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ABSTRACT 3-D hand pose estimation is an essential problem for human–computer interaction. Most of
the existing depth-based hand pose estimation methods consume 2-D depth map or 3-D volume via 2-D/3-D
convolutional neural networks. In this paper, we propose a deep semantic hand pose regression network
(SHPR-Net) for hand pose estimation from point sets, which consists of two subnetworks: a semantic
segmentation subnetwork and a hand pose regression subnetwork. The semantic segmentation network
assigns semantic labels for each point in the point set. The pose regression network integrates the semantic
priors with both input and late fusion strategy and regresses the final hand pose. Two transformation matrices
are learned from the point set and applied to transform the input point cloud and inversely transform
the output pose, respectively, which makes the SHPR-Net more robust to geometric transformations.
Experiments on NYU, ICVL, and MSRA hand pose data sets demonstrate that our SHPR-Net achieves
high performance on par with the start-of-the-art methods. We also show that our method can be naturally
extended to hand pose estimation from the multi-view depth data and achieves further improvement on the
NYU data set.

INDEX TERMS Human computer interaction, hand pose estimation, deep learning, machine learning, point
cloud.

I. INTRODUCTION
Fast and accurate 3D hand pose estimation is an essen-
tial technique for human computer interaction and vir-
tual/augmented reality [1], since it provides foundational
skeleton information for hand gesture recognition [2], [3]
and hand interaction [4]. As the wide availability of com-
mercial depth cameras such as Microsoft Kinect [5] and Intel
Realsense [6], depth-based hand pose estimation has attracted
much research interest in the last decade [7]–[22].

Depth-based hand pose estimation has advanced signifi-
cantly recently, especially due to the successful application
of deep learning. Most existing methods [7], [8], [10]–[13]
treat depth maps as images with one channel and feed them
into a 2D convolutional neural networks (CNN). However,
mapping a 2D depth image to 3D joint coordinates is a highly
challenging learning task due to the disparate domains of
input and output. Recent studies [9], [19], [23] convert depth
images into volumetric representations and utilize 3D CNNs
to estimate hand pose. This tends to be more efficient to

capture the geometric properties of depth maps and eases
the burden of network learning. Yuan et al. [22] obtained
the observations that 3D representations outperform 2D depth
maps by comparing tens of state-of-the-art methods in Hands
In the Million (HIM 2017) challenge [24]. However, 3D vol-
umetric representations bring potential quantization artifacts
and require large memory for high voxel resolution.

Point cloud is a set of points represented by coordinates and
it is more simple yet effective representation for depth data.
In this manner, the input point set and the output hand pose
share the same domain of representation, which can benefit
the learning of mapping input data to output pose. Driven
by latest PointNet [25] and PointNet++ [26] that achieve
impressive performance on object classification and semantic
segmentation tasks, Ge et al. [21] proposed a method to
directly predicting hand poses from point sets via hierarchical
PointNets and showed promising performance for the prob-
lem of hand pose estimation. However, there are still more
challenges to be tackled. Hand PointNet [21] is not totally
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an end-to-end network as it addresses the hand orientations
by normalizing the input point cloud via principle component
analysis (PCA) and refines fingertip using an additional post-
processing network. Additionally, PointNet/PointNet++ is
a generic architecture for 3D deep learning and does not
fully exploit the relations between input points and hand
joints, which is highly desired in the problem of hand pose
estimation.

In this paper, we propose an end-to-end deep Semantic
Hand Pose Regression network (SHPR-Net) for estimating
hand poses from point clouds. The SHPR-Net takes a point
cloud as input and predicts the corresponding hand pose.
It consists of two subnetworks. The semantic segmentation
subnetwork (SegNet) performs point-wise classification to
segment the point cloud into different semantic parts. The
original point cloud, together with the semantic segmentation
representations, are fed into a pose regression subnetwork
(RegNet) to regress the hand pose. Semantic information is
also fused into the RegNet in the last fully connected (fc)
layer to enhance the performance of hand pose regression.
Two transformation matrices are learned from the input point
cloud using mini-PointNets (T-Nets) to transform the input
points and inversely transform the output of the RegNet
respectively. In this manner, our SHPR-Net is more robust
to geometric transformations of input clouds and tends to
ease the burden of network learning. To make sure the output
transformation matrix is the inverse matrix of the input one,
the identity matrix loss is introduced to encourage the matrix
multiplication of these two transformationmatrices is equal to
an identity matrix. Experiments on three challenging depth-
based hand pose datasets (ICVL, MSRA, NYU) demonstrate
that our SHPR-Net can achieve strong performance on par
with state-of-the-art methods. What’s more, our method can
be naturally extended to multi-view hand pose estimation by
simply fusing depth data from multi views into a single point
cloud.

Our main contributions are summarized as:

• We propose a novel end-to-end method named SHPR-
Net to estimate 3D hand pose directly from point sets
and demonstrate that it is highly effective and efficient.

