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ABSTRACT Dementia alters the brain wiring on different levels. However, these changes might be subtle
particularly in patients with early mild cognitive impairment (eMCI). Hence, developing accurate diagnostic
techniques for eMCI identification is critical for early intervention to prevent the onset of Alzheimer’s
disease (AD). There is a large body of machine-learning-based research developed for classifying different
brain states (e.g., AD vsMCI) using neuroimaging data. These works can be fundamentally grouped into two
categories. The first one uses correlational methods, such as canonical correlation analysis (CCA) and its
variants, with the aim to identify most correlated features for diagnosis. The second one includes discrimina-
tive methods, such as feature selection methods and linear discriminative analysis (LDA) and its variants to
identify brain features that discriminate between two brain states. However, existing methods examine these
correlational and discriminative brain data independently, which overlooks the complementary information
provided by both techniques, which could prove to be useful in data classification tasks. On the other hand,
how early dementia affects cortical brain connections in morphology remains largely unexplored. To address
these limitations, we propose a cooperative correlational and discriminative ensemble learning framework for
eMCI diagnosis that leverages a brain network representation from multiple morphological networks, each
derived from the cortical surface. Specifically, we devise the shallow convolutional brain multiplex (SCBM),
which encodes both region-to-region and network-to-network relationships. Then, we represent each indi-
vidual brain using a set of SCBMs, which are used to train an ensemble of CCA-SVM and LDA-based
classifiers, cooperating to output the label for a new testing subject. Overall, our framework outperformed
several state-of-the-art methods including independent correlational and discriminative methods.

INDEX TERMS Morphological brain network, multi-view brain data, canonical correlation analysis,
discriminative methods, linear discriminant analysis, ensemble classifier, brain multiplex.

I. INTRODUCTION
The increasing frequency of dementia occurring is an alarm-
ing trend that has prompted urgent research with the goal
of preventing the development of the disease. Diagnos-
ing dementia in its early stages is a crucial step in pre-
venting the development of the disease into worsened
symptoms [1]. Early mild cognitive impairment (eMCI) is
an early stage of dementia which affects the brain func-
tion and cognition in subtle ways. These can be challenging
to identify when mapping brain connections using Mag-
netic Resonance Imaging (MRI) of a disordered brain [2].

Developing a deeper understanding of how early stages of
dementia alter specific brain connections in patients might
improve the likelihood of earlier diagnosis and assist in
treating patients. Within this scope, several machine learn-
ing approaches leveraged multimodal MRI data includ-
ing resting-state functional MRI (rsfMRI) and diffusion
MRI (dMRI) to distinguish between patients with MCI and
healthy controls [3]. However, the very early brain states
of dementia including eMCI remain mostly overlooked in
previous works when compared with later states such as
AD and MCI.

43830
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-5595-6673


R. Raeper et al.: Cooperative Correlational and Discriminative Ensemble Classifier Learning

Recent machine-learning methods were devised for MCI
identification using connectomic brain data [4], [5]. How-
ever, existing works mainly used functional brain networks
(derived from rsfMRI) and structural networks (derived from
dMRI) [6]. These exclude the recent landmark works [7]–[9],
which devised morphological brain networks (MBN) for
mapping morphological ‘connections’ in the cortex to
circumvent the limitations of functional and structural
connectomes [10], [11]. Basically, an MBN is generated by
measuring the difference in morphology between two cortical
regions based on a specific cortical attribute (e.g., sulcal
depth). More importantly, [7]–[9] proposed to embed multi-
ple brain networks into a multiplex network structure com-
posed of intra-layer and inter-layer networks. Each intra-layer
network in the multiplex represents an MBN derived from
a specific cortical attribute, whereas an inter-layer net-
work is a network-to-network similarity inserted between
two consecutive intra-layers. The integrated inter-layer
network is able to capture high-order brain alterations
at the morphological level. While [9] used correlational
inter-layers in the brain multiplex structure for late demen-
tia diagnosis, [7] proposed convolutional inter-layers pro-
duced by convolving two consecutive MBNs (intra-layers)
in the multiplex for early dementia stratification. Notably,
both multiplex architectures outperformed conventional
single-layer and multi-layer brain network representations.
Furthermore, while [9] used a machine learning method that
identifies discriminative connectional features for demen-
tia classification, [7] proposed a correlation-based ensem-
ble learning framework, which identifies highly correlated
multiplex features. Such approaches disentangle correlational
from discriminative approaches, whichmight limit our under-
standing of disordered connectional changes in the diseased
brain.

