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ABSTRACT A subspace tracking technique has drawn a lot of attentions due to its wide applications. The
main objective of this approach is to estimate signal or noise subspace basis for the sample covariance
matrix. In this paper, we focus on providing a fast, stable, and adaptive subspace tracking algorithm that
is implemented with low computational complexity. An alternative realization of the fast approximate
power iteration (FAPI) method, termed modified FAPI (MFAPI), is also presented. Rather than solving an
inverse square root of a matrix employed in the FAPI, the MFAPI applies the matrix product directly to
ensure the orthonormality of the subspace basis matrix at each recursion. This approach yields a simpler
derivation and is numerically stable while maintaining a similar computational complexity as compared
with that of the FAPI. Furthermore, we present a detailed mathematical proof of the numerical stability of
our proposed algorithm. Computer simulation results indicate that the MFAPI outperforms many classical
subspace tracking algorithms, particularly at the transient-state step.

INDEX TERMS Adaptive subspace tracking, approximated power iteration, orthonormal iteration, projec-
tion approximation.

I. INTRODUCTION
The subspace tracking methods, that are employed to track
the change of structure in signals, intend to divide the
observed data into two parts: signal subspace and noise sub-
space. Since a more distinct representation of useful signals
could be obtained in this way, these methods have drawn
lots of interests recently. There are many subspace-based
application in practice such as sensor networks [1], signal
detection [2]–[4], machine learning [5], array processing [6],
etc. In some applications, these methods can detect very
weak signals in a very noisy environment at signal-to-noise
ratio (SNR) as low as to -23dB [4].

The subspace tracking methods can be described as fol-
lows: let x(t) be a N -dimensional received data vector with

sample covariance matrix Cxx(t) = E[x(t)x(t)H ]. The main
objective is then to estimate the largest L-dimensional signal
subspace or the smallest (N−L)-dimensional noise subspace
spanned by the basis matrix W (t) ∈ CN×L or W (t) ∈
CN× (N−L) of Cxx(t), respectively, where L is the number of
the useful signals in a noisy environment.

There exist many different methods related with subspace
tracking in literature. Computational complexity measure
is a commonly employed indicator to classify and distin-
guish these algorithms. According to [17], the computa-
tional complexity of an algorithm can be classified as high,
medium, or low based on the number of operations, O(N 3),
O(N 2L) and O(NL), respectively. Direct decomposition
methods, such as batch singular value decomposition (SVD)
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and eigenvalue decomposition (EVD), are not suitable tech-
niques in real applications due to their high computational
complexity in order of O(N 3), even though they yield quite
accurate eigenvalue and eigenvector estimations. Presently,
almost all mainstream subspace tracking methods have been
able to reduce the computational complexity to the order
O(NL) operations. In practice, these algorithms find wide
range of applications [7], especially with massive data com-
putations. Therefore, in this paper, we are mainly concerned
with these mainstream low-complexity schemes.

Subspace-based algorithms are designed to track the sig-
nal (principal) or noise (minor) subspace. Generally, accord-
ing to the tracking type, these methods can be categorized
into two types: the algorithms for tracking only one sin-
gle subspace or tracking both subspaces simultaneously.
Also, most subspace tracking algorithms can be viewed as
a constrained or unconstrained optimization problem [7].
Benefiting from using recursive least squares (RLS)
approach, the popular types of subspace tracking meth-
ods, such as projection approximation subspace tracking
(PAST) [8], orthonormal PAST (OPAST) [9], fast approx-
imated power iteration (FAPI) [10], have very fast con-
vergence rates in estimating the signal or noise subspace.
However, these methods are not without their drawbacks.
Although the method based on PAST convergences to the
basis matrix, orthonormalization can not be guaranteed in
the initial stage. Comparing with PAST, the OPAST has a
faster convergence rate due to its orthonormalization to the
signal subspace matrix at each iterative step. Both PAST and
OPAST can be regarded as a first order approximation of the
FAPI. Hence, FAPI outperforms PAST andOPAST. However,
the main weakness of the FAPI algorithm is that its derivation
is relatively difficult and its numerical instability at the
transient-state step (details will be described in the following
sections). For the PAST-type algorithms, a more detailed
description can be found in [11]. Comparison with RLS
employed in those algorithms, the FRANS algorithm can
track noise subspace basis based on Rayleigh’s quotient [12].
In order to overcome the instability and slow convergence rate
of FRANS, a algorithm called HFRANS is proposed using
Householder transformation [13] whose detailed analysis is
presented in [14]. Note that, these algorithms belong to the
first type.