• We propose a strategy that better fuses information from
semantic segmentation network and regression network
to achieve more representative features for hand pose
estimation.

• We introduces a mechanism to deal with the challenges
of geometric transformations by learning a transforma-
tion matrix for the input data and an inverse matrix for
the output pose.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III introduces
our proposed deep semantic hand pose regression network.
Section IV provides experiments to compare our method with
state-of-the-arts and discusses the impact of each module.
Section V concludes this paper and points out some future
work.

II. RELATED WORK
In this section we briefly review prior work that is highly
related to this paper.

A. DEPTH-BASED HAND POSE ESTIMATION
Hand pose estimation can be generally categorized into three
classes: model-based methods, discriminative methods and
hybrid methods. Readers are referred to [22], [27], and [28]
for more detailed review of hand pose estimation.

Model-based methods fit a predefined hand model into the
input depth image to recover the model parameters of the
input sample by optimizing an energy function. There are
three important modules for model-based methods: optimiza-
tion algorithm, hand model and energy function. Iterative
closest point (ICP) [29] and particle swarm optimization
(PSO) [30] are common choices for optimizing hand pose.
Qian et al. [31] leveraged the properties of ICP and PSO
to propose a new PSO-ICP method for minimizing energy
functions. Several kinds of hand models were proposed [29],
[31]–[35] to approximate the hand using spheres, cylinders
and meshes etc. In most prior work, hand-crafted energy
functions [29], [35]–[37] were employed to describe the
difference between the input depth image and the current
hand model. Despite of the good properties such as ensuring
to output physically plausible poses, model-based methods
need a strong prior (the predefined hand model) and com-
plex optimization process, which is challenging for real-time
applications.

On contrast, discriminative methods are usually totally
data-driven. Some early work on discriminative hand pose
estimation [36], [38]–[40] adopted random forest to predict
the hand pose. As the successful applications on many dif-
ferent fields of deep learning, the majority of recent work of
hand pose estimation has shifted to deep learning, especially
CNN based methods. One family of solutions uses CNNs to
predict heatmap of each joints and employs post-processing
to recover the hand pose [41], [42]. Another line of work
focuses on directly predicting the 3D coordinates of hand
joints via regression [7], [8], [11], [14], [43]. Oberweger and
Lepetit [11] and Oberweger et al. [43] leveraged the fact
that hand pose actually lies in a low dimension manifold and
proposed DeepPrior/DeepPrior++ to first predict the hand
parameters in low dimension and project back to original
hand pose domain using principle component analysis (PCA).
Guo et al. [7] and Wang et al. [14] proposed a region
ensemble network (REN) by dividing feature maps into sev-
eral regions and fusing regional features to predict the final
hand pose. Chen et al. [8] exploited a cascaded framework
upon REN to iteratively mining more discriminative features
under the guidance of previously predicted hand pose. 3D
CNNs were also explored for hand pose estimation [9], [19],
[23] to better leverage the spatial information of depth data.
Moon et al. [19] proposed the V2V-PoseNet to exploit voxel-
to-voxel predictions for hand pose from 3D volumetric forms
and adopted epoch ensemble strategy that averages the pre-
dictions of ten models.
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Hybrid methods try to take advantage of the properties
of model-based and discriminative methods. Ye et al. [12]
proposed a spatial attention network to produce initial predic-
tions and exploited hierarchical partial PSO to enforce kine-
matic constraints for the predicted hand pose. Zhou et al. [44]
proposed to incorporate an explicit hand model into
CNNs to ensure predicting physically plausible hand poses.
Malik et al. [45] extended the deep hand model method to
simultaneously estimate bone-lengths of hand skeletons and
hand poses. Dibra et al. [46] proposed to use CNNs and hand
mesh model to refine 3D hand pose from unlabeled data on
top of the model pre-trained on synthetic depth images.

Our method falls into the category of discriminative
methods. Different from prior work that utilizes 2D depth
images or 3D volumetric representations, our proposed
SHPR-Net directly processes on point sets to predict hand
poses.

B. DEEP LEARNING ON POINT SETS
Deep learning directly on point sets is a challenging prob-
lem since point sets suffer from the properties of unordered
input, geometric transformation etc. PointNet [25] is a pio-
neer in this field. PointNet learns point-wise features using
multi-layer perceptron and employs a symmetric function to
obtain global features that are invariant to input permutations.
Though effective, by design PointNet does not fully leverage
the local information between points. PointNet++ [26] is
an extended version of PointNet to hierarchically capture
local structure patterns on a nested grouped partitioning of
input point set. Recently, more architectures are proposed to
improve feature learning on point sets in different aspects,
such as PointCNN [47], Pointwise CNN [48], DGCNN [49],
SO-NET [50] etc. Though these work shows impressive per-
formance on 3D object classification, object part segmenta-
tion and large scene semantic segmentation tasks, there are
few attempts to focus on 3D articulated hand pose estimation
from point sets except [21]. However, Hand PointNet [21] is
not totally end-to-end since it consists of the pre-processing
to normalize point clouds and a post-processing network to
refine fingertips. Our SHPR-Net is an end-to-end network
and differs from Hand PointNet [21] in several aspects.
We address the problem of geometric transformation by
incorporating transformation matrices in input and output
spaces and train the whole network in end-to-end manner.
What’s more, we leverage the semantic information to better
extract features from point cloud for hand pose regression.

