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ABSTRACT A port-controlled Hamiltonian (PCH) control approach is presented to solve the position
tracking problem of gantry robot based on induction motor (IM) drives. First, a robot model is established.
Second, a PCH controller is designed to realize accurate position tracking of a gantry robot. For IM drives,
it is convenient to choose a direct torque control strategy based on the sliding mode control, which overcomes
the higher ripples of torque and flux. Third, a voltage reconstruction technique is introduced to calculate the
stator voltage of the IM, which replaces the stator voltage measurement of the IM. Finally, the load torque
observer is developed to estimate an unknown load torque. The asymptotic stability of the robot system is
proved by the Lyapunov stability theory. Simulation results indicate that the system has excellent position

tracking performances and load disturbance attenuation ability.

INDEX TERMS Gantry robot, port-controlled Hamiltonian, induction motor, sliding mode control, load

torque observer.

I. INTRODUCTION

The gantry robot is widely used in industry applications. The
techniques of robots control are well treated in the literature,
such as back-stepping control [1], adaptive Neuro-sliding
mode control [2]. The back-stepping controller generates the
desired control force on the mechanical subsystem. The adap-
tive Neuro-sliding mode control method has a good steady
tracking accuracy without chattering in the control signal.
The position tracking issues of the robots are increasingly
being concerned [3], [4]. Some simple methods are emploied
to position control of robots, such as gravity compensation [5]
and proportion differentiation (PD) control [6]. While the
fixed parameters of PD control can not adapt the variability of
system. Sometimes robot manipulators are difficult to estab-
lish an accurate mathematical model due to robot’s uncer-
tainties and nonlinear characteristics [7]. For this reason,
a large number of intelligent control strategies are applied to
the gantry robot drive systems. For instance, adaptive neural
network [8], [9], adaptive fuzzy neural network [10], and
RBF neural network [11]. But the intelligent control relies on
numerous programming languages that are complex and cum-
bersome. Note that the Port-Controlled Hamiltonian (PCH)

control has attracted lots of attentions and is widely applied
to the nonlinear systems [12], [13]. The dynamics model of
gantry robot can also be viewed as a PCH system and then
the PCH controller can be obtained by damping injection and
energy-shaping [14], [15]. So the PCH controller is designed
to realize accurate position tracking of gantry robot.

For the drive systems of gantry robot, the induction
motor (IM) is broadly used in servo systems since it has the
advantages of low price and ruggedness. Therefore, the IM is
suitable for the application in the robot. Field oriented con-
trol (FOC) and direct torque control (DTC), appear to be very
convenient for good dynamic response. The DTC strategy
based on hysteresis controllers and lookup switching table
has more advantages such as fast response and less depen-
dence to the parameters of IM. However, the main problems
of DTC are the high torque and flux ripples, as well as the
variable switch frequency, which increase control difficulty
in low speed regions [16], [17]. Nowadays, there are different
approaches being used to cope with these disadvantages.
In [18], a multilevel converter is provided to reduce the rip-
ples. Nevertheless, the number of power switches is increased
which causes the lower efficiency of the control system.
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The model predictive control (MPC) also has the ability to
determine a suitable voltage vector which can reduce the
ripples [19]. Nevertheless, the high complexity of the control
law is the main drawback of MPC. For IM drives, it is
convenient to choose direct torque control (DTC) strategy
based on the sliding mode control (SMC), which overcomes
the higher ripples of torque and flux, as well as the variable
switch frequency. The sliding mode control (SMC) has good
robustness and fast response, thus it can be designed to con-
trol the torque and flux of IM. According to [20] and [21],
the torque and flux sliding mode controllers are developed
to reduce the ripples. Then, a sliding mode direct torque
control (SM-DTC) strategy is presented to the control of
the IM. The robot control combined with motor control is
closer to the actual industry application. And the torque is the
connection between the robot and induction motors. At the
same time, the desired torque obtained from PCH controller
can be the input of induction motors directly instead of the
torque current conversion in vector control. The contributions
of the article are:

(1) The PCH control scheme is developed to enhance the
position tracking performance of gantry robot.