The second type ofmethods, mainly inherited from the data
projection method (DPM) [15], can track dual signal or noise
subspace matrix simultaneously with a sign change. Popular
algorithms include ODKA [16], FDPM [17], YAST [18],
SGYAST [19], and algorithm proposed in [20]. Although
most of the DPM-based algorithms have simple code struc-
ture and ability to track dual subspace basis matrix, they
have slower convergence rate than that of the first type of
algorithms.

Considering the above mentioned problems, this paper
presents a new implementation of the tracking signal sub-
space approach based on FAPI for the exponential window
case. Relying on the direct matrix product, a simple but more

stable method is provided to guarantee orthonormalization of
subspace basis matrix. Additionally, we discuss convergence
rates of the two types of algorithms mentioned above through
the results obtained by detail computer simulations. Finally,
a thorough mathematical proof of the numerical stability is
given which makes it easier to understand our algorithm.
To the best of our knowledge, similar description has not been
proposed in the literature yet.

The rest of the paper is organized as follows. In Section II,
problem definition is provided; In Section III, we first review
the exponential window estimate of the sample covariance
matrix, then present a detailed derivation of our MFAPI
algorithm; performance analyses, including computational
complexity, convergence rate and numerical stability of pro-
posed MFAPI method are presented in Section IV; finally,
simulation results and conclusion are provided in Section V
and Section VI, respectively.

II. PROBLEM DEFINITION AND NOTATION
We first provide the notations used in this paper. Scalars
are denoted by lower case Greek letters, the symbol Cm×n

represents the complex matrix withm rows and n columns, Ir
represents the r×r identity matrix. The transpose of a matrix
A is denoted by AT and the conjugate-transpose by AH . The
symbol ‖·‖ denotes the 2-norm of a vector, ‖·‖2F denotes the
matrix Frobenius norm, diag{·} is a diagonal matrix.
In this paper, the subspace basis matrix is estimated by our

proposed subspace-based algorithm, which can be applied
to the various scenarios described in the introduction. How-
ever, in order to evaluate the performance of the proposed
algorithm, a special example of detecting the frequencies of
signals is considered.

Let x(t) be a received data vector. x(t) can be written as
x(t) = [x1(t), x2(t), ..., xN (t)]T obtained from the output of
N different sensors of an array at the tth snapshot, or x(t) =
[x(t), x(t − 1), ..., x(t − N + 1)]T obtained from the N
sequentially received data of a time series. The signal model,
including L complex exponential signals, can be expressed as

x(t) =
L∑
l=1

pl(t)e(ωl)+ n(t) (1)

where pl(t) is the random signal, ωl denotes the lth frequency
to be detected, n(t) is a stationary zero-mean additive white
Gaussian noise (AWGN) vector with variance σ 2. e(ωl) =
[1 exp(jωl) exp(j2ωl) · · · exp(j(N − 1)ωl)]T is the frequency
vector. Let E(ω) = [e(ω1), e(ω2), ..., e(ωL)] be the matrix of
ω and P = [p1, p2, ..., pL]T be a vector of p. Equation (1) can
then be rewritten as

x(t) = E(ω)P + n(t). (2)

Here, we assume that the signal is independent of the noise.
Then, the covariance matrix of x(t) can be obtained as [15]

Cxx(t) = E[x(t)x(t)H ] = EPsEH + σ 2IN , (3)

VOLUME 6, 2018 43137



Q. Wu et al.: Improved Adaptive Subspace Tracking Algorithm Based on Approximated Power Iteration

where Ps = E[PPH ] is the covariance matrix of the signal
components, E[·] denotes the expectation operator. By apply-
ing EVD, Cxx(t) can be further expressed as the sum of the
signal and the noise covariance matrices as

Cxx(t) = W s6sWH
s +Wψ6ψWH

ψ , (4)

where W s and Wψ denote the signal and noise subspace
basis matrices, respectively, 6s = diag{λ1, · · · , λL} and
6ψ = diag{λL+1, · · · , λN } denote signal and noise eigen-
values, respectively. Cxx(t) is semi-positive definite matrix
whose eigenvalues satisfy

λ1 ≥ · · · ≥ λL ≥ λL+1 = λL+2 · · · = λN = σ
2
≥ 0. (5)

The basis matrixWψ is employed to estimate the frequen-
cies ωl of the signal components. Some algorithms such as
MUSIC [21] and ESPRIT [22] can be used for this purpose.
Th MUSIC algorithms is described as follows. Equation (4)
can be rewritten as