C. GEOMETRIC TRANSFORMATION
Geometric transformation is a common challenge for com-
puter vision problems since it increases the diversity of input
data. Spatial Transformer Network (STN) [51] is one of the
most important researches to tackle this problem. It explic-
itly incorporates a spatial transformer module to empower
CNNs to be invariant to generic transformations of input data.
Shi et al. [52] proposed a Progressive Calibration Network
(PCN) to detect rotation-invariant faces in multiple stages

with coarse-to-fine strategy. Ye et al. [12] also adopted the
spatial attention mechanism to the problem of hand pose
estimation to reduce the viewpoint and articulation variations.
However, this mechanism is applied on 2D space and only
considers in-plane rotations. PointNet [25] proposed to use a
mini-network to predict an affine transformation matrix and
apply it to the input point cloud or intermediate features. This
method was proved to be quite effective for object classi-
fication and semantic segmentation tasks. However, unlike
these tasks, hand pose regression does not desire invariance
to the transformations of input data thus directly applying
transformation matrix in input or feature space would not
help. Ge et al. [21] normalized the rotations of point sets using
an oriented bounding box by performing principle component
analysis (PCA). However, it’s not always easy to determine
the orientation of point clouds by PCA, especially when the
point clouds undergo incomplete points and noises.

To address this problem, in this work we propose to learn
two transformation matrices and apply them to the input
and output points respectively. To make sure the transfor-
mation matrix of the output space is an inverse matrix of
the input one, we propose the identity matrix loss to enforce
the multiplication of these two matrices to be close to iden-
tity matrix. In this manner the network learns to transform
original point clouds into latent canonical spaces. The trans-
formation matrix is learned together with the hand pose in
an end-to-end manner, which may benefit the robustness of
finding an optimal transformation.

D. COUPLING SEMANTIC INFORMATION
WITH REGRESSION
Early work on pose estimation [38], [53] first predicts part
segmentation label for each pixel and recovers pose coor-
dinations from these semantic labels. Another family of
algorithms [7], [39], [43], [54] formulated pose estimation
as a regression problem without intermediate semantic
segmentation. Some researches have explored the combi-
nation of semantic segmentation and holistic regression.
Neverova et al. [55] proposed a semi/weakly-supervised way
to learn an intermediate representation in the form of seg-
mentation map. Then the segmentation information is used
to extract local regions from features map to enhance the
original features in the regression network. Wan et al. [18]
performed 2D heatmap detection, 3D heatmap detection and
dense 3D unit vector regression in a multi-task setup. In this
paper, we propose a new method to incorporate semantic
information into the regression network, which fuses the
semantic labels and raw point sets in the input and also fuses
semantic information and latent features in the output of the
regression network.

III. SHPR-Net: DEEP SEMANTIC HAND POSE
REGRESSION NETWORK
Our work deals with the problem of hand pose estimation
directly from point clouds. The framework of our proposed
method (SHPR-Net) is sketched in Fig. 1. SHPR-Net takes
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FIGURE 1. The framework of the proposed method (SHPR-Net). All dotted diagrams are only used in training phase and others are included in testing
phase. Our method consists of two subnetworks: the semantic segmentation network (SegNet) and the hand pose regression network (RegNet). SegNet
produces semantic labels for each point with the help of a point set feature extractor. The semantic labels are then fused in the input and output layers of
the RegNet. Two mini PointNets (T-Nets) predict two transformation matrices to transform input points into latent canonical space and transform output
pose back to original space. The identity matrix loss, together with point-wise classification loss and pose regression loss are utilized to train the whole
network in an end-to-end manner. We adopt PointNet++ [26] as point set feature extractor in this paper.

a point cloud as input and predicts the corresponding hand
pose. The input point cloud goes through a semantic segmen-
tation network (SegNet) to obtain semantic labels. Two trans-
formation matrices Tin and Tout are learned from the input
point cloud. The original point cloud is transformed by Tin
and concatenated with semantic labels before being fed into
the hand pose regression network (RegNet). The semantic
labels are also fused in the fully connected layers of RegNet.
The hand pose is predicted by RegNet and transformed by
Tout to obtain the final prediction. The whole SHPR-Net is
trained in an end-to-end manner to minimize the addition
of point-wise classification loss, pose regression loss and
identity matrix loss.