As shown in [7] and [9], a prevalent practice for
improving classification accuracy is to identify features
which contain useful information for the classifier train-
ing. In particular, reducing redundant features and primarily
focusing on features which have been scrutinized proves
to be a useful technique when applied to a classification
problem, especially with the growing dimensionality and
complexity of data. These existing sample classification
approaches can be categorized into two primary groups:
methods that aim to identify highly correlated features,
and methods that seek to identify the most discriminative
features.

The first group, correlational methods, aims to identify
highly correlated features within the data, selecting a sub-
set of features from the original data with the purpose of
removing redundancy which might hinder prediction accu-
racy. A wide body of correlational methods can be covered
with canonical correlation analysis (CCA) [7], [8], [12], [13]
and its variants. CCA, broadly speaking, maps input fea-
tures into a shared space where features are more compa-
rable and hence, their correlation can be maximized. The
projected correlational features in the shared space are then

fused together, which reduces the dimensionality of the
original data. Several CCA variants have been developed
including sparse CCA (sCCA) [14] and non-linear kernel
CCA (kCCA) [15]. Specifically, with the proliferation of
multi-view data, multi-view CCA (MvCCA) [16], [17] and
Tensor CCA (TCCA) [18] were designed with the aim of
maximizing the correlation between an arbitrary number of
views. In addition to these, there are several innovations
upon existing CCA variants such as two-stage kernel CCA
(TSKCCA) [19] which by implementing L1-regularization
allows for a more reliable identification of non-linear cor-
relations, improving upon KCCA and other existing CCA
methods.

The second group, discriminative machine learning
approaches, aim to maximize the distinction between sets
of data allowing for a reduction in dimensionality. There
are a number of discriminative approaches, such as Linear
Discriminant Analysis (LDA) [20], where the input features
are projected onto a space where their disparity and dis-
criminability are maximized. These were previously used
to predict Alzheimer’s disease progression from structural
imaging [21]. Other methods include discriminative feature
selection methods such as Mutual Information (MutInf-
FS) [22], which prioritizes minimizing the redundancy in
data while maximizing the dependency and relevance of
features, or Multi-Cluster Feature Selection (MCFS) [23],
thereby reducing the data dimensionality while maintain-
ing its structure. Other approaches such as Infinite Feature
Selection (Inf-FS) [9], [24] modeled the relationship between
sets of features using a graph to identify groups of highly
connected discriminative nodes.

However, a fundamental limitation of the above methods
and works reviewed in [25] consists in either identifying cor-
relational or discriminative features for stratifying dementia
states. This overlooks the complementary information that
can be integrated from both correlational and discriminative
approaches to further improve the eMCI/NC classification
accuracy.

To fill this gap, we propose a cooperative correlational
and discriminative ensemble learning framework, which first
pairs brain multiplexes, each generated using a different set
of MBNs. Each pair of training multiplexes is then communi-
cated to two different blocks of our framework: the first block
includes a set of K discriminative classifiers and the second
block includes a set of K correlational classifiers. Ultimately,
a pair of testing multiplexes will pass through correlational
and discriminative classification blocks, thereby outputting
2K labels. By aggregating the labels predicted by all blocks
for all pairs of multiplexes, we obtain the final label for the
target testing subject. In addition to this landmark contribu-
tion, we leverage a multi-layer brain network architecture,
the shallow convolutional brainmultiplex (SCBM) [8], which
unlike the deep CBM proposed in [7], is generated using
only two MBNs. This avoids creating redundant features
when pairing multiplexes prior to passing them forward to
classifiers.
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FIGURE 1. Pipeline of the proposed cooperative correlational and discriminative ensemble learning using brain multiplexes. (A) shows
the construction of the multiplex where the inter-layers are created between two intra-layers (two MBNs derived from the cortical surface).
(B) For all possible combinations of multiplex pairs, each pair of multiplexes is passed into the ensemble framework, consisting of a
correlational learning block (where they are mapped by CCA and classified by SVM) and a discriminative block (where they are mapped
and separated into two classes by LDA). The two blocks produce predicted class labels for the test subjects based on analysis of
subsequent pairs of multiplexes. The final class label is assigned through majority voting on labels assigned by the two blocks.

