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ABSTRACT A new approach is undertaken to solve the fully fuzzy multiobjective linear programming
(FFMLP) problem. The coefficients of the objective functions, constraints, right-hand-side parameters, and
variables are of the triangular fuzzy number (TrFN)s. A solution strategy, called compromise solution
algorithm (CSA), is presented using a three-step procedure. First, a revised simplex method together with
Gaussian elimination in the environment of the linear ranking function is used to convert the FFMLP
problems partially into semi fully fuzzy multiobjective linear programming (SFFMLP) problems. Then,
the obtained SFFMLP problems are gathered together as a single problem. Finally, the gathered problem
is solved by one of four different methods to find a fuzzy compromise solution for the FFMLP problems.
The CSA is then numerically applied to a FFMLP problem to illustrate the practicability of the proposed
procedure.

INDEX TERMS FFMLP problems, SFFMLP problems, FFLP problem, SFFLP problem, CSA, simplex
method and Gaussian elimination, fuzzy simplex method, linear ranking function, and fuzzy compromise
solution.

I. INTRODUCTION
Zimmermann [1] first modelled fuzzy linear program-
ming (FLP) problem and later applied it to fuzzy environment
[2], which then evolved qualitatively and continuously [3].
Maleki et al. [4] proposed a method for solving FLP prob-
lem with uncertain vagueness constraints by using linear
ranking functions. Ranking fuzzy numbers and their com-
mon methods were then reviewed by Wang and Kerre [5].
Gasimov and Yenilmez [6] discussed the solution of the FLP
problems via linear ranking function. Nehi et al. [7] proposed
the lexicographic ranking function of the fuzzy numbers to
solve FLP problems using fuzzy numbers.

Buckley and Feuring [8] as well as Maleki [9] each
considered a kind of FLP problems, and separately pro-
posed an approach to solve them. The duality of the FLP
problems in the fuzziness relations was considered by
Inuiguchi et al. [10]. The fuzzy primal problems for linear
programming(LP) problems and its fuzzy duality were mod-
elled by Wu [11]. Special classes of the FLP problems
through fuzzy relationship and based on the duality concept
were discussed by Ramik [12].

Mahdavi-Amiri and Nasseri [13] considered the FLP
problems and solved them by using a certain linear rank-
ing function using comparison fuzzy numbers. Ganesan and
Veeramani [14] considered types of LP problems and mul-
tiobjective linear programming (MLP) problems where the
right hand side of the constraints and the variables are fuzzy
assertions. Mahdavi-Amiri and Nasseri [15] applied a linear
ranking function to order trapezoidal fuzzy numbers. They
established the dual problem of the LP programming problem
with trapezoidal fuzzy variables. Methods were proposed to
convert the FLP problem to its corresponding deterministic
LP problem, based on the attained values of fuzzy num-
bers [16]–[18].

The optimality conditions for LP problems had been
derived for the FLP problems by Wu [19]. Multi-
objective fuzzy linear programming (MFLP) problems
were then converted into vector optimization program-
ming problems via defuzzification functions [20]. Iskan-
der [21] utilized possibilistic programming to convert
MFLP problems into their modified equivalent crisp
problems.
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A fully fuzzy linear programming(FFLP) with TrFNs was
considered by Lotfi et al. [22]. Several researchers proposed
methods to solve some types of FLP problems, through a
comparison concept of fuzzy numbers via linear ranking
functions [23]–[27]. Kumar et al. [28] used a ranking func-
tion to convert the FFLP problem to its corresponding crisp
equivalent LP problem. A weighted maxmin method was
used by Amid et al. [29] to solve MFLP problems. Gupta and
Kumar [30] overcame the shortcomings for solving MFLP
problems earlier proposed by Chiang [31]. Khan et al. [32]
proposed a method to solve FFLP problem, while Bhard-
waj and Kumar [33] refuted the claim that an FFLP can be
solved without converting it into a crisp problem based on
the incorrect mathematical assumptions used. Various kinds
of MFLP problems had been reviewed [34], regarding solu-
tions to MFLP problems. An approach has been proposed by
Luhandjula and Rangoaga [35] to solve MFLP problem via
nearest interval approximation operator.