Cxx(t) = [W s,Wψ ]
[
6s 0
0 σ 2IN−L

] [
WH

s
WH
ψ

]
. (6)

ConsideringWH
s Wψ = 0 andWH

ψWψ = I , we have

Cxx(t)Wψ = [W s,Wψ ]
[
6s 0
0 σ 2IN−L

] [
0
I

]
= σ 2Wψ . (7)

Using (3) we derive

Cxx(t)Wψ = EPsEHWψ + σ
2Wψ . (8)

And from (7), (8) we have

EPsEHWψ = 0. (9)

It then follows that

WH
ψEPsE

HWψ = 0. (10)

Note that when Q is nonsingular, tHQt = 0 if, and only if,
t = 0 holds. Hence, from (10)

EHWψ = 0. (11)

Substituting E(ω) = [e(ω1), e(ω2), ..., e(ωL)] into (11)
yields

e(ω)HWψ = 0, ω = ω1, ω2, ..., ωL . (12)

Finally, for the givenWψ , let

p(ω) =
1

e(ω)HWψWH
ψ e(ω)

(13)

be a spectral function of the parameter ω. We can then obtain
L largest peaks of p(ω) by searching over the values of ω.
Theω’s corresponding to the L largest peaks are the estimated
frequencies.

III. PROPOSED MFAPI ALGORITHM
FAPI has excellent capability as compared to other exist-
ing subspace-based algorithms in tracking the subspace
basis matrix and, especially, in achieving better convergence
rate [10]. However, the main weakness of FAPI is that it needs
to evaluate the inverse square root of matrix to implement
orthonormalization for subspace basis matrix. It is known
that this evaluation may cause numerical instability with a
substantially higher computational complexity. On the other
hand, the proposedMFAPImethodmakes use of direct matrix
multiplication for orthonormalization to obtain a faster con-
vergence rate than the FAPI and guarantees numerical stabil-
ity. In the rest of this section, a detail derivation of MFAPI
algorithm based on FAPI is presented.

A. ESTIMATE OF SAMPLE COVARIANCE MATRIX
Subspace tracking methods need to estimate their sam-
ple covariance matrix from the received data. Usually,
the adapted schemes for covariance matrix estimation is
based on using the exponential and truncated windowings
whose details can be found in [10].

1) EXPONENTIAL WINDOW ESTIMATE
In general, exponential windowing, from which Cxx(t) is
estimated, is defined as

Cxx(t) =
t∑

k=−∞

β t−kx(k)x(k)H , (14)

where β is a forgetting factor with 0 < β ≤ 1. Equation (14)
usually has another form for the recursive purpose and it can
be written as [8]

Cxx(t) = βCxx(t − 1)+ x(t)x(t)H . (15)

Exponential windowing-based covariance estimation puts
emphasis on the new data so it fits in non-stationary scenarios
when β is small enough. Meanwhile, the estimate of covari-
ance matrix using exponential windowing can be computed
simply by an iterative algorithm without storing the historical
sample data, that is very useful in big data applications.

2) TRUNCATED WINDOW ESTIMATE
Truncated windowing-based covariance estimation can be
defined as [10]

Cxx(t) =
t∑

k=t−l+1

β t−kx(k)x(k)H , (16)

where β = 1 corresponds to the case of sliding window-
ing, l is the window length. For iterative purpose, truncated
windowing has the following form:

Cxx(t) = βCxx(t − 1)+ x(t)x(t)H − β lx(t − l)x(t − l)H .

(17)

In this paper, for simplicity, we only consider implemen-
tation of MFAPI using an exponential windowing due to the
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following reasons. First, our derivation method for MFAPI
can be realized easily with the truncated windowing case.
Secondly, for the FAPI, computational complexity is much
lower in case of the exponential windowing than the truncated
windowing. Namely, it is about 3NL (3NL is the lowest com-
plexity among the current low-complexity subspace tracking
algorithms) for the exponential windowing while 6NL for the
truncated windowing.

B. POWER ITERATION
Power iteration [7] is a commonly employed method to com-
pute dominant subspace basis matrix. Since FAPI algorithm
has a similar code structure with power iteration, we describe
the power iteration method first. With sequentially received
data x(t), conventional power iteration method computes the
subspace basis matrixW (t) by the following formulas

y(t) = W (t − 1)Hx(t), (18)

Cxy(t) = Cxx(t)W (t − 1), (19)

W (t)R(t) = Cxy(t), (20)

where L-dimensional y(t) can be viewed as data compress-
ing step by projecting N -dimensional x(t) onto W (t − 1)
(in general, L � N ), and Cxy(t) as correlation matrix
between x(t) and y(t). W (t) can be computed by the factor-
ization step (20) by means of the QR decomposition or other
orthonormalization methods.R(t) is a matrix factor of Cxy(t).
It is an upper triangular matrix if QR decomposition applied.
Hence, the power iteration method can eventually converge
to the principal subspace basis matrix.