As shown in Fig. 1, a point set feature extractor is adopted
to process the input point set and produce features. Generally,
every algorithm that works on point set can be chosen here
but a complete exploration of more choices is beyond the
focus of this paper. In this paper, we employ PointNet++ [26]
as the backbone architecture to extract features from point
sets. In this section we will first give a brief review of
PointNet/PointNet++ and provide elaborations of our pro-
posed method.

A. PRELIMINARY
Suppose {xi}Ni=1 is the input point set, where N is the number
of points. The goal of PointNet [25] is to extract global feature

vector fg that are invariant to input permutation, which is
achieved by a symmetric function F .

fg = F(h({xi}Ni=1)), (1)

where h is a multi-layer perceptron (MLP) network to learn
point-wise features.

Applying fully connected (fc) layers on top of global fea-
tures leads to object classification:

c = fc(fg). (2)

For object part segmentation and scene semantic segmen-
tation, point-wise local features are concatenated with the
global features to produce semantic labels.

PointNet++ [26] is an extension of PointNet to hierar-
chically extract features from point sets, like the structure
of CNNs. Briefly, in each layer PointNet++ samples and
groups points into several subsets and applies PointNet on
each group of points to extract features. Stacking several
layers leads to the architecture of PointNet++.

Readers are referred to [25] and [26] for more details of
PointNet and PonitNet++.

B. SEMANTIC SEGMENTATION NETWORK (SegNet)
The semantic segmentation network (SegNet) is used to pre-
dict semantic label for each input point. Formally, given a
point set {xi}Ni=1, the output of SegNet is {pi}

N
i=1, where pi ∈

R1×J is the probability of ith point belonging to different
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FIGURE 2. Samples of semantic segmentation for hand point clouds.
(a) Point clouds with ground truth hand pose. (b) Inferred semantic labels
from annotated hand pose, as in (3).

categories and J is the number of joints in hand skeleton.
Applying a softmax function on {pi}Ni=1 leads to the final
semantic labels {ci}Ni=1, where 1 ≤ ci ≤ J , and ci is the
predicted semantic label for ith point.

We follow the network architecture with single scale
grouping of part segmentation task in [26] to design SegNet.
SegNet consists of three abstraction levels which extract
features for local regions. Three feature propagation layers
are exploited to concatenate features from different levels
to obtain point features for all original points. The detailed
architecture of SegNet can be found in Fig. 11 in Appendix.

For hand pose estimation task, the coordinates of hand
joints are given for each sample and the per-point semantic
labels are usually not provided. We derive semantic labels
from the annotated hand pose for training (see Fig. 2). Specif-
ically, given the annotated hand pose {ỹk}Jk=1, the ground
truth of part label c̃i for point xi can be obtained as:

c̃i = argmin
k∈[1,J ]

||xi − ỹk ||2. (3)

We then calculate cross entropy loss (denoted as Lseg)
for each pi and c

gt
i as the objective function of point-wise

semantic segmentation network:

Lseg = −
J∑

k=1

1c̃i=ci log(pi,k ), (4)

where 1c̃i=ci is an indicator function that equals to one if
c̃i = ci and zero otherwise, pi,k is the probability of ith point
belonging to k th category.

C. HAND POSE REGRESSION NETWORK (RegNet)
The hand pose regression network (RegNet) aims to directly
estimate the 3D coordinates of hand pose from the input point
set. A basic regression network can be obtained by replacing
the output layer of the classification PointNet/PointNet++
by a fully connected layer that predicts the coordinates of
hand pose. Our proposed RegNet goes further in two aspects:
geometric transformation and semantic enhancement.

The original PointNet [25] introduced a mini-network
(T-Net) to estimate an affine transformation matrix to deal
with the problem of point cloud transformation. T-Net resem-
bles the architecture of PointNet but is relatively smaller.

By incorporating T-Net into input and feature spaces, Point-
Net can achieve invariance to geometric transformation
of input point set and significantly improves the perfor-
mance. However, unlike classification and segmentation
tasks, the output of hand pose regression will change accord-
ingly when the input point set undergoes certain geometric
transformations. Therefore, directly learning to transform
the input points and features is not an appropriate way for
regression network. To address this problem, we incorporate
two T-Nets to learn two matrices (Tin and Tout ) to transform
the input points and output pose respectively. Ideally, Tout
should be the inverse matrix of Tin to maintain the geometric
properties. To this end, we constrain the multiplication of Tin
and Tout to be close as an identity matrix by introducing the
identity matrix loss:

Lim = ||TinTout − I ||2, (5)

where I is an identity matrix. This will not bring heavy
computational and memory burdens to RegNet because
Tin ∈ R3×3 and Tout ∈ R3×3 are low dimensional matrices.