Ebrahimnejad et al. [36] proposed using the fuzzy num-
ber comparisons with ranking functions to convert the FLP
problems into equivalent crisp LP problems. They satisfied
demands at certain nodes by using available supplies at other
nodes to find the minimum fuzzy cost of a commodity. Later,
Ebrahimnejad and Tavana [37] proposed a new method for
solving FLP problems. They converted the FLP problem into
an equivalent crisp LP problem, then solved the obtained
problem through the standard primal simplex method. This
was followed by a duality approach for solving special kind
of FLP based on ranking functions [38]. Hamadameen [39]
considered the MFLP problems in which the coefficients of
the objective functions are TrFNs. He utilized a linear rank-
ing function through simplex method, and proposed a novel
method to transform the MFLP problems into single FLP
problem, then found a compromise solution for the original
problem.

We will propose a method to solve the FFMLP problem.
The proposed method converts the FFMLP problem to a
SFFMLP problem, which was then solved via the revised
simplex method using Gaussian eliminations through the
proposed linear ranking function. The procedure is then illus-
trated by a numerical example.

The rest of this paper is structured as follows.
Section II defines fuzzy concepts and algebra properties of
TrFNs, and types of ranking functions with their strengths
and weaknesses, in addition to the comparison among fuzzy
numbers (FNs). Section III considers the FFMLP problem
and gives the mathematical formulation. Section IV deals
with partially converting the FFLP problem into its equivalent
SFFLP. In addition, it offers a procedure to solve the FFMLP
problemswithin the frame of the CSA. In SectionV, the three-
step procedure of the CSA is applied to a numerical example
to illustrate its practicality in solving FFMLP problems.
Section VI analyzes the obtained results and interpreting
them logically. Section VII lists the advantages of the pro-
posed method over current existing methods. Conclusions are
discussed in Section VIII.

II. CONCEPTS OF FUZZY NUMBERS, RANKING
FUNCTIONS, AND FUZZY ALGEBRA PROPERTIES
In order to set our comments orderly, we start this sectionwith
the concept of fuzzy numbers, the most commonly used types
of those numbers, and the relations between them. In addition,
a brief discussion is made on fuzzy algebra on fuzzy numbers.

A. DEFINITIONS OF FUZZY NUMBERS
Fuzzy numbers are a kind of numbers with a continuity of
grades of membership [40]. This kind of numbers is charac-
terized by a function which assigns to each number a grade
of membership within a range in the closed unit interval [41].
In other words, the membership function of a fuzzy number is
set in a universal set, specified for each element in the fuzzy
set a value in the closed unit interval. There are two common
kinds of fuzzy numbers, Tapezoidal Fuzzy Numbers(TpFNs),
and Triangular Fuzzy Number (TrFNs) [13]–[15].

1) THE TRAPEZOIDAL FUZZY NUMBER (TpFN)
Let Ã = (aL , aU , α, β) be the TpFN, where [aL , aU ] is
the modal set of Ã, and [aL − α, aU + β] its support
part [13]–[15] (Figure 1).

FIGURE 1. Trapezoidal fuzzy number.

2) THE TRIANGULAR FUZZY NUMBER (TrFN)
If a = aL = aU ∈ Ã then the TpFN is reduced to TrFN, and
denoted by Ã = (a, α, β) (Figure 2).

FIGURE 2. Triangular fuzzy number.

Thus Ã = (a, α, β) ⊂ (aL , aU , α, β). Hence, TrFN is
a special case of the general case (TpFN). Since the study
is focused on the FFMLP problems with TrFNs, the next
subsection lists fuzzy algebra properties specific to such FNs.

B. FUZZY ALGEBRA PROPERTIES OF Tr FNs
Since we are going to formulate the FFMLP problem with
TrFNs, we insert some arithmetic properties on these fuzzy
numbers as follows.
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Let Ã1, Ã2 ∈ TrFNs, such that Ã1 = (a1, α1, β1) and Ã2 =
(a2, α2, β2). Based on [40] and [42], [43]; as well as [3], [13],
[15], [44], the following rules apply.