(2) Compared with [22] and [23], a novel DTC strategy
based on the sliding mode control is investigated which
decreases the torque and flux ripples. At the same time,
a voltage reconstruction technique is proposed to calculate the
stator voltage, which replaces the stator voltage measurement
of the IM.

(3) The robot system has good load disturbance attenuation
performance by introducing the load torque observer.

(4) The robot control combined with motor control is
closer to the actual industry application. The whole system
is asymptotically stable based on Lyapunov stability theory.

Il. MODEL OF GANTRY ROBOT SYSTEM

A. KINEMATICS AND DYNAMICS MODELS

OF GANTRY ROBOT

The gantry robot has three axes, where x, y axis are in the
horizontal plane, and z axis is vertical to the horizontal level.
Three axes are perpendicular to eath other. The IM is chosen
as the drive motor. The robot model is shown in Fig.1 and
base coordinate system is set at point *0’.

FIGURE 1. The model of gantry robot.

The kinematics model can be presented as

X d. /2w 0 0 qx
y = 0 dy/2m 0 gy (1)
z 0 0 d,/2n q;
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where g = [ gx gy 4: ]T, d; are the angular position and gear
rotation radius of load shaft, respectively, i = x, y, z.
The drive structure of i-axis is shown in Fig.2.

FIGURE 2. The drive structure of i-axis.

where i = x,V, z, Jgi, J; are the inertia moments of motor
and load, respectively. t;, T; are the torque of motor and load,
respectively. 6;, g; are angular positions of motor and load,
respectively. r;, rp; are the friction coefficients of motor and
load, respectively. k; is the reduction ratio between motor and
load. Thus, the dynamics equation of i-axis between motor
and load is calculated as follows

ai + Jik{ )i + (i + ik )6; = ;. @
The robot dynamics model can be described as
M@©) +C6,6)6 +R6 +G =1 3)

where 0, é, §are3 x 1 angular position, velocity and accel-
eration vectors, respectively, M (6) is a3 x 3 positive definite
and symmetric mixed inertia matrix, G is a 3 x 1 gravity
torque vector, T represents a 3 x | input torque and T =
[ 7 ‘L'Z]T, Ry is friction coefficient, C(0,6) is a 3 x 1
matrix of centripetal and Coriolis forces.

M©) = diag {Jux + k2, Juy + 2 Tz + 12,
Ry = [I’x + mekf ry+ rmyk)% Tz + szkg]T,
G =[00 mgkd,/2m)]", C@©,6)=0.

B. THE MATHEMATICAL MODEL OF THE IM

The model of the IM can be expressed in «f frame. It is
expressed as [24]

; o _RsiLri +RriLsil. i+ Rri)\sai +
sai —O' Lsi L”_ sl rilsBi —O‘ Lsi Lri
Wrikspi | Usai

b R R Riik
: silri + Ryilsi | . rilsBi
Isgi = ——————Ispi + Wrilsai + -
sBi ' .O'LSjL”' spPi rilsai oLl
O, Uspi 4
oLy oLy
).\soti = Usqi — Ryilsai
)\sﬂi = Uspi — Rsiisﬂi

. T TLi
0= —— —

. i T
0; = w;
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where iy, isg; are stator current components, respectively,
Asai> Asgi are stator flux components, respectively, Ry;, R,; are
stator and rotor resistances, respectively, Lg;, %r,- are stator and
rotor inductances, respectively, o = 1 — Lf,-'i",,- is Blondel’s
coefficient, L,,; is the mutual statorrotor inductance, J; is
inertia moment, 6;, w; are the angular position and velocity,
respectively. The i is a subscript and i = x, y, z.
The electromagnetic torque can be presented as

T = np()\saiisﬂi - )\S,Biisoti) (5)
qi = kit; 6)

where n,, is the number of pole pairs.