II. PROPOSED METHOD
In this section, we design a shallow convolutional brain mul-
tiplex to encode low-order and high-order brain connections
and present our novel cooperative correlational and discrim-
inative ensemble learning framework. Fig. 1 illustrates the
different steps for (A) shallow convolutional brain multi-
plex construction from cortical surface, and (B) multi-source
SCBM data pairing for training the correlational block com-
prising a set of CCA-based SVM classifiers and the discrim-
inative block including a set of LDA classifiers. Below we
detail the different steps of our eMCI/NC classification task.

A. SINGLE-VIEW MORPHOLOGICAL BRAIN
NETWORK (MBN) CONSTRUCTION
For each cortical attribute (e.g., cortical thickness), we con-
struct a single-view network for each subject. Such network
comprises a set of nodes (anatomical brain regions of interest
–ROIs) and a collection of edges interconnecting the nodes
(representing the dissimilarity between the two brain regions
in morphology). The average value of a cortical attribute was
calculated for each anatomical region of interest (ROI). For
each cortical attribute, the strength of each network edge
connecting two ROIs is then computed as the absolute dif-
ference between their average values, thereby quantifying
their dissimilarity (Fig. 1). The same procedure was followed

to obtain the connectivity matrices from different cortical
attributes (e.g., sulcal depth, mean curvature).

B. SHALLOW CONVOLUTIONAL BRAIN
MULTIPLEX (SCBM) CONSTRUCTION
In a generic way, we define a brain multiplex M using a
set of M intra-layers (or MBNs) {V1, . . . ,VM }, each rep-
resenting a single view of the brain morphology (i.e., cor-
tical attribute). Next, we slide an inter-layer Ci,j between
two consecutive intra-layers Vi and Vj. Each inter-layer is
created by convolving two consecutive intra-layers. Each
element in row a and column b within the convolutional
inter-layer matrix Ci,j between views Vi and Vj is defined
as: Ci,j(a, b) =

∑
p
∑

q Vi(p, q)Vj(a− p+ 1, b− q+ 1).
The multiplex architecture allows not only to explore how
different brain views get altered by a specific disorder, but
how their relationship might get affected. Since the morpho-
logical brain connectivity matrices are symmetric (Fig. 1–A),
we extract features from eachMBN by directly concatenating
the off-diagonal weights of all connectivities in each trian-
gular matrix. For each network of size n × n, we extract a
feature vector of size (n × (n − 1)/2). Previously, in [7],
the generalized multiplex architecture was proposed: M =

{V1,C1,2,V2, . . . ,Vj,Ci,j,Vj, . . . ,VM }. Next, to capture
the inter-relationship between all possible combinations of
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intra-layers in a multiplex, a set of N multiplexes were gen-
erated for each subject through reordering the intra-layer net-
works, thereby generating an ensemble of brain multiplexes
M = {M1, . . . ,MN }. However, this approach resulted
in many highly correlated features used for the ensemble
learning, which may somewhat mislead classifier learning.
To minimize the correlation between different multiplexes
when pairing them for ensemble classifier training, we design
a shallow (i.e., 2-layer) convolutional brain multiplex struc-
ture. We define a shallowmultiplexM = {Vi,Ci,j,Vj} using
2 intra-layers Vi and Vj and an inter-layer Ci,j encoding the
relationship between Vi and Vj, slid in between them [8]
(Fig. 1–A).We note that each subject-specific brainmultiplex
M in M captures unique similarities between 2 different
morphological brain network views (e.g., sulcal depth net-
work and cortical thickness network) that are not present in a
different shallow multiplex.

C. PROPOSED CANONICAL CORRELATIONAL AND
DISCRIMINATIVE MAPPINGS OF SCBM SETS
Since each multiplex Mk ∈ M captures a unique and
complex relationship between different brain network views,
one needs to examine all morphological brain multiplexes in
the ensemble M. This will provide us with a more holistic
understanding of how explicit morphological brain connec-
tions can be altered by dementia onset as well as how their
implicit high-order (a connection of connections) relationship
can be affected. To make use of all the information avail-
able from different multiplexes, in the correlational learning
block of our framework (outlined in green Fig. 1–B), we use
CCA [12], [13] to map pairs of multiplex feature vectors
extracted from different sets into a shared subspace that
depicts highly-correlated relevant features. This correlational
block allows to minimize the multiplex set-specific noise and
reduces multiplex data dimensionality. Next, we use each
fused correlational pair of training multiplex features M̃c

k,l
to train a linear support vector machine (SVM) classifier
(Fig. 1–B). Noting that for each training subject we have N
multiplexes estimated, we perform C2