1) Addition: Ã1 ⊕ Ã2 = (a1, α1, β1)⊕ (a2, α2, β2)
= (a1 + a2, α1 + α2, β1 + β2).

2) Image Ã1 = Image(a1, α1, β1)
= −Ã1 = −(a1, α1, β1) = (−a1, β1, α1).

3) Subtraction: Ã1 	 Ã2 = (a1, α1, β1)	 (a2, α2, β2)
= (a1, α1, β1)⊕ (−a2, β2, α2)
= (a1 − a2, α1 + β2, β1 + α2).

4) Multiplication:

Ã1 ⊗ Ã2 = (a1, α1, β1)⊗ (a2, α2, β2)

∼=



(a1a2, a1α2 + a2α1, a1β2 + a2β1);
A1 > 0̃, A2 > 0̃

(a1a2, a2α1 − a1β2, a2β1 − a1α2);
A1 < 0̃, A2 > 0̃

(a1a2,−a2β1 − a1β2,−a2α1 − a1α2);
A1 < 0̃, A2 < 0̃

5) Scalar multiplication:

δ ⊗ Ã1 = δ ⊗ (a1, α1, β1)

=

{
(δa1, δα1, δβ1); δ > 0
(δa1,−δβ1,−δα1); δ < 0

6) Inverse: (Ã1)
−1
= (a1, α1, β1)−1

= (a−11 , β1 a
−2
1 , α1 a

−2
1 )

7) Division: Ã1 � Ã2 = Ã1 ⊗ (Ã2)
−1

= (a1, α1, β1)� (a2, α2, β2)
= ( a1a2 ,

β2a1+α1a2
a22

,
α2a1+β1a2

a22
); ∀Ã1, Ã2 > 0̃.

Note that similar formulas hold when Ã1 and or Ã2 are
negative.

8) Ã1 = 0̃⇔ Ã1 = (0, 0, 0)

C. LINEAR RANKING FUNCTION AND ITS TYPES
One of the most convenient methods to defuzzify an FLP
problem into its deterministic form and the comparison of
fuzzy numbers is by using the linear ranking function [3], [4],
[9], [13], [15].

Since this study deals with the FFLP problem in the fuzzi-
ness environment through the linear ranking function, we put
forward in this section a definition of a linear ranking function
and its properties. We describe the related ranking functions,
their strengths and weaknesses.

Linear Ranking Function: is a map which transforms
each fuzzy number into its corresponding real line, where
a natural order exists, mathematically, < : Ã → R;
∀Ã and R is the set of all real numbers [41], [45].

Furthermore, the <’s fuzzy algebra rules on the fuzzy
numbers are as follows, for all Ã1, Ã2, Ã3, Ã4 ∈ FNs, and
δ ∈ R:

1) Ã1 ≥
<

Ã2 ⇔ <(̃A1) ≥ <(̃A2),

2) Ã1 >
<
Ã2 ⇔ <(̃A1) > <(̃A2),

3) Ã1 =
<
Ã2 ⇔ <(̃A1) = <(̃A2),

4) Ã1 ≤
<

Ã2 ⇔ <(̃A1) ≤ <(̃A2),

5) δÃ1 +
<

Ã2 = δ<(̃A1)+<(̃A2),

6) Ã1 =
<
0̃⇔ <(̃A1) = <(̃0) = 0,

7) Ã1 ≥
<

Ã2 ⇔ Ã1 − Ã2 ≥
<

0⇔ −Ã2 ≥
<

−Ã1, and

8) Ã1 ≥
<

Ã2 ∧ Ã3 ≥
<

Ã4 ⇒ Ã1 + Ã3 ≥
<

Ã2 + Ã4.

Finally, we describe the concepts of ranking functions,
their strengths, and weaknesses as in Table 1.We identify that
the type which is most suitable for our work is the one used
by [15].