C. FAPI ALGORITHM
FAPI algorithm is designed for estimating subspace basis
matrix with low-computational complexity and fast conver-
gence rate. In the following, we describe the implementation
of this algorithm. As discussed in [10], the following approx-
imation is employed for projection ofW (t − 1) intoW (t):

W (t) w W (t − 1)2(t), (21)

where 2(t) 1
= W (t − 1)HW (t) is an orthonormal matrix.

Applying the exponential window estimate and substituting
(15) into (19), we obtain

Cxy(t) = βCxx(t − 1)W (t − 1)+ x(t)y(t)H . (22)

Using the approximation (21) of 2(t) at time (t − 1),
Equation (22) can be expressed as

Cxy(t) = βCxy(t − 1)2(t − 1)+ x(t)y(t)H . (23)

Equation (23) is one of the three important formulas that
are used in [10]. Other two main iterative expressions, that
are needed to estimate the subspace basis matrixW (t) in the
FAPI algorithm [10], are given as

Z(t) =
1
β
2(t)H (IL − g(t)y(t)H )Z(t − 1)2(t)−H , (24)

W (t) =
(
W (t − 1)+ e(t)g(t)H

)
2(t), (25)

where Z(t) is an auxiliary matrix, e(t) is projection error of
x(t), and g(t) is defined in [10] as

e(t) = x(t)−W (t − 1)y(t), (26)

g(t) =
h(t)

β + y(t)Hh(t)
, (27)

where

h(t) = Z(t − 1)y(t). (28)

Proper selection of 2(t) in (25) is critical for subspace
tracking algorithms. The key point is to makeW (t) orthonor-
mal at each iterative step, with low computational complexity
and numerically stable way. Namely

W (t)HW (t) = IL . (29)

For the FAPI algorithm, 2(t) is selected as an inverse
square root as follows,

2(t)2(t)H = (IL + g(t)(e(t)He(t))g(t)H )−1. (30)

However, derivation of 2(t) is based on the assumption
that β + y(t)Hh(t) is nonsingular and solving an inverse
square root requires higher computational complexity and
some instabilities are inevitable.

Based on the abovementioned discussions, we now present
the derivation of the MFAPI algorithm.

D. DERIVATION OF MFAPI
In this paper, we propose another way for selecting 2(t)
that guarantees orthonormalization ofW (t). This approach is
based on using a direct matrix production. As a direct results,
it provides more simpler derivation than FAPI and avoids any
instability in the algorithm.

1) DERIVATION FOR θ(t)
Let

T (t) , W (t − 1)+ e(t)g(t)H . (31)

It then follows that

T (t)HT (t) = IL + ‖e(t)‖2g(t)g(t)H . (32)

In deriving (32), we have assumed that W (t − 1) is
orthonormal at time (t−1), that is,W (t−1)HW (t−1) = IL .
Additionally, it can be easily seen by simple manipulations
thatW (t − 1)He(t) = 0L×1. Let

Y (t) ,
[
g(t)
‖g(t)‖

... G(t)
]

(33)

be a L×L column orthonormal matrix, satisfying: g(t)g(t)
H

‖g(t)‖2 +

G(t)G(t)H = IL , G(t)H
g(t)
‖g(t)‖ = 0(L−1)×1 and G(t)HG(t) =

IL−1. It then follows that

(T (t)Y (t) )HT (t)Y (t)

= Y (t)HT (t)HT (t)Y (t)

= IL + diag
{
‖e(t)‖2‖g(t)‖2, 0, . . . , 0

}
VOLUME 6, 2018 43139
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= diag
{
1+ ‖e(t)‖2‖g(t)‖2, 1, . . . , 1

}
= diag

{
‖υ(t)‖2, 1, . . . , 1

}
, (34)

where υ(t)is defined as υ(t) = W (t − 1) g(t)
‖g(t)‖ + e(t)‖g(t)‖,

which satisfies

‖υ(t)‖2 = 1+ ‖e(t)‖2‖g(t)‖2. (35)

Note that the right hand side of (34) is a diagonal matrix,
and can be transformed into an identity matrix by applying
a normalization on the first column. A common method for
orthonormalization is to multiply it by an inverse matrix,
as employed in [10].With a simple but rathermore stable way,
we implement normalization here by multiplying a suitable
matrix having the following form

U(t) = diag
{

1
‖υ(t)‖

, 1, . . . , 1
}
. (36)

For implementing orthonormalization, 2(t) can be
selected according to the following relation

2(t) = Y (t)U(t)Y (t)H

=

[ g(t)
‖g(t)‖

... G(t)
]
U(t)

 g(t)H
‖g(t)‖
. . .