Ill. CONTROLLER DESIGN

A. GANTRY ROBOT CONTROL SYSTEM

According to inverse kinematics and dynamics model of
robot, the whole servo control system of robot is shown
in Fig.3. A§,, A}, and A7, are the constant fluxes refer-
ence (0.8Wb). After the desired position (x*, y*, z*) is given,
the reference angle position (g5, g, ¢;) of robot is obtained
by inverse kinematics. Then the reference torque 7, 7 and
7} can be calculated by PCH controller which is designed
based on position errors. Finally, the SMC strategy based on
torque and flux errors is developed to motor control subsys-
tems.

q, X-axis

*
T, motor 6
PCH controller —
= - control

q, ﬂ.'\ ——| subsystem

X * .
—> — T y-axis —>  —
y' | fverse Y ‘motor y Gantry
—»| kinema > »
z fics e control robot
—> i L, — subsystem —
* *
q. T saxis | g
— = motor z
PCH controller —
. control
q. AL —— subsystem

=

FIGURE 3. Gantry robot control system schematic diagram.

”{kH}:l

° | svPwM Tnverter —
o

FIGURE 4. The DTC of IM based on SMC.

B. THE I-AXIS CONTROL SYSTEM
The i-axis control system of the robot is expressed in Fig.4.
On the one hand, the SMC is designed as inner loop controller
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to decrease the ripples of torque and flux. On the other
hand, a PCH controller is applied as position regudation.
What’s more, a load torque obsever is added to ri* and then
1,';6 = Ti* + 7.

C. PCH CONTROLLER DESIGN
To improve the position tracking performance, the PCH con-
trol strategy is introduced. Then the energy shaping and
damping injection methods are proposed to obtain the torque
for the IM.

Define p = M(0)6 as system momenta, n = [9 p ]T as the
state vector, then § = M_l(é‘)p and V(n) = m,gk.d.0,/(2r).
The Hamiltonian system of the robot is expressed as

1 _
H(n) = Zn" M~ O)n + V(). (7
The Hamiltonian system of gantry robot is shown in the
following [25]
9H (n)
an

where R represents the dissipation, the interconnection struc-
ture is captured in matrix g(n) and the skew-symmetricmatrix
J=-JT.

J=—JT=[_OI (I)} R=[8 I?f],g(n):[() .

Let the desired Hamiltonian function of robot system as
follows

W= -R)

+e(mr ®

_1 _ T —1 ok l _ *\2
Hd(’?)—z(’? n) M, (0)n n)+2p(n n)" )

where, M(0) = My (6) = MdT(G) > 0,and V; (n — n*) =
% p (n —n*)? represents the potential energy function, p(>
0) is a parameter. Thus V; (n — n*) has an minimum at the
desired equilibrium point n* = [ 6* O]T

0* = argmin V;(n — n™). (10)

The desired closed-loop Hamiltonian system can be
described as

aH ()
an

where, K, is the designed parameter, the desired interconnec-
tion matrix and damping matrix are

0 I 00
et =[] et o[3 2]

The PCH position controller is obtained from Eq.(8) and
Eq.(11), that is

n=(a—Ra)

Y

oH

J-R) a(”) + g0t
n

0H,
— (s —Ry) 8d(fl)
n
o [aHm) J M o) aHd(m] .
30 ap 30 ap
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therefore, 7,7, ty* and 7 can be calculated as follows

KV X
ax + JOk?
___Kpy
ay + Jy)k?
Kyp:
Jaz + J)k?

TF = (r + rmk?)0: — p(6F — 62) —

T} = (ry + rmk})by — p(6; — 6))
. m,gkd,
¢ 2

q;k = kiei* s

+(rz+rmkl~2)éz_p(9;_ez) -

qi =kib;, i=x,y,z.