III. PROBLEM FORMULATION
AFully FuzzyMultiobjective Linear Programming (FFMLP)
problem can be formulated as follows:

Max. Z̃i (̃x) =
<

n∑
j=1

c̃ij̃xj; i = 1, . . . , r

Min. Z̃i (̃x) =
<

n∑
j=1

c̃ij̃xj; i = r + 1, . . . , s

s.t.
n∑
j=1

ãij̃xj

≤≥
=

 b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (1)

where ãij = (aLij , a
U
ij , αij, βij), b̃i = (bLi , b

U
i , αi, βi), c̃j =

(cLj , c
U
j , ωj, ηj) and x̃j = (xLj , x

U
j , αj, βj) are in the set of

all TpFNs, i = 1, . . . ,m, j = 1, . . . , n.
To solve (1), we have to find a set of basic feasible solu-

tion x̃ = {̃x1, x̃2, . . . , x̃n+m} of fuzzy variables which satis-
fies the set of all constraints, non-negative restrictions and
optimizes (maximizes or minimizes) the objective functions
in (1). Finding the optimal solution to the FFLP problem
in (1) without converting it into its equivalent deterministic
is still an open research problem as emphasized by some
researchers [33]. Thus, it can be said that we cannot solve
FFMLP problem in (1) without converting it into its equiva-
lent deterministic problem.

In what follows we shall consider the FFMLP problem
in (1), and try to find a compromise solution for it within a
range of the proposed research methodologies.

IV. PARTIALLY CONVERTING THE FFLP PROBLEM
INTO ITS EQUIVALENT SFFLP AND SOLUTION
ALGORITHM OF THE FFMLP PROBLEMS
We now consider the questions in Section III logically and
will attempt to find convincing answers to them. Since finding
the optimal solution to the FFLP problem without converting
it into its equivalent deterministic version is still an open
research problem [33] we will try to establish an alternate
methodology to solve FFMLP problem in (1) by using revised
simplex method together with Gaussian elimination in the
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TABLE 1. The solution of the objective functions.

environment of the linear ranking function as described in
Section II, in which the methodology converts the system (1)
partially into Semi-Fully Fuzzy Multiobjective Linear Pro-
gramming (SFFMLP) problem. Next each objective function
in the system is solved individually, then the SFFMLP prob-
lem is converted into Semi-Fully Fuzzy Linear Programming
(SFFLP) problem. Finally the obtained problem is solved by
an interactive method to arrive at a compromise solution to
the original problem in (1).

The following procedure is used to solve FFMLP problem
through the linear ranking function as follows:

Consider the FFMLP problem in (1) as

Max. Z̃i (̃x) =
<

n∑
j=1

c̃ij̃xj; i = 1, . . . , r

Min. Z̃i (̃x) =
<

n∑
j=1

c̃ij̃xj; i = r + 1, . . . , s

s.t.
n∑
j=1

ãij̃xj ≤ b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (2)
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TABLE 2. The SFFLP problem.

where ãij = (aij, αij, βij), b̃i = (bi, αi, βi), c̃j =
(cj, ωj, ηj) and x̃j = (xj, αj, βj) are in the set of all TrFNs,
i = 1, . . . ,m, j = 1, . . . , n.
Now, we convert each ãij,∀i, j into their deterministic aij

by using [15] linear ranking function;

<(̃A) =
aL + aU

2
+
β − α

4
=

2aL(aU )
2

+
β − α

4

= a+
β − α

4
(3)

The obtained SFFMLP problem will be as:

Max. Z̃i (̃x) =
<

n∑
j=1

c̃ij̃xj; i = 1, . . . , r

Min. Z̃i (̃x) =
<

n∑
j=1

c̃ij̃xj; i = r + 1, . . . , s

s.t.
n∑
j=1

aij̃xj ≤ b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (4)

Now, we solve each SFFLP problemMax./Min. Z̃i (̃x); ∀i ∈
[1, s] in (4) individually. For convenient, let us, rename
Max. Z̃i (̃x) = Max. z̃(̃x). Thus, the FFLP problem in (4) can
be written as:

Max. z̃(̃x) =
<

n∑
j=1

c̃j̃xj,

s.t.
n∑
j=1

ãij̃xj ≤
<

b̃i, i = 1, 2, . . . ,m,

x̃j ≥
<

0̃, j = 1, . . . , n. (5)

Convert (5) into the standard form as:

