the Faculty of Management and Eco-
nomics, Dalian University of Technology, China.
Her current research interest includes machine
learning and its applications on data mining.

VOLUME 6, 2018 43289

	INTRODUCTION
	REVISITING GENETIC NETWORK PROGRAMMING (GNP)
	INDIVIDUAL REPRESENTATION: DIRECTED GRAPH
	COMPARISON WITH THE EXISTING GRAPH-BASED EA
	TRANSITION BY NECESSITY
	EVOLUTIONARY MECHANISM OF GNP
	PROBLEM DESCRIPTION
	INVALID EVOLUTION PROBLEM
	NEGATIVE EVOLUTION PROBLEM

	SIMPLIFIED GENETIC OPERATORS OF GNP
	EXPERIMENTAL STUDY
	BENCHMARK TESTBEDS
	MAZE PROBLEMS
	TILEWORLD
	COMPARISON METRICS

	EXPERIMENTAL STUDIES ON MAZE PROBLEMS
	STUDIED ALGORITHMS AND PARAMETER CONFIGURATION
	RESULTS AND ANALYSIS

	EXPERIMENTAL STUDIES ON TILEWORLD
	STUDIED ALGORITHMS AND PARAMETER CONFIGURATION
	RESULTS AND ANALYSIS

	GENERALIZATION PERFORMANCE
	DETAILED ANALYSIS OF GNP_SIMPLIFIED
	ANALYSIS OF EVOLUTION BEHAVIOR
	ANALYSIS OF COMPUTATION TIME

	DISCUSSIONS

	CONCLUSIONS
	REFERENCES
	Biographies
	XIANNENG LI
	HUIYAN YANG
	MEIHUA YANG