G(t)H


=

g(t)g(t)H

‖υ(t)‖‖g(t)‖2
+ G(t)G(t)H . (37)

Since g(t)g(t)H

‖g(t)‖2 + G(t)G(t)H = IL holds, eliminating the

term G(t)G(t)H in (37) yields

2(t) = IL + (
1
‖υ(t)‖

− 1)
g(t)g(t)H

‖g(t)‖2
. (38)

2) UPDATE FOR Z(t) USING 2(t)
For updating Z(t) in (24), we apply the matrix inversion
lemma to2(t) as

2(t)−1 =
[
IL +

(
1
‖υ(t)‖

− 1
)
g(t)g(t)H

‖g(t)‖2

]−1

= IL −

(
1
‖υ(t)‖ − 1

)
g(t)g(t)H

‖g(t)‖2

1+
(

1
‖υ(t)‖ − 1

)
g(t)H g(t)
‖g(t)‖2

= IL +
(‖υ(t)‖ − 1)
‖g(t)‖2

g(t)g(t)H

= IL + δ(t)g(t)g(t)H , (39)

where δ(t) = ‖υ(t)‖−1
‖g(t)‖2 . Substituting (38), (39) into (24) yields

Z(t) =
1
β
[Z(t − 1)− g(t)h′(t)H + ε(t)g(t)H ], (40)

where h′(t) and ε(t) are defined by

y′(t) =
1
‖υ(t)‖

[δ(t)g(t)+ y(t)] , (41)

h′(t) = Z(t − 1)Hy′(t), (42)

ε(t) = δ(t)
[
Z(t − 1)g(t)− g(t)h′(t)Hg(t)

]
. (43)

3) UPDATE FOR W(t) USING 2(t)
Orthonormalization ofW (t) needs to be implemented exactly
at each iterative step. Using2(t) in (38),W (t) in (25) can be
computed as follows. Substituting (38) into (25) yields

W (t) = W (t − 1)+
1
‖υ(t)‖

e(t)g(t)H

+ (
1
‖υ(t)‖

− 1)W (t − 1)
g(t)g(t)H

‖g(t)‖2

= W (t − 1)+ e′(t)g(t)H , (44)

where

e′(t) =
1
‖υ(t)‖

e(t)+ (
1
‖υ(t)‖

− 1)
W (t − 1)g(t)
‖g(t)‖2

. (45)

Substituting (41) into (45) yields

e′(t) =
1
‖υ(t)‖

x(t)−W (t − 1)y′(t). (46)

After some algebra, it can be shown that

W (t)HW (t) = 2(t)HT (t)HT (t)2(t)

= Y (t)U(t)HY (t)HT (t)HT (t)Y (t)U(t)Y (t)H

= IL . (47)

TABLE 1. Pseudo-code of the MFAPI algorithm.

IV. PSEUDO-CODE AND PERFORMANCE ANALYSIS
The computational cost for each of the detailed pseudo-code
of the MFAPI is presented in Table 1. As depicted in Table 1,
the computational complexity of MFAPI is approximately
(3NL+2N ). Hence, it is in the low-complexity class of algo-
rithms that requiresO(NL) operations. Compared to the com-
putational costs of the FAPI in [10, Table 3], the MFAPI algo-
rithm has the similar computation complexity to the FAPI.
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In summary, we emphasize that, from the implementation
point of view, the MFAPI is simpler and more stable than
FAPI. This is mainly because that the two algorithms realize
orthonormalization ofW (t) in different ways.

A. CONVERGENCE RATE ANALYSIS
As mentioned in the introduction section, almost all subspace
tracking algorithms can be categorized into two types based
on the way of their subspace tracking techniques are imple-
mented. In this section, a comparison on the convergence rate
of the both types is presented. The first kind of subspace
tracking algorithms, that can only track single subspace basis,
have similar form of the power iteration algorithm as men-
tioned in Sect. III-B. The second kind of methods, which
can simultaneously track dual subspace basis matrix with a
simple sign change, can be expressed as:

y(t) = W (t − 1)Hx(t), (48)
M(t) = W (t − 1)± µx(t)y(t)H , (49)
W (t) = orthonorm{M(t)}, (50)

where ‘‘+’’ represents that the algorithm can track signal
subspace while ‘‘−’’ represents tracking noise subspace. µ
is the step size with small value for numerical stability and
orthonorm{·} denotes the orthonormalization ofM(t).