Max. z̃(̃x) =
<

n∑
j=1

c̃j̃xj + 0̃(
m∑
i=1

s̃i),

s.t.
n∑
j=1

aij̃xj + s̃i =
<
b̃i, i = 1, 2, . . . ,m,

x̃j & s̃i ≥
<

0̃, j = 1, . . . , n & i = 1, . . . ,m. (6)

where s̃i are fuzzy identity slack variables.
Express (6) by its basic and non-basic variables as follows:

Max. z̃(̃x) =
<
c̃Bx̃ + c̃N s̃

s.t. B̃xB + Ns̃N =
<
b̃

x̃B & s̃N ≥
<

0̃ (7)

where A = [B,N ], the nonsingular matrix B = (m,m),
and rank (B) = m, where x̃B = B−1̃b, x̃N = 0̃; the basic
solution point x̃ = (̃xTB , x̃

T
N )

T is called the Basic Feasible
Solution (BFS) for the system in (6), where B and N are basic
matrix, and non-basic matrix respectively [3], [46].

Now, (7) can be expressed by its initial simplex tableau
in Table 2.

Based on [46] and other studies [3], [4], [15], in this table
we have:

1) The fuzzy objective row γ̃j =
<

(̃cBB−1aj − c̃i)j 6=Bj
contains the γ̃j =

<
z̃j − c̃j for the nonbasic variables.

2) For the feasible optimal solution it should be γ̃j =
<
≥

0,∀j 6= Bi.
3) If, γ̃k <

<
0,∀k 6= Bi, then exchange x̃Br by x̃k . Then

γ̃k =
<
B−1ak .

4) If, γ̃k ≤
<

0, then x̃k is an unbounded solution for the

problem.
5) If an m exist such that z̃m − c̃m <

<
0̃ and there exist

a basic index i in which yim>0, then a pivoting row p
can be found in which the pivoting ypm yields a feasible
tableau corresponding fuzzy objective value.

6) For any feasible solution to FLP problem, if there are
some columns not in the basic solution in which z̃m −
c̃m <
<
0̃ and yim ≤ 0, i = 1, . . . , s, then the problem is

unbounded.
Now, we have to verify the fuzzy feasibility as well as

the fuzzy optimality solution for the FFLP problem in (5)
through the linear ranking function <. After passing the
steps (1-6) logically and successfully, the optimal solution for
the Max./Min. Z̃i; ∀i the optimal solution is;{
Max. Z̃i, X̃ (̃x1, x̃2, . . . , x̃n); 1 ≤ i ≤ r

}
=
{
φ̃i; X̃ (̃x1, x̃2, . . . , x̃n); 1 ≤ i ≤ r

}
and{
Min. Z̃i, X̃ (̃x1, x̃2, . . . , x̃n); r + 1 ≤ i ≤ s

}
=
{
φ̃i; X̃ (̃x1, x̃2, . . . , x̃n); r + 1 ≤ i ≤ s

}
.

Now, after each objective function in the system (4) has
been solved individually, and the value of each one has been
obtained, we can transfer (4) to its unique FFLP problem by
an interactive method.

1) For solvingMFLPProblems, [39] used a new technique
to transform the multiple optimization problems into
a single FLP problem, and found a compromise solu-
tion for the resulted problem by using linear ranking
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function through simplex method. Here, in this study,
we extend his proposed technique [39] into FFMLP
problem to convert (4) into SFFLP problem as follows:

Max. Z̃φ̃ (̃x) =
<

n∑
j=1

Max.̃cij̃xj
φ̃i

(i = 1, . . . , r)

−

n∑
j=1

Min.̃cij̃xj
φ̃i

(i = r + 1, . . . , s); ∀φ̃i 6= 0̃

s.t.
n∑
j=1

aij̃xj ≤ b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (8)

Note that the SFFLP problem in (8) is equivalent to
the SFFLP problem in (6). Thus, using (7), the ini-
tial simplex tableau expressed in Table 2 and equa-
tions (1) through (7), the optimal solution can be found
for the system (8) and the obtained solution will be the
compromise solution for the FFMLP problem in (2) and
can be written as:

{
Max.Z̃φ̃ (̃x), X̃ (̃x1, x̃2, . . . , x̃n)

}
.