Define V| = Hy (n) as the Lyapunov function, the deriva-
tive of V; along trajectories of Eq.(11) can be written as
follows

) OH, T 9H, T 9H,
v, :< d(ﬁ)) 7'7=—( d(ﬂ)) (Jd—Rd)( d(ﬂ))

an an an
9H, T OH,
_ a(1) R, a(1) <0. (13)
an an
if p = o then 4@ _ o g¢ ZHe >

According to LaSalle’s invariance set principle, when
T
{77 eR" <3Hg (")) Ry (aHgn(")) = O} , the PCH position

1
subsystem is asymptotically stable at the desired equilibrium
point n*.

D. LOAD TORQUE OBSERVER DESIGN
In order to estimate the unknown load torque, the load torque
observer is developed [26] ,[27].

When the load torque is known and constant, from Eq.(4)
we get

0 = w;

LT ;

wi_z_% (14)
‘fLi—O

However, the load torque is uncertain in actual indus-
try applications. Thus, a load torque observer equation is
designed as

0 = w;+ki(6; — 6)

A Ut 7)

wp =5 -t k2i(0; — 0;) (15)
. i N

T = k3i(0; — 6))

where, ki;, ka;, k3; are designed parameters. Define éi =0,—
éj,d),’ = w; — (f),', ‘EL,' = TLi — fL,' and w = [é, 5)1- fLi]T as
the estimated errors and state error vector, respectively. The
error equation of observer has the form

w = Aw (16)
where
—k;; 1 0
A= | —ky 0 _Jli
—k3; O 0
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The positive Lyapunov function can be indicated in the
following

Vo =wl Pw (17)

where P is a positive definite matrix. By the Lyapunov equa-
tion ATP + PA = —Q (Q = diag{111}), P can be
calculated as follows
Jikai 1
2k3; + 2k1ikoiJ; 2k3; + 2kyikoid;
P= 0 S E— 0
2k3i + 2k1ikaid; &

(k3 + 2k1ikoiJksi

2ka; + 2kyikoiJ;
we can get kj; > —%,kzl- > 0,k3; < O by judging

|Pl11 > 0, |P]y > 0, |P|33 > 0so that P is a positive definite
matrix. Therefore, we have

Vs < 0. (18)

According to the Lyapunov stability theorem, the load
torque observer subsystem can be asymptotically stable. Thus
when 77; is unknown, 77; can replace 7z;. The characteristic
equation of Eq.(16) is given as

3 4 kyis? + kais — kai/J; = 0. (19)

All the poles of the observer are set to be s = 5o = 53 =
sp (< 0) by selection of parameters as

kii = —=3sp, ko= 3S12), k3; = ./,'S?,.

E. VOLTAGE RECONSTRUCTION

The stator voltage reconstruction strategy based on DC
voltage and inverter switch signal is proposed [28], which
replaces the stator voltage measurement of the IM. In Fig.5,
the state of each switch in the inverter is shown by
S1, 82, 83, S4, S5, ¢ and uge is measurable. When the upper
bridge switch is turned on, s;=1 (or s7,s3 ), the lower
bridge switch is turned on, s;=0 (or s3, s3), therefore the
two switches of the same bridge are on alternatively. Then,
applying SVPWM signal transformation principle, we can
get six pulses which are used to control the power converter
to provide the desired three-phase voltages. The different
instantaneous values u,, up, i can be obtained by selecting
different switch variables s, s> and s3.

The state average model of the inverter is showed as

Ug = %(231 — 52 —83)
3
Udc

up = T(232 — 51— 53) (20)
Udc

Ue = T(2S3 — 51 —82)

The stator voltage in o frame is

| 1 1 .
Usy 2 _5 _5 4
N el ) 21
[”Sﬂ} 3y V3 Y3 e b
2 2 ¢
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FIGURE 5. Inverter and motor block diagram.