Each kind of subspace tracking algorithms has a dif-
ferent exponential convergence rate at the transient-state
step. Here we do not analyze the performance of algo-
rithms at the steady-state step and recommend the inter-
ested readers to read [23] for more detail information.
As given in [7], the exponential convergence rates of the
first and second types of subspace tracking methods can
be expressed as (λL+1/λL)n and ((1+ µλL+1)/(1+ µλL))n,
respectively, where λL > λL+1. When the algorithm con-
verges to a steady-state point, we have limn→∞(λL+1/λL)n =
0 or limn→∞(((1+ µλL+1)/(1+ µλL))n = 0. Since µ > 0
is very small and 0 ≤ λL+1 < λL , we conclude easily that the
first kind has a faster convergence rate than the second kind.
The results presented in the simulation section also agree with
this analysis.

B. NUMERICAL STABILITY ANALYSIS
In this section, we analyze the numerical stability of MFAPI.
We particularly focus on the deviations between the product
W (t)HW (t) and the identity matrix IL . Similar analysis is
also given in [17]. Now, assume that W (t)HW (t) = IL +
ξ (t), where ξ (t) is difference from IL . Then, by means of
W (t)He(t) = 0 andW (t − 1)HW (t − 1) = IL + ξ (t − 1), it
follows that (51), as shown at the bottom of this page. Detail
derivations can be found in Appendix A.

FIGURE 1. Orthonormality error analysis of MFAPI with other algorithms.

Assuming ξ (t) is small at steady-state step (as seen
in Fig. 1, the value of ‖ξ (t)‖2F is approximately 10−30),

it follows that ‖υ(t)‖2 + g(t)H
‖g(t)‖ξ (t − 1) g(t)

‖g(t)‖ ≈ ‖υ(t)‖
2.

Consequently,

Y (t)HT (t)HT (t)Y (t)

=

 ‖υ(t)‖2
g(t)H

‖g(t)‖
ξ (t − 1)G(t)

G(t)H ξ (t − 1)
g(t)
‖g(t)‖

IL−1 + G(t)H ξ (t − 1)G(t)

 .
(52)

Equations (36), (47) and (52) yield

W (t)HW (t) =
g(t)g(t)H

‖g(t)‖2

+
1
‖υ(t)‖

G(t)G(t)H ξ (t − 1)
g(t)g(t)H

‖g(t)‖2

+
g(t)g(t)H

‖υ(t)‖‖g(t)‖2
ξ (t − 1)G(t)G(t)H

+G(t)G(t)H

+G(t)G(t)H ξ (t − 1)G(t)G(t)H . (53)

Replacing G(t)G(t)H = IL −
g(t)g(t)H

‖g(t)‖2 , (53) can be rewrit-
ten as

W (t)HW (t) = IL + ξ (t − 1)

+ (1−
2
‖υ(t)‖

)
g(t)g(t)H

‖g(t)‖2
ξ (t − 1)

g(t)g(t)H

‖g(t)‖2

+ (
1
‖υ(t)‖

− 1)
g(t)g(t)H

‖g(t)‖2
ξ (t − 1)

+ (
1
‖υ(t)‖

− 1)ξ (t − 1)
g(t)g(t)H

‖g(t)‖2
. (54)

Y (t)HT (t)HT (t)Y (t) =

‖υ(t)‖2 +
g(t)H

‖g(t)‖
ξ (t − 1)

g(t)
‖g(t)‖

g(t)H

‖g(t)‖
ξ (t − 1)G(t)

G(t)H ξ (t − 1)
g(t)
‖g(t)‖

IL−1 + G(t)H ξ (t − 1)G(t)

. (51)
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SubstitutingW (t)HW (t) = IL + ξ (t) into (54) yields

ξ (t) = ξ (t − 1)

+ (1−
2
‖υ(t)‖

)
g(t)g(t)H

‖g(t)‖2
ξ (t − 1)

g(t)g(t)H

‖g(t)‖2

+ (
1
‖υ(t)‖

− 1)
g(t)g(t)H

‖g(t)‖2
ξ (t − 1)

+ (
1
‖υ(t)‖

− 1)ξ (t − 1)
g(t)g(t)H

‖g(t)‖2
. (55)