2) Using Fuzzy Adaptive Average Arithmetic Method
(FAAAM) as a transformation technique to trans-
form (4) into SFFLP problem as: φ̃max. =

max.
{
φ̃i; 1 ≤ i ≤ r

}
; φ̃min. = min.

{
φ̃i; r + 1 ≤ i ≤ s

}
,

φ̃FAAA =
φ̃max.+φ̃min.

2 .

Max. Z̃φ̃FAAA (̃x)

=
<

∑n
j=1[(Max.̃cij̃xj)i=1,...,r−(Min.̃cij̃xj)i=r+1,...,s)]

φ̃FAAA
;

φ̃FAAA 6= 0̃

s.t.
n∑
j=1

aij̃xj ≤ b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (9)

This obtained SFFLP problem in (9) is equivalent
to the SFFLP problem in (6). Now, following the
same steps of the methodology in the first case
the optimal solution can be obtained. The opti-
mal solution is a compromise solution for FFMLP
problem in (2), and can be expressed as follows:{
Max.Z̃φ̃FAAA (̃x), X̃ (̃x1, x̃2, . . . , x̃n)

}
.

3) Using the point of the fuzzy balance or fuzzy average
of a data set. i. e. fuzzy mean or fuzzy arithmetic mean.
Mathematically, ˜mean =

∑n
i=1 φ̃i
n . Let us assume that

m̃1 =

∑r
i=1 φ̃i
r , and m̃2 =

∑s
i=r+1 φ̃i
s−r . Thus, the SFFMLP

problem in (4) can be converted to its equivalent SFFLP
problem as following:

Max. Z̃φ̃mean
(̃x) =
<

∑n
j=1(Max.̃cij̃xj)i=1,...,r

m̃1

−

∑n
j=1(Min.̃cij̃xj)i=r+1,...,s

m̃2

s.t.
n∑
j=1

aij̃xj ≤ b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (10)

Note that, the last SFFLP problem in (10) is the same
as the SFFLP problem in (6), and the fuzzy optimal
solution can be found using the same technique. Thus,
the compromise solution for the FFMLP problem in (2)
is
{
Max.Z̃φ̃mean

(̃x), X̃ (̃x1, x̃2, . . . , x̃n)
}
.

4) Using fuzzy median point, or the fuzzy mid-point of
the fuzzy data set when the fuzzy data set of fuzzy
observations are placed in ascending order. For an
odd number of fuzzy observations, the fuzzy median
is the data point which falls in the middle, at loca-
tion φ̃(i + 1)/2; ∀i ∈ N when values are placed in
ascending order. For an even number of observations
the median is defined by the fuzzy mean of the two
fuzzy middle observations at location φ̃(i/2), φ̃(i/2)+
1; ∀i ∈ N. Thus, the fuzzy median is the fuzzy value
represented by the fuzzy average of the fuzzy points
at locations φ̃(i/2), φ̃(i/2) + 1; ∀i ∈ N. Suppose
that M̃1 = fuzzy median

{
φ̃i; 1 ≤ i ≤ r

}
, and M̃2 =

fuzzy median
{
φ̃i; r + 1 ≤ i ≤ s

}
. Thus, the SFFMLP

problem in (4) can be converted to its equivalent SFFLP
problem as follows:

Max. Z̃φ̃median
(̃x) =
<

∑n
j=1(Max.̃cij̃xj)i=1,...,r

M̃1

−

∑n
j=1(Min.̃cij̃xj)i=r+1,...,s

M̃2

s.t.
n∑
j=1

aij̃xj ≤ b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (11)

Since the SFFLP problem in (11) is also the same FFLP
problem in (6) hence, again, recall the same techniques
which have been used to solve the SFFLP problems in
the cases (1 through 3), the fuzzy optimal solution of
(10) can be found, and the solution is the compromise
for the original FFOLP problem in (2), and can be
expressed as:

{
Max.Z̃φ̃median

(̃x), X̃ (̃x1, x̃2, . . . , x̃n)
}
.

Now, we can express the above four cases in the following
SFFLP problem as equation (12), as shown at the top of the
next page

Now, let us describe the solution algorithm of the FFMLP
problem step by step in the following Compromise Solution
Algorithm (CSA).