The reconstructed stator voltage can be calculated by
Eq.(21). The stator flux amplitude and phase angle are cal-
culated as follows

Asai = f (tsqi — Ryilsei)dt
Aspi = [ (uspi — Ryiispi)dt

22 .2 2 (22)
)Lsi - )\'S()li + )legi
@ = arctan(Agg;/ Asgi)-
The estimated electromagnetic torque is given as
T = np(Asailspi — Asilsai)- (23)

F. SMC DESIGN

To simplify the design of the SMC controllers [29], [30],
the errors of the torque and flux are taken as their sliding
surfaces, respectively.

sli=el=7T— T (24)
spi = exi = Ayt — A% (25)
the derivatives of Eq.(24) and Eq.(25) are expressed as

follows

S‘li = 7»';5 - npi[).”saiisﬂi + }\saiisﬁi - isﬁiimi - )\sﬁiisai]
i'l‘?) - npi[A + wri(isqirsai + ixﬂiksﬁi)

RsiLyi + RyiLgi . Wyi 9
W(lmiksﬂi - lsﬂi)»sai) - Esikﬂ']
(26)
5‘21' = )\321* - )uf, = )\?l* — 2B+ 2Rsi(l.sozi)\sai - l‘sﬁi)"sﬁi)
(27)
where
. Aspi Aswi
A= (lsﬂi - iﬂ;)usai + (ia:, - lsai)usﬁh

B = ugyirsai + usﬂi)\sﬁb

The exponential reaching laws of sliding mode controller
are designed as

§1; = —c1iS1; — €1:58n(s1;) (28)
§2i = —C2i82i — £2i58N(52;) (29)

where cy;, €1, ¢2i, €2; > 0.
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According Eq.(26), Eq.(27), Eq.(28) and Eq.(29), the value
of A, B can be calculated below

c1is1i + e1i5gn(si) + ¢

A= l’l — wyi(isqitsai + isﬂiksﬂi)
14
RsiLyi + RyiLyi . . Wri 9
- W(lmi}\sﬂi - lsﬂi)\soti) + m)\xiv (30)
2i82; 4 €2isgn(s27) + A2 . )
B = S : ) l = + Ryi(isqitrsai — lsﬂi)\sﬁi)~

€1y

The sliding mode controller can be calculated by Eq.(30)
and Eq.(31)

* ULsi)&sﬂiA — (Asai — 0 Lgilsqi)B

set 0 Lsi(isgirspi — Lsairsai) — xfi ’
W = 0 LsidsoiA — (0 Lsiisgi — Aspi)B 33
w )‘?i — 0 Lyi(isqirsai + Espitspi)

(32)

To prove the asymptotic stability of the sliding mode sub-
system, define s = [sy; s7i 17 as the state vector and let
V3 = %sTs be the Lyapunov function. Therefore the deriva-
tive of V3 is calculated in the following

Vs = 575 = —[s11 5] |:C1i51i+31i58n(51i):|

C2i82; + £2i5gn(52;)
2 2
= —c1;87; — €1i58n(817)S1; — C2i85; — €2iS8N(52;)82i

2 2
—c1;87; — €1i |81l — c2is5; — €2i 1s2il < 0 34

A

if and only if s1; = s9; = 0, V3 = 0, thus the sliding mode
subsystem is asymptotically stable.

G. STABILITY ANALYSIS

The Lyapunov function of whole system is chosen as V, and
V = Vi1 4+ V2 4+ V3. According to Eq.(13), Eq.(18), Eq.(34),
and based on the Lyapunov stability theory, then V' > 0,
V < 0, thus the whole system is asymptotically stable.

IV. SIMULATION RESULTS

The simulations are carried out with the following parame-
ters of induction motor and robot: R, = 0.964192, R, =
0.93766%2, L, = 6.43858mH, Ly = 6.08925mH, n, = 2,
L, = 59mH, P, = 1.5KW, U, = 220V, and m; = 1lkg,
ri=001, rp = 0.1, Jyj = 0.03kg.m?,J; = 0.1kg.m?,
di = 0.5cm, k; = 10 and the robot operating space is
(3x3 x3)m. The parameters of PCH and SMC controllers are
KV = 2, p = 2,C1i = 40000, o = 3000, E1i = 1,82,‘ =1.
The parameters of PD control are K, = 40, Kp = 3.