With reference to the similar derivation in [17], we discuss
the numerical stability in two cases in the presence of differ-
ent SNR values:
Case 1: In high SNR region, since all the noise eigen-

values of sample covariance matrix are sufficiently small,
‖e(t)‖2 becomes sufficiently small (according to Karhunen-
Loève transform (KLT), the error of projection ‖e(t)‖2 =∑N

k=L+1 λk is used). From Equation (35) then it follows that
‖υ(t)‖ ≈ 1 and hence (55) can be rewritten as

ξ (t) = ξ (t − 1)−
g(t)g(t)H

‖g(t)‖2
ξ (t − 1)

g(t)g(t)H

‖g(t)‖2
+ 0(t),

(56)

where 0(t) is the numerical precision error and here we
assume 0(t) = 0. Applying the column-wise version
vec{ξ (t)} of ξ (t), (56) takes the form

vec{ξ (t)} = �vec{ξ (t − 1)}, (57)

where � = IL2 −
g(t)g(t)H

‖g(t)‖2 ⊗
g(t)g(t)H

‖g(t)‖2 and ⊗ denotes the
Kronecker product. In order to achieve the numerical sta-
bility, we need limt→∞ vec{ξ (t)} = 0 in (57). In this case
all eigenvalues of matrix � should be in the unit circle.
Since g(t)g(t)H

‖g(t)‖2 is positive definite and tr{ g(t)g(t)
H

‖g(t)‖2 } = 1, the

eigenvalues, γi(i = 1, 2, ...,L), of g(t)g(t)H

‖g(t)‖2 satisfy 0 < γi <

1(i = 1, 2, ...,L). Meanwhile, by using properties of the
Kronecker product eigenvalues, we can show the eigenvalues
of � satisfying

0 < (1− γiγj) < 1, i, j = 1, 2, ...,L. (58)

Case 2: In low SNR region, ‖e(t)‖2 is not sufficiently
small. However, according to Fig. 1, ‖ξ (t)‖2F is small enough
to be taken approximately equal to zero. Hence, the result-
ing derivation becomes very simple by directly taking
ξ (t − 1) = 0. In this case, (55) can be written as ξ (t) =
ξ (t − 1) ≈ 0.

Consequently, from the above discussions, we conclude
that the MFAPI is numerically stable.

V. SIMULATION RESULTS
In this section, computer simulation results are presented
to test the performance of the proposed MFAPI algorithm.
We note that the subspace tracking algorithms are extremely
rich in the literature and hence it is difficult to assess and
compare the performances of all the algorithms. In order
to have a relatively complete comparison, five well-known

algorithms (FAPI, OPAST, FDPM, SGYAST, and algorithm
proposed in [20]) are used for comparison. Among those
algorithms, FAPI and OPAST belong to the first type while
FDPM and the algorithm in [20] belong to the second
type (see the introduction section). As a stable version of
GYAST, SGYAST, is included since this method is newer
in the literature despite its higher computational complexity
O(6NL) than that of other algorithmsO(3NL) (here we do not
consider GYAST as a test bench due to its numerical insta-
bility, as discussed in [19]). We compare the performance of
these algorithms from two aspects: orthonormality error and
convergence rate.

A. ORTHONORMALITY ANALYSIS
Performance of subspace tracking methods can be measured
in part by orthonormality error ofW (t) and thus the following
criteria is commonly used to estimate this error.

10log10‖W (t)HW (t)− IL‖2F . (59)

Fig. 1 shows the orthonormality errors of OPAST, FAPI,
MFAPI, SGYAST, FDPM, and algorithm proposed in [20].
We observe that these algorithms all have superior perfor-
mance for orthonormality and the value reduces to about
−300 dB.

TABLE 2. Parameters used in subspace tracking methods.

B. CONVERGENCE RATE ANALYSIS
In this section, to test the convergence rates of theMFAPI and
FAPI, we consider estimation of the frequencies of signals
embedded in additive noise. We assume that frequencies
of three sinusoidal signals are estimated with the rank of
signal subspace basis matrix to be L = 3. Additionally, in
order to improve the performance of the algorithm, Root-
MUSIC method is also applied to the estimated subspace
basis matrix [24]. The SNR is chosen approximately 15dB as
in [17]. More detail configurations are also shown in Table 2.
In order to observe the convergence ability during sudden
steep rises or drops in frequencies, we set them change
abruptly at iteration points 100 and 400. Since MFAPI is a
modified version of FAPI, we compare the behavior of these
two algorithms first. As seen from the signal tracking perfor-
mance of MFAPI and FAPI in Fig. 2, both of these two algo-
rithms having capability to track the frequencies of signals,
even in the presence of abrupt situations. As Fig. 2 provides
an overall description, they have similar performances in the
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FIGURE 2. Tracking three signals with MFAPI and FAPI algorithm.