CSA for the FFMLP problem:-

• STEP1: Consider the FFMLP problem in (2).
• STEP2: Use the linear ranking function formulation
in (3) to transform ãij; i = 1, 2, . . . ,m, j = 1, 2, . . . , n
into its equivalent deterministic form aij to get the
SFFMLP problem in (4).
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Max.



Z̃φ̃ (̃x) =
<

∑n

j=1

Max.̃cij̃xj
φ̃i

(i = 1, . . . , r)−
∑n

j=1

Min.̃cij̃xj
φ̃i

(i = r + 1, . . . , s); ∀φ̃i 6= 0̃

Z̃φ̃FAAA (̃x) =<

∑n
j=1[(Max.̃cij̃xj)i=1,...,r − (Min.̃cij̃xj)i=r+1,...,s)]

φ̃FAAA
; φ̃FAAA 6= 0̃

Z̃φ̃mean
(̃x) =
<

∑n
j=1(Max.̃cij̃xj)i=1,...,r

m̃1
−

∑n
j=1(Min.̃cij̃xj)i=r+1,...,s

m̃2

Z̃φ̃median
(̃x) =
<

∑n
j=1(Max.̃cij̃xj)i=1,...,r

M̃1
−

∑n
j=1(Min.̃cij̃xj)i=r+1,...,s

M̃2

s.t.
n∑
j=1

aij̃xj ≤ b̃i, i = 1, 2, . . . ,m,

x̃j ≥ 0̃, j = 1, . . . , n. (12)

• STEP3: Solve each Max.Z̃i (̃x); i = 1, 2, . . . , r and
Min.Z̃i (̃x); i = r + 1, r + 2, . . . , s individually,
as indicated in (5), by using the fuzzy simplex method
in (5-7) as in the Table 2, using the Gaussian elimi-
nation process and the equations (1-6). Get the fuzzy
values φ̃i; i = 1, 2, . . . , r for Max.Z̃i (̃x); i = 1, 2, . . . , r
and φ̃i; i = r + 1, r + 2, . . . , s for Min.Z̃i (̃x); i =
r + 1, r + 2, . . . , s.

• STEP4: Convert the SFFMLP problem in (2) to the
SFFLP problem in (8-11) and collect them in the SFFLP
problem as modelled in (12).

• STEP5: Find the fuzzy optimal solution for each branch
in (12). Or, solve the SFFLP problems in (8-11).

• STEP6: Compare among the fuzzy optimal solutions for
the branches of (12), or among fuzzy optimal solution
of the SFFLP problems in (8-11). Select a compromise
solution among obtained fuzzy optimal solutions of (12)
for the original FFMLP problem in (2).

V. NUMERICAL EXAMPLE
We present an example of the implementation of the research
methodology in the problem statement within the framework
of the MFFLP problem.

Solve the following MFFLP problem:

Max. Z̃1 (̃x) =
<
(2,

1
2
,
1
3
)̃x1 + (4,

1
3
,
1
2
)̃x2 + (3,

3
4
,
1
4
)̃x3,

Max. Z̃2 (̃x) =
<
(3,

1
3
,
2
3
)̃x1 + (1,

1
2
,
1
3
)̃x2 + (2,

1
4
,
3
4
)̃x3,

Max. Z̃3 (̃x) =
<
(1,

1
5
,
3
5
)̃x1 + (1,

2
3
,
1
4
)̃x2 + (2,

1
2
,
1
2
)̃x3,

Min. Z̃4 (̃x) =
<
(
−5
2
,
1
2
,
2
3
)̃x1+(−2,

1
3
,
2
3
)̃x2+(−2,

1
2
,
1
2
)̃x3,

Min. Z̃5 (̃x) =
<
(−1,

2
3
,
1
3
)̃x1+(−3,

1
5
,
3
5
)̃x2+(−2,

3
4
,
1
4
)̃x3,

s.t. (3,
1
2
,
1
2
)̃x1 + (4,

1
3
,
2
3
)̃x2 + (2,

1
3
,
1
3
)̃x3 ≤
<

(40,
1
7
,
2
7
),

(2,
2
5
,
3
5
)̃x1 + (1,

1
10
,
1
5
)̃x2 + (2,

1
7
,
2
7
)̃x3 ≤
<

(20,
1
4
,
1
8
),

(1,
1
9
,
2
9
)̃x1+(3,

1
6
,
1
6
)̃x2+(2,

3
10
,
1
10

)̃x3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (13)

Solution: Now, we defuzzify and convert ãij, i = 1, 2, 3;
j = 1, 2, 3 partially from (13) into their corresponding
deterministic aij by utilizing the linear ranking function in (3),
to convert the problem to its SFFMLP problem in the follow-
ing optimization problem.