PointNet [25] lacks of capability to capture local informa-
tion among different points. PointNet++ [26] relieves this
issue by hierarchically extracting local features of overlap-
ping groups. However, this strategy still has limited ability
to perceive the information of hand poses as the relations of
different joints are not considered in the grouping operation.
Therefore, we propose a new method to incorporate semantic
information into hand pose regression network to solve the
above problems. Firstly, we concatenate the coordinates of
point set with the semantic probabilities produced by SegNet
and feed it to the RegNet. To better fuse the information
of SegNet, the predicted semantic probabilities are passed
through a fully connected (fc) layer and then concatenated
with the output of the first fc layer of RegNet. The fused fea-
tures undergo another two fc layers to produce the predicted
hand pose.

RegNet has similar backbone architecture as the classifica-
tion network with single scale grouping of [26], the detailed
architecture of RegNet can be found in Fig. 12 in Appendix.

Similar to previous regression based methods [7], [8],
we use smooth L1 loss [56] Lsmoothl1 between the predicted
hand pose y = {yk}Jk=1 and the ground truth pose ỹ = {ỹk}

J
k=1

for regression network:

Lreg = Lsmoothl1(y, ỹ). (6)

D. TRAINING LOSS
We train the whole network in an end-to-end manner by
minimizing the total training loss:

Ltotal = Lreg + αLim + βLseg, (7)

where α and β are weighted terms of identity matrix loss and
semantic segmentation loss respectively.

In this equation, Lseg penalizes the errors of point-wise
classification, Lreg penalizes the errors of output hand pose
while Lim enforces the inverse property of input and output
transformation matrices.
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TABLE 1. Comparison of the proposed method with state-of-the-art methods on ICVL [39], MSRA [40] and NYU [41] dataset. *It should be noted that in
table (c), the entry SHPR-NET(Ours, three views) uses depth data from three views while all other methods are conducted on single (frontal) view of NYU
dataset, see Section IV-A3 for detailed discussions. (a) ICVL. (b) MSRA. (c) NYU.

E. MULTI-VIEW DEPTH-BASED HAND POSE ESTIMATION
Hand pose estimation from multi-view depth images has
rarely been explored in literature. Due to the representation of
input data, our method can be naturally extended to handle the
multi-view scenarios. This can be achieved by simply fusing
depth data from different views into a single point cloud and
feeding the fused points into our SHPR-Net. No additional
modifications are required except for the input data fusion.
We will demonstrate the capability of our method to handle
multi-view data by conducting experiments on NYU dataset
in Section IV-A3.

F. IMPLEMENTATION DETAILS
The proposed method is implemented in Tensorflow [63].
Experiments are conducted on a server with two Intel Xeon
E-2640 CPUs, 256GB RAM and four NVIDIA Geforce
1080TI GPUs.

1) PREPROCESSING
Wefirst convert all pixels in depth image to world coordinates
to generate a point cloud. We follow similar strategy as prior
work [7], [8], [11] to crop the hand region with a 3D cube
with the size of 240mm3. Since the cropped point cloud
has different number of points due to different distances to
the camera, we use Poisson Disk Sampling algorithm [64]
provided by Meshlab [65] to sample the original point cloud
to approximately certain number of points. The coordinates of
sampled points and the corresponding annotated hand poses
are then normalized into [−1, 1].

2) PARAMETER SETTINGS
We use N = 4096 points in the experiments. The impacts of
different number of points will be discussed in Section IV-B3.
We set α = 0.001 and β = 0.001 for all experiments.

3) DATA AUGMENTATION
We apply online random data augmentation strategy to
increase generalization ability of the network. Specifically,
we apply random rotation along z axis with the range of
[−15◦, 15◦], random scaling of [0.9, 1.1] and random trans-
lation of [−0.005mm, 0.005mm] to the point sets and corre-
sponding annotated hand poses in training.

4) TRAINING
We use Adam [66] optimizer to train the network using four
GPUs, with the total batch size of 32. The initial learning rate
is set to 0.001 and multiplied with 0.7 after each 10 epochs.
The whole network was trained for 100 epochs.

IV. EXPERIMENTS
We evaluate our proposed method on three public hand pose
datasets: ICVL dataset [39], NYU dataset [41] and MSRA
dataset [40].

ICVL dataset was captured with an Intel Realsense Camera
and contains 330k training samples from 10 different sub-
jects. There are 1596 samples in the test set. Each depth image
is annotated with a hand pose with J = 16 joints, including
1 palm joint and 3 joints for each fingers.

NYU dataset was captured with three Microsoft Kinects
that placed at different views. It consists of 72k samples for
training and 8252 samples for testing. There are two subjects
in the test set while only one appears in the training set.
The annotated hand pose has 36 joints and we follow the
evaluation protocol of prior work to use only J = 14 of them
in the experiments.