N mappings of each pair
of SCBMs inM.
Simultaneously, we train the paralleled discriminative

block (outlined in red Fig. 1–B) aggregating sets of regular-
ized LDA classifiers using the paired SCMBN features from
different sets in a supervised manner. Additionally, each LDA
classifier attempts to maximize the difference between mul-
tiplex features so that there are distinct groups based on the
given class labels. All training multiplex features are mapped
into a discriminative space guided by the labels, where the
discriminative paired multiplex features are generated M̃d

k,l .
In the testing stage, we map each pair of testing multiplex
feature vector onto their corresponding CCA space where
they are communicated to an SVM and LDA classifiers,
respectively. Finally, to identify the label of the testing sub-
ject, we use majority voting by selecting the highly frequent
predicted label outputted by classifiers in both blocks.

III. RESULTS & DISCUSSION
A. EVALUATION DATA
We evaluated the proposed classification framework using
84 subjects (42 eMCI and 42 NC) from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) GO database
(adni.loni.usc.edu), each with structural T1-w MR image.
The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression ofmild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

We used FreeSurfer [26] to reconstruct both right and left
cortical surfaces for each subject from T1-w MRI. Then
we parcellated each cortical hemisphere into 35 cortical
regions using Desikan-Killiany Atlas. For the deep CBM,
we defined N = 6 multiplexes, each using M = 4
MBNs, anchored at V1. For each cortical attribute (sig-
nal on the cortical surface), we compute the strength of
the morphological network connection linking ith ROI to
the jth ROI as the absolute difference between the aver-
aged attribute values in both ROIs. Multiplex M1 includes
cortical attribute views {V1,V2,V3,V4}, M2 includes
{V1,V2,V4,V3}, M3 includes {V1,V3,V4,V2}, M4
includes {V1,V3,V2,V4}, M5 includes {V1,V4,V2,V3},
andM6 includes {V1,V4,V3,V2}. For each cortical region,
V1 denotes the maximum principal curvature brain view, V2
denotes the mean cortical thickness brain view, V3 denotes
the mean sulcal depth brain view, and V4 denotes the mean
average curvature brain view. As for the proposed SCBM,
we define N = C2

4 = 6 shallow multiplexes, by considering
all possible pairings of 2 views out of 4. For our experiments,
we created 4 representations of MBN data: (1) ‘Views’ by
concatenating all MBNs, (2) ‘Correlational multiplexes’ with
inter-layer computed using Pearson correlation, (3) ‘Con-
volutional multiplexes’ composed of 4 intra-layers with
inter-layers generated using 2D convolution, and (4) ‘Shallow
convolutional multiplexes’ composed of 2 intra-layers with
inter-layers generated using 2D convolution.
Remark: In the convolutional brain multiplexes, the con-

volution operation between intra-layers captures the signal
within a subgraph (a small patch in the connectivity matrix)
extracted from a first layer (whole matrix) as an expression of
other subgraphs extracted from a second layer. One can think
of the inter-layer network as a ‘high-order blending’ of both
intra-layers, expressing the amount of overlap of intra-layer 1
as it is shifted over intra-layer 2.

B. EXPERIMENT SETUP
To demonstrate the effectiveness of integrating correla-
tional and discriminative methods into a single framework,
we benchmarked our method against several discrimina-
tive methods including: Eigenvector Centrality (ECFS) [27],
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Mutual Information (MutInf-FS) [28], and Infinite Feature
Selection (Inf-FS) [24]. We also benchmarked our method
against the CCA-based eMCI/NC classification framework
in [7]. We also evaluated the performance of each of the
aforementioned discriminative methods when combined with
CCA using our proposed framework. Additionally, we bench-
marked against newer discriminative and correlational meth-
ods, Tensor CCA (TCCA) [18], the multi-view Discriminant
Analysis (MvDA) [29], and finally the two methods com-
bined into a paired classifier.