Max. Z̃1 (̃x) =
<
(2,

1
2
,
1
3
)̃x1 + (4,

1
3
,
1
2
)̃x2 + (3,

3
4
,
1
4
)̃x3,

Max. Z̃2 (̃x) =
<
(3,

1
3
,
2
3
)̃x1 + (1,

1
2
,
1
3
)̃x2 + (2,

1
4
,
3
4
)̃x3,

Max. Z̃3 (̃x) =
<
(1,

1
5
,
3
5
)̃x1 + (1,

2
3
,
1
4
)̃x2 + (2,

1
2
,
1
2
)̃x3,

Min. Z̃4 (̃x) =
<
(
−5
2
,
1
2
,
2
3
)̃x1+(−2,

1
3
,
2
3
)̃x2+(−2,

1
2
,
1
2
)̃x3,

Min. Z̃5 (̃x) =
<
(−1,

2
3
,
1
3
)̃x1+(−3,

1
5
,
3
5
)̃x2+(−2,

3
4
,
1
4
)̃x3,

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (14)

There are five objective functions in the SFFMLP problems
in (14) competing in the same semi fuzzy constraints envi-
ronments. We solve each objective function subject to the
constraints, and rewriting the obtained FFLP problem as a
standard form as follows:

Max. Z̃1 (̃x) =
<
(2,

1
2
,
1
3
)̃x1 + (4,

1
3
,
1
2
)̃x2

+ (3,
3
4
,
1
4
)̃x3 + (0, 0, 0)

3∑
j=1

s̃j,
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TABLE 3. The status of the solution-i.

TABLE 4. The status of the solution-ii.

TABLE 5. The status of the solution-iii.

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 + s̃1 =

<
(40,

1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 + s̃2 =

<
(20,

1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 + s̃3 =

<
(30,

1
9
,
1
3
),

x̃j, s̃j ≥
<

0̃, ∀j, i = 1, 2, 3. (15)

The initial tableau of (15) is given in Table 3 above:
From the initial tableau of Table 3, we have;{

(̃zj − c̃j)
}
=
<

{
(−2,

1
3
,
1
2
), (−4,

1
2
,
1
3
), (−3,

1
4
,
3
4
), 0̃, 0̃, 0̃

}
;

j = 1, . . . , 6.

Since, min
{
γ̃j
}
= min

{
<(γ̃j)

}
= min

{
−1 23

24 ,−4
1
24 ,−2

7
8 ,

0, 0, 0
}
= −4 1

24 , j = 1, . . . , 6, thus, x̃2 should enter and
becomes the basic variable.

From Table 3 also, in the min ratio’s column we have; min
<

{
( 48049 ,

12
343 ,

24
343 ), (

800
41 ,

10
41 ,

5
41 ), (10,

1
27 ,

1
9 )
}
. Since, min{

9 276
343 , 19

159
164 , 10

1
54

}
= 9 276

343 , the leaving variable is s̃1.

The pivotal element is 49
12 . Thus, by using the Gaussian

elimination process and the row operations on the Table 3 as

follows; 12
49R1→ R′1,−

41
40R
′

1 + R2→ R′2,−3R
′

1 + R3→ R′3
and (4, 13 ,

1
2 )R
′

1 + R0→ R′0. The result is as in Table 4.
Currently, from the simplex tableau of Table 4, we have;{
(̃zj − c̃j)

}
=
<

{
( 4649 ,

85
147 ,

85
98 ), (0, 0, 0)(

−51
49 ,

81
196 ,

195
196 ),

( 4849 ,
4
49 ,

6
49 ), (0, 0, 0), (0, 0, 