MSRA dataset contains 76k frames from 9 different sub-
jects with 17 different gestures. The leave-one-subject-out
cross-validation strategy is employed for evaluation, similar
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FIGURE 3. Comparison with state-of-the-arts on ICVL [39] dataset. Left: per-joint errors. Right: the proportion of good frames over different error
thresholds.

as all prior work. There are J = 21 joints in each annotated
hand pose, with 4 joints in each finger and 1 palm joint.

Following the most commonly used metrics in literature,
we evaluate the proposed method with two different metrics.
First, we report the average 3D joint error of each joint as
well as average error of total joints over all testing frames.
This metric indicates the overall performance of hand pose
estimation and also show performances for different joints.
The secondmetric is the fraction of frames whose errors of all
joints are within a threshold. This is a more challenging and
strict metric that better presents the performance of a hand
pose estimator.

In the following parts of this section, we first compare
our proposedmethodwith state-of-the-art methods. After that
we provide extensive self comparison experiments to demon-
strate the impacts of different modules or design choices of
our method. Finally some visualization results bring more
insights and better understanding.

A. COMPARISON WITH STATE-OF-THE-ARTS
We compare our proposed method with tens of prior meth-
ods, including latent random forest (LRF) [39], DISCO
nets [59], cascaded hand pose regression (Cascaded) [40],
2D CNN with deep hand model (DeepModel) [44], 2D
CNN with priors (DeepPrior) [43] and its improved ver-
sion (DeepPrior++) [11], 2D CNN with feedback loop
(Feedback) [60], Lie group based method (Lie-X) [62],
Neverova et al. [55], multi-view 2D CNNs (Multiview) [9],
joint training with shared context methods (JTSC) [57], vari-
ants of region ensemble network (REN-4x6x6 [7] and REN-
9x6x6 [14]), pose guided structured REN (Pose-REN) [8],
CrossingNets [10], dense 3D regression (DenseReg) [18],
3D CNN [9], 3D CNN with voxel-to-voxel predictions
(V2V-PoseNet) [19], hierarchical PointNets based hand
regression (Hand PointNet) [21], and Baek et al. [20].

1) ICVL DATASET
On ICVL dataset, we compare our proposed method with
[7], [8], [10], [11], [14], [18], [19], [21], [39], and [44]. The
average errors for different joints and the proportion of good
frames over different error thresholds are shown in Fig. 3.
We also report the average error over all joints and compare
with prior methods, as shown in Table 2a. These results
indicate that our method outperforms most of state-of-the-
art methods and is on par with the rest of them. As demon-
strated in prior work [18], ICVL dataset has considerably
achieved nearly saturated average joint error, which makes
the gaps between our method and [8], [19], and [21] seem
less significant.

2) MSRA DATASET
On MSRA dataset, we compare our method against several
prior methods [8], [9], [11], [14], [18], [19], [21], [40].
The fraction of success frames with respect to maximum
allowed threshold and per-joint errors are shown in Fig. 4.
The comparison of average error over all joints are given
in Table 2b. As can be seen in Fig. 4, our method outper-
forms [8], [9], [11], [14], [40] and achieves quite compara-
ble performance with DenseReg [18]. Our method performs
better than V2V-PoseNet [19] when the error threshold is
larger than 18 mm. Table 2b provides clearer comparisons.
Our method obtains average joint error that is about 5.1 mm,
4.2 mm, 1.8 mm, 1.6 mm, 0.7 mm, 0.5 mm smaller than
[8]–[11], [21], [14], and [42] respectively and get comparable
performance with [19] and [18].

Following the evaluation protocol of prior work [8], [9],
[40], we also plot the mean joint error over different view-
point angles, as shown in Fig. 5. As can be seen, our method
performs better than [8], [9], and [14] in almost all viewpoints
and can obtain considerably good results in large yaw and
pitch angles, which demonstrates the strong performance and
robustness of our proposed method.
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FIGURE 4. Comparison with state-of-the-arts on MSRA [40] dataset. Left: per-joint errors. Right: the proportion of good frames over different error
thresholds.

FIGURE 5. Comparison of mean error distance over different yaw (left) and pitch (right) viewpoint angles on MSRA [40] dataset.

3) NYU DATASET
NYU dataset is a relatively more challenging benchmark as it
exhibits more complex articulations, sensor noises and hand
shape variations etc.We compare ourmethod onNYUdataset
with [7]–[11], [14], [18], [19], [21], [43], [44], [55], [57],
and [59]–[62].

As shown in Fig. 6, with point clouds from a single view
(frontal view), our method shows comparable performance
with DenseReg [18] and Hand PointNet [21], slightly worse
performance than V2V-PoseNet [19] and outperforms the rest
of state-of-the-arts.

We also compare the average error of all joints with state-
of-the-arts in Table 2c. As can be seen, our method achieves
top performance among state-of-the-arts, which demonstrates
the effectiveness of our method.
Multi-View Experiments on NYU Dataset: NYU dataset

provides depth images from three cameras that are placed at
different viewpoints (two side views and one frontal view).