FIGURE 3. Tracking three signals with MFAPI and FAPI for local
enlargement.

context of signal detection and tracking. However, a more
clear differences between these algorithms can be observed
by a local enlargement, as seen in Fig. 3, where the MFAPI
has a faster convergence rate than FAPI at the transient-state
stage.

FIGURE 4. Tracking one signal with different algorithms.

Unlike Fig. 3, plotting the tracking curves of all the
three frequencies, Fig. 4 provides only a signal with fre-
quency 0.3 Hz for explicit comparison. The MFAPI and
other five algorithms (FAPI, OPAST, FDPM, SGYAST, and
algorithm proposed in [20]) are chosen as test benches
and it is evident that the proposed MFAPI method has a
faster convergence rate than all other algorithms at transient-
state steps except SGYAST, as depicted in Fig. 4 (Please
note although SGYAST has slightly better performance than
MFAPI, SGYAST has higher computation complexity). The
results clearly verify the conclusion of the analysis, presented
in Section IV.

VI. CONCLUSION
In this paper, a fast and stable subspace tracking algorithm
with low complexity is provided. The proposed algorithm
has the similar computational complexity as FAPI. Instead
of solving the inverse square root of matrix as employed in
FAPI, the proposed algorithm applies direct matrix product
to ensure the orthonormality of subspace basis matrix at each
recursion, that has more simpler derivation. Additionally,
the new algorithm is proven to be numerically stable as
shown by the detail mathematical inference. Finally, regard-
ing the convergence rate at transient-state step, our improved

Y (t)HT (t)HT (t)Y (t) =

 g(t)H

‖g(t)‖
W (t − 1)HW (t − 1)+ ‖g(t)‖eH (t)e(t)g(t)H

G(t)HW (t − 1)HW (t − 1)

[ g(t)
‖g(t)‖

...G(t)
]

=


g(t)H

‖g(t)‖
W (t − 1)HW (t − 1)

g(t)
‖g(t)‖

+ ‖g(t)‖2‖e(t)‖2
g(t)H

‖g(t)‖
W (t − 1)HW (t − 1)G(t)

G(t)HW (t − 1)HW (t − 1)
g(t)H

‖g(t)‖
G(t)HW (t − 1)HW (t − 1)G(t)

 (62)

Y (t)HT (t)HT (t)Y (t) =


g(t)H

‖g(t)‖
ξ (t − 1)

g(t)
‖g(t)‖

+1+‖g(t)‖2‖e(t)‖2
g(t)H

‖g(t)‖
ξ (t − 1)G(t)

G(t)H ξ (t − 1)
g(t)
‖g(t)‖

IL−1+G(t)H ξ (t − 1)G(t)



=

‖υ(t)‖
2
+

g(t)H

‖g(t)‖
ξ (t − 1)

g(t)
‖g(t)‖

g(t)H

‖g(t)‖
ξ (t − 1)G(t)

G(t)H ξ (t − 1)
g(t)
‖g(t)‖

IL−1 + G(t)H ξ (t − 1)G(t)

 (63)

VOLUME 6, 2018 43143



Q. Wu et al.: Improved Adaptive Subspace Tracking Algorithm Based on Approximated Power Iteration

algorithm yields the fastest convergence rate among exist-
ing subspace tracking methods with computation complexity
O(3NL) as verified by numerical simulations.

APPENDIX I. DERIVATION OF EQUATION (51)
Equations (31), (33) yield

Y (t)HT (t)H

=

 g(t)H
‖g(t)‖
· · ·

G(t)H

[W (t − 1)H + g(t)e(t)H
]

=

 g(t)H
‖g(t)‖W (t − 1)H + ‖g(t)‖e(t)H

G(t)HW (t − 1)H

 (60)

Equation (60) post-multiplied by T (t) yields

Y (t)HT (t)HT (t)

=

 g(t)H

‖g(t)‖
W (t−1)H+‖g(t)‖e(t)H

G(t)HW (t−1)H

[W (t − 1)+e(t)g(t)H
]

=

g(t)
H

‖g(t)‖
W (t−1)HW (t−1)+‖g(t)‖e(t)He(t)g(t)H

G(t)HW (t−1)HW (t−1)


(61)

The next step derivation, Equation (62), can be found at the
bottom of the previous page.

By usingW (t − 1)HW (t − 1) = IL + ξ (t − 1) we obtain
(63), as shown at the bottom of the previous page.
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