Case 1: The (0,0,0) and (Im, 1.2m, 1.4m) are initial and
desired positions, respectively. In this case, 2N.m load torque
is inserted at t=0s and then 10N.m load torque is added at
t=2s. Fig.6 to Fig.15 give the position tracking performance
of robot and the responses of the IM. It can be seen from
Fig.6 and Fig.7 that the proposed PCH and SMC meth-
ods have better position tracking performance. Moreover,
Fig.8 and Fig.9 show the speed responses of robot. It is
obvious that PCH and SMC can keep better speed responses

VOLUME 6, 2018
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FIGURE 6. Position curves of PD and hysteresis control.
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FIGURE 7. Position curves of PCH and SMC control.
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time(s) FIGURE 11. Electromagnetic torque curves of PCH and SMC control.

FIGURE 8. Speed curves of PD and hysteresis control.

than PD control. From Fig.11, we can know that the proposed control via Fig.12 when the IM moves with a constant veloc-
PCH and SMC controllers have good torque dynamics. The ity. Fig.13 presents that the reconstructed stator voltage can
stator flux has better performance than traditional hysteresis replace the measured stator voltage. At t=2s, different sp
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FIGURE 12. Flux « curves.
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FIGURE 13. Voltage reconstruction curves.
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FIGURE 14. Load torque observation curve.
values (sp = —100,sp = —60,sp = —40) are added to

the load torque observation, Fig.14 illustrates that there is
a better unknown load torque tracking performance when
sp = —100. Finally, Fig.15 show that the PCH and SMC
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FIGURE 15. Space motion trajectory.
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FIGURE 17. Position curves of PCH and SMC control.

strategies have smoother trajectories than classical PD and
hysteresis control.

Case 2: A trapezoidal position signal is applied to the
robot. Before t=1s the space position is (Im, 1.2m, 1.4m),
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FIGURE 18. Speed curves of PD and hysteresis control.
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FIGURE 19. Speed curves of PCH and SMC control.
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FIGURE 20. Space motion trajectory of PD and hysteresis control.

then at t=1s steps to (2m, 2.4m, 2.8m), at t=2s back to
(1m, 1.2m, 1.4m). Fig.16 to Fig.19 show that PCH and SMC
have better position and speed responses. Fig.20 and Fig.21
present that PCH and SMC strategies have smoother

trajectories.

VOLUME 6, 2018

(11.2,1.4)

0.8
0.4 4
0 -
2.4
4 61.29
'50.4 0 0 0.5 1 1.5
y /m x Im

FIGURE 21. Space motion trajectory of PCH and SMC control.
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x-axis
y-axis
1.5 - z-axis
—_ // — — —x*-axis
E, 1 — — —y*-axis
g‘ 0.5 z*-axis
£ os|)
2
= 0
5
s 05
8
o -
1.5 ~7
2
0 1 2 3 4
time(s)

FIGURE 23. Position curves of PCH and SMC control.

Case 3: x* = sin (%”t)rad,y* = sin (%”t + E)rad 7" =
sin (%’Tt + 5)rad, which are periodic reference signals.
Fig.22 to Fig.25 express the curves of position tracking,
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FIGURE 25. Space motion trajectory of PCH and SMC control.

space motion trajectory. From Fig.22 to Fig.23, the reference
position is tracked by actual position, which shows that the
PCH and SMC control strategies have excellent performance.

V. CONCLUSION

In view of gantry robot systems, a novel method of PCH and
SMC is developed in this paper. The PCH controller is pro-
posed by damping injection and energy-shaping. The desired
equilibrium point is also determined. With the designed
PCH controller, the gantry robot position control is achieved.
For the drive systems of gantry robot, the DTC strategy
based on SMC is applied to the IM drive systems, which
reduces the torque and flux ripples. Moveover, the robot has
good disturbance attenuation ability by introducing the load
torque observer. Simulations show that the proposed control
methods have good position tracking performance and fast
speed responses under various conditions. In the future work,
we will pay attention to the practical application of the pro-
posed control strategy.
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