However, the calibration parameters of three cameras are not
provided and the cameras are moved occasionally in data
capturing. We use the annotated hand poses from different
views to calibrate the cameras. Specifically, we calculate the
transformation matrices that project annotated hand joints
from two side views to frontal view. We then use these
matrices to project point clouds of side views to frontal view
and fuse all points from three views to generate a single point
cloud. It’s worth noting that in real scenarios, the calibration
parameters between cameras can be easily obtained by an
offline calibration procedure and do not require any hand pose
annotations.

Some examples of fused point clouds are shown in Fig. 7.
Each pair of point clouds presents the points from frontal
view (left) and three views (right) respectively. It can be
observed that by fusing depth data from three views, the point
clouds are more complete and robust to occlusions. However,
the fused point clouds also suffer from slightly heavier noises,
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FIGURE 6. Comparison with state-of-the-arts on NYU [41] dataset. Left: the proportion of good frames over different error thresholds. Right: per-joint
errors.

FIGURE 7. Examples of fused point clouds from three views of NYU [41]
dataset. For each pair of point sets, the left one is from the frontal view
and the right one shows the fused point cloud from three views.

which is probably due to the imperfect calibrations between
cameras and noises in depth images.

As shown in Table 2c, when using depth data from three
views, our method achieves the second best performance
among all methods when regards to average joint error. Fig. 6
further shows the fraction of frames whose maximum joint
error falls within a threshold, which is a more challenging
metric. With multi-view depth data, our method outperforms
all state-of-the-arts when the error threshold is bigger than
about 23 mm. For example, the proportion of good frames
of our method is about 5% more than DenseReg [18] and
V2V-PoseNet [19] when the error threshold is 40 mm. When
the error threshold is smaller than 23 mm, our method
performs slightly worse than V2V-PoseNet [19] but still
outperforms others.

It’s worth noting that this is not direct comparison because
none of existing methods have explored the usage of multi-
view data. However, in this experiment we demonstrate that
our method can achieve further improvement by exploiting
multi-view depth data without any modifications to the net-
work. We expect that this observation would be beneficial to
the community of hand pose estimation.

B. ABLATION STUDY
In this section, we will provide extensive experiments to
analyze the impacts of different modules of SHPR-Net and
different design choices. Unless otherwise stated, all ablation
studies are conducted on multi-view depth data of NYU
dataset.

1) IMPACTS OF INPUT AND OUTPUT TRANSFORMATIONS
To evaluate the impacts of our proposed input and output
transformation, we conduct experiments with different
variants of regression PointNet by inserting different transfor-
mation modules. Specifically, we explore different combina-
tions of input transformation, feature transformation, output
transformation and identity matrix loss.

As shown in Table 2, simply inserting input transforma-
tion into PointNet improve little due to the inconsistence
of geometric transformation between input point cloud and
output pose. The improvement is probably due to more
model parameters brought by the T-Net. The performance
degrades when incorporating additional feature transforma-
tion because it further increases the inconsistence of trans-
formation. When we insert input and output transformations
into PointNet but do not explicitly constrain the relations
between these two matrices, the performance is improved
due to the inherent potential to learn consistent transforma-
tion. However, the improvement is still insignificant because
the constraints between input and output transformation are

TABLE 2. Impacts of input and output transformation. Self comparisons
on NYU [41] dataset with depth data from three views.
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not explicitly given. Further applying identity matrix loss
to the network significantly boost the performance, as the
output transformation matrix tends to be the inverse matrix of
input transformation matrix, which well preserve the nature
of regression task. The above observations demonstrate that
learning constrained transformation matrices for input and
output space is an effective way to handle the geometric
transformation for hand pose regression problem.

TABLE 3. Impacts of segmentation task. We report average joint errors
(mm) on NYU [41] dataset with depth data from three views.

2) IMPACTS OF SEMANTIC INFORMATION
We evaluate the impacts of semantic information by com-
paring the performance of our method with or without the
SegNet. As shown in Table 3, when we use PointNet as
the backbone architecture to extract features for point sets,
coupling semantic segmentation task with regression task
reduces the error of hand pose regression by 0.7 mm. When
we switch to PointNet++ as the backbone architecture,
the gap brought by semantic information becomes 0.94 mm,
which is probably due to the more powerful architecture
of PointNet++. These experiments demonstrate the effec-
tiveness of our proposed strategy to incorporate semantic
information into regression network.

3) IMPACTS OF POINT NUMBER
To evaluate how the number of points N in a point set
affects the performance of the proposed method, we con-
duct experiments with different numbers of points in the
input point cloud. As shown in Table 4, When we use only
512 points, the performance of SHPR-Net is still quite com-
petitive. The average joint error drops by 0.47 mm, 0.09 mm
when N increases from 512 to 1024 and 1024 to 2048
respectively. Further increasing N to 4096 still brings perfor-

TABLE 4. Impacts of point number. Self comparisons on NYU [41] dataset
with depth data from three views.