The first method, Tensor CCA (TCCA) [18], utilizes ten-
sors for a correlation analysis of an arbitrary number of views.
Specifically, TCCAmaps multiple views into covariance ten-
sors where correlated features can be identified, maximizing
the correlation between several views and hence improving
upon traditional CCA methods which are optimized for pair-
wise correlation. Furthermore, TCCA is capable of identify-
ing high order correlation information by also adopting the
alternating least squares (ALS) algorithm, further improv-
ing upon its correlational counterparts. The second method,
Multi-view Discriminant Analysis (MvDA) [29], follows a
similar process by extending traditional LDA to support
multiple views. MvDA aims to maximize the between-class
variations while simultaneously minimizing any within-class
variance, consequently highlighting discriminative features.
Subsequently, we combine both MvDA and TCCA into a
single framework for a final benchmark, to allow for the
analysis of the shared information between the correlational
and discriminative methods.

We used leave-one-out cross-validation (LOO) to evaluate
our proposed method and its comparison methods. Specif-
ically, using a support vector machine (SVM), we train a
model on the data with the number of subjects minus one
and subsequently predict a label for the remaining subject.
This process is repeated until there are predicted labels for
every subject where they can be compared to the ground
truth labels, producing an accuracy, sensitivity and specificity
scores. Furthermore, due to MvDA containing an optimiza-
tion variable, λ, we tuned it using 5-fold cross-validation,
starting with λ = 0.1 and iterating through to 0.9 with a step
size of 0.1. This form of nested cross-validation was used for
two other variables in the experiment. Specifically, the num-
ber of selected features for ECFS and MutInfFS were auto-
matically tuned using a similar nested 5-fold cross-validation
technique, where the feature size varied from 50 to 400
with a step size of 50. Additionally, we empirically tuned
specific variables in TCCA due to the cumbersome run-
time of the method. We set the optimization variable ε to
0.5 and tuned the number of features for each data type.
Finally, ECFS, TCCA, and MvDA required dimensionality
reduction on high-dimensional data, due to computational
limitations and memory overload. Consequently, PCA was
applied to the data for dimensionality reduction. In particular,
for ECFS method, we applied PCA to the deep convolutional
multiplexes as it was unable to handle high dimensional
data.

Table 1 displays the accuracy, sensitivity, and specificity
for each method. Each benchmark method shows results
for morphological views, correlational multiplexes [9], deep
convolutional multiplexes [7], and shallow convolutional
multiplexes in both hemispheres. Additionally, in Fig. 2,
we show the comparison between independent LDA, CCA,
and our proposed method via column graph, showing the
accuracy for each data type.

FIGURE 2. Classification accuracy for all data types in both the left and
right hemispheres. Shown are the proposed method, Ensemble LDA and
CCA-SVM Paired Classifiers, and its derivative methods Ensemble SVM
Paired Classifiers using CCA and Ensemble LDA Paired Classifiers. All
methods were applied to different multi-view brain network data
representations.

The best accuracy was attained using the proposed frame-
work with shallow convolutional multiplexes for the right
hemisphere, with an accuracy of 80.95% (Fig. 2). The pro-
posed framework improved upon the independent methods,
increasing the accuracy by 3-7% in the right hemisphere.
The left hemisphere results show a contrasting conclusion,
achieving the best accuracy using independent LDA with
correlational multiplexes (76.19%). These conclusions can be
seen clearly in Fig. 2. This difference in accuracy between
hemispheres might be explained by the way early dementia
biomarkers manifest in the data, sometimes being more diffi-
cult for certain methods to identify.

C. IDENTIFYING THE MOST DISCRIMINATIVE FEATURES
To identify the top 10 most discriminative features of each
view (cortical region), we applied ECFS which returned a
ranking of features, from the most to the least discriminative
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TABLE 1. Average eMCI/NC classification accuracy using our method and different comparison methods.

which allowed us to select the optimal number of features.
We note that we used ECFS as it is the second best dis-
criminative method that allows to track the original features
unlike LDA which projects the features. The ranked features
were averaged between all subjects to produce circular graphs
showing themost common top features for each view (Fig. 3).

Weights were then produced for each feature where they
were correlated with the thickness of the edge in the circular
graph. The most highly correlated features are not shown due
to neither TCCA nor CCA returning a ranking of features
but directly projecting the data within their methods, which
inhibits tracking of the original features.
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FIGURE 3. Circular graphs displaying the top 10 most discriminative
features and the corresponding regions of the brain identified by ECFS.
Each view denotes a certain feature: View 1 shows the maximum principle
curvature; View 2 shows the mean cortical thickness; View 3 shows the
mean sulcal depth; and View 4 shows the mean average curvature.

There are several compelling observations that can bemade
from the circular graphs shown in Fig. 3. The most prominent
of which is the significance of the entorhinal cortex which
appears to be a primary hub in all views and both hemi-
spheres, as it is present in every connection. This also may
indicate the significance of this region as a strong biomarker
for detecting early stages of dementia. Another notable obser-
vation occurs in the right hemisphere’s view 3 (mean sul-
cal depth) where there is a strong connection between the
transverse temporal cortex and the parahippocampal gyrus,
neither of which appear in any other view. This may be due
to the parahippocampal gyrus’ proximity to the entorhinal
cortex, causing it to be affected by early stages of demen-
tia. Finally, the posterior-cingulate cortex is a prominent
feature in views 1 (maximum principle curvature) and 4
(mean average curvature), occurring in both hemispheres,
although more pronounced in the left. Like the entorhinal
cortex, the posterior-cingulate cortex is a highly connected

hub node, and may also be a key biomarker to aid in the
diagnosis of early dementia.

D. PERFORMANCE OF PROPOSED METHOD
We proposed a novel framework that pairs discriminative
and correlational methods together to leverage the comple-
mentary information that can be neglected when only one
of the approaches is used. Furthermore, we improved upon
existing deep convolutional brain networks by using a 2-layer
alternative which shows the relationship between 2 views,
while also reducing the high dimensionality and redundant
features of the deep convolutional multiplexes.

Our proposed framework significantly outperformed sev-
eral comparison methods when focusing on both the deep
and shallow brain multiplexes in the right hemisphere. These
conclusions are shown clearly in Fig. 2, where the combined
LDA and CCA method has a large margin of increase over
their independent counterparts. The left hemisphere produced
contrasting results, with independent Linear Discriminant
Analysis (LDA) achieving the highest accuracy using cor-
relational data. These opposing results might indicate that
early stages of dementia affect the hemispheres in distinct
ways. While also producing superior results with the pro-
posed method, it was also observed that pairing both corre-
lational and discriminative methods significantly improved
results for data in the right hemisphere, when compared to any
of the independent discriminative methods. Both ECFS and
MutInf-FS improved their accuracy when paired with CCA
for the shallow data in the right hemisphere, yielding their
highest results, further demonstrating the proposed frame-
work’s improvement.

The benchmark methods maintained a consistent per-
formance with the proposed framework; however, the
performance in the left hemisphere was notably lower.
One interesting result was with the newly proposed meth-
ods TCCA, MvDA and their paired classifier, which
achieved very high accuracies individually but were some-
how weakened when paired. One potential factor for their
reduced accuracies was the addition of principle compo-
nent analysis (PCA) as neither method can directly handle
high-dimensional data. PCA has proven to affect the accuracy
of classification as it can reduce reduncancy; however, it can
also remove useful features and hence affect the performance
either way [30], [31]. The effect of PCA may also be noted
within the fluctuations in the performance of ECFS using
convolutional data.

E. PERFORMANCE OF LEFT & RIGHT HEMISPHERES
An interesting observation to note is the disparity between
accuracies from the left and right hemispheres. While the
right hemisphere performs relatively well, the left severely
underperforms with almost all methods, including the pro-
posed framework, with the exception of Linear Discriminant
Analysis (LDA). Despite the contrasting conclusion from
the right hemisphere, pairing discriminative and correlational
methods is detrimental to the classification accuracy in the
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left hemisphere when compared to standalone discriminative
methods. This may be explained by the severe underper-
formance of the CCA fusion method, which can be seen
in Table 1, where there is up to a 10% decrease in accu-
racy between hemispheres. This disparity can be observed
in Fig. 2 where the classification accuracy significantly
improves when the correlational and discriminative accura-
cies are similar individually. However, when the disparity
between the correlational and discriminativemethods is large,
the accuracy generally averages between the two instead
of improving. This is probably due to the majority voting
being heavily biased towards the lower accuracy, pushing the
classifier to select the incorrect label.

F. ANALYSIS OF MOST DISCRIMINATIVE FEATURES
Using ECFS to identify the top most discriminative features
for each view, we could identify significant biomarkers for
displaying early signs of dementia. The most notable finding
was the prominence of the entorhinal cortex where almost all
the top 10 features were connected.While being a hub node in
the brain responsible for numerous connections, the entorhi-
nal cortex is also notable for being one of the first regions to
be affected by early states of dementia [32], [33] and is hence
a crucial biomarker to analyze when diagnosing eMCI. Fur-
thermore, another notable region was the posterior cingulate
cortex which occurs multiple times in the maximum principle
curvature and the average mean curvature views. The promi-
nence of this identified region can possibly be explained by
the proximity to the affected entorhinal cortex, indicating
that the spread of dementia starts at hub nodes then spreads
outwards into connected regions. Interestingly, the posterior-
cingulate cortex, which also appeared frequently, is another
dominant hub node commonly identified as one of the first
affected regions by dementia [34]. These findings may assist
in identifying early states of dementia by clearly displaying
significant biomarkers and patterns in brain scans of the
affected patients. Additionally, it was observed that the most
prominent identified features remained consistent across all
the morphological brain views, which might indicate that
dementia affects the brain morphology uniformly. Further
analysis could be made for identifying prominent features by
finding a correlational method which allows us to better track
the most relevant features.

G. SHALLOW VS. DEEP CONVOLUTIONAL
BRAIN MULTIPLEXES
A limitation of the deep convolutional multiplexes was the
possible redundancy of data due to its high dimensional-
ity. Since different deep multiplexes contain overlapping
sets of features, resulting in highly-correlated input data,
it might result in a suboptimal ensemble performance. Hence,
the shallow multiplex structure solved this problem by reduc-
ing the correlation between individual classifiers in the
ensemble and overall produced a better ensemble classi-
fier performance compared to the ensemble classifier using
deep convolutional multiplex structure. The utilized shallow

convolutional brain multiplex (SCBM) consistently outper-
formed concatenated MBN views and correlational brain
multiplexes across all methods within the right hemisphere
–except for independent ECFS.

H. LIMITATIONS & FUTURE WORK
To further improve the proposed classification architecture,
it is essential to address the limitations found with the anal-
ysis of the results attained in our experiment. In particular,
the performance of the proposed framework and comparison
methods within the left hemisphere are a significant limita-
tion. Both the correlational and discriminative methods have
a large disparity in their performance between hemispheres,
with the right hemisphere consistently giving better results.
The benchmark CCA method performs particularly poorly in
the left hemisphere, and noticeably has a negative effect upon
the paired method’s performance. Generally, the left hemi-
sphere contains features which might be harder to identify,
with dementia possibly manifesting in significantly different
ways across hemispheres. Additionally, the discriminative
methods perform poorly on the left hemisphere, with both
ECFS and MutInf-FS losing a considerable accuracy.

Finding methods which further improve the results of the
left hemisphere would be a suitable initial direction for future
work. For improving the correlational block of our frame-
work, one can use methods that go beyond linear correla-
tions and better identify sparse feature correlations such as
Sparse CCA, or Kernel CCA. Additionally, a more tuned
optimization of Tensor CCA (TCCA) may also be applicable
to the problem as it showed promising results. Improving the
discriminative methods could also have a significant impact
on improving the combined accuracy. Finding more discrim-
inative feature selection methods which rank features, like
ECFS and MutInf-FS, may be a useful addition as a more
accurate method could identify more biomarkers within the
left hemisphere. Furthermore, tuning the selected features for
ECFS andMutInf-FS, by using smaller step-sizes, could have
a positive affect on the classification as they would identify
only the most reliable features that differentiate between both
groups.

IV. CONCLUSION
Diagnosing early brain symptoms of dementia such as early
Mild Cognitive Impairment (eMCI) is vital to prevent wors-
ening of symptoms. To assist this diagnosis, we proposed a
cooperative correlational and discriminative ensemble learn-
ing framework using shallow convolutional brain multi-
plexes. Ourmethod attained a large increase in accuracywhen
using both the shallow and deep convolutional data against
several benchmark methods including [7], and numerous dis-
criminative methods. A reported increase of over 7% was
attained for the shallow data which supports our theory that
utilizing both correlational and discriminative analysis meth-
ods yields an increase in overall performance when focusing
on the right hemisphere. Another conclusion drawn from
these results is that similar accuracy between the shallow and
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deep convolutional data is obtained with the shallow having a
higher prediction accuracy frequently. This shows that inves-
tigating the similarity between two brain networks can be
convenient when analyzing the multi-level effects dementia
has on brain connections. In our future work, we will explore
other correlational and discriminative methods that are based
on feature ranking and avoid projections, thereby allowing
to identify the original features most relevant to the target
classification task. Inspired by how convolutional neural net-
works work, we will also leverage existing deep learning
methods [35] to automatically learn multiplex inter-layers
for a more powerful and generalizable training of our
ensemble.
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