TABLE 5. Impacts of multi-view point cloud fusion. Self comparisons on
NYU [41] dataset.

FIGURE 8. Visualization of the effect of identity matrix loss. We visualize
the original point clouds in red and the transformed point clouds which
undergo input and output transformation matrices in green. It can be seen
that the transformed point clouds almost completely overlap with the
original ones, which illustrates the effectiveness of identity matrix loss.

mance improvement. To balance accuracy and computational
complexity, we choose N = 4096 and do not exploit more
points.

FIGURE 9. Visualization of the impacts of input transformation matrix on
NYU [41] dataset. (a) The viewpoint distributions of original point clouds
and the transformed point clouds is visualized in red and green
respectively. The viewpoints of transformed point clouds distribute more
compact than the original ones. (b) We visualize the average hand shapes
for two subjects of original and transformed point clouds. It can be seen
that after applying input transformation, the distance between different
subjects is reduced, which makes our method more robust to hand shape
variations.
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FIGURE 10. Qualitative results on NYU, ICVL and MSRA dataset. For each dataset, we visualize and compare the predictions of Pose-REN [8], 3D CNN [9]
and our proposed SHPR-Net.
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FIGURE 11. The detailed architecture of SegNet.

FIGURE 12. The detailed architecture of RegNet.

4) IMPACTS OF MULTI-VIEW POINT CLOUD FUSION
To further explore the impacts of using point clouds from
multi-views, we conduct experiments with different views
of depth data on top of our method. As shown in Table 5,
when using point clouds from three views, the performance
improves by about 1.33 mm and 1.41 mm for PointNet
and PointNet++ backbones respectively. This indicates the
potentials to exploit multi-view data to boost the accuracy of
hand pose estimation. Our method can naturally extend to this
scenario without any modifications to the network.

C. VISUALIZATIONS
1) VISUALIZING THE IMPACTS OF IDENTITY MATRIX LOSS
To demonstrate how the constraint of identity matrix loss
works, we apply the input and output transformation matrices

on point clouds and visualize the transformed and original
ones. We expect that the output transformation matrix is
the inverse matrix of the input one. Therefore, undergoing
the input and output matrices should produce a point cloud
that is the same with the original one. As shown in Fig. 8,
the transformed point sets (green) almost totally overlap with
the original ones (red), which indicates that identity matrix
loss is an effective way to produce a transformation matrix
and an correspondingly inverse transformation matrix.

2) VISUALIZATION OF INPUT TRANSFORMATION
Ideally the input transformation will transform the input point
set into a latent canonical space in which the variations of
viewpoints and hand shapes are greatly reduced, so that the
network can be easier to learn a good regressor for hand pose.
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We visualize the distributions of viewpoints before/after the
input transformation in Fig. 9a. In this figure we can observe
that the viewpoints of transformed point clouds (green) dis-
tribute more compact than the original ones (red), which indi-
cates the effectiveness of the strategy of applying geometric
transformation on input point sets. What’s more, we visualize
the average hand shapes for two subjects in NYU dataset of
original and transformed point clouds in Fig. 9b. It can be seen
that after applying input transformation, the distance between
different subjects is reduced, which makes our method more
robust to hand shape variations.

3) QUALITATIVE RESULTS
Some qualitative results for ICVL, MSRA and NYU datasets
are given in Fig. 10. We compare our method with 2D CNN
based method Pose-REN [8] and 3D CNN based method [9].
As can be seen in Fig. 10, our method can better leverage
the geometric properties of depth data and produces better
estimations than 2D CNN or 3D CNN based methods.

V. CONCLUSION
In this paper we propose a novel method for accurate end-
to-end 3D hand pose estimation from point sets. To better
preserve the geometric properties of depth data, our method
directly consumes point sets and predicts the hand poses.
We show that by incorporating the semantic information pro-
duced by a semantic segmentation network into a hand pose
regression network, the performance of hand pose estimation
can be improved. To handle the geometric transformations of
input point clouds, we propose a new method to transform
the point sets into a latent canonical space and inversely
transform the predicted hand pose using an inverse trans-
formation matrix. We demonstrate that this can be achieved
by learning two transformation matrices and constraining the
inverse property of these two matrices. Experiments shows
that our method exhibits promising performance on par with
state-of-the-arts. We also shows that our method can further
improve the performance of hand pose estimation by using
fused point clouds from multi-view depth data without any
modifications to the network architecture. Future work may
focus on designing a new backbone architecture to better
leverage the properties of hand point clouds and hand poses.

APPENDIX
The detailed architectures of SegNet and RegNet can be seen
in Fig. 11 and Fig. 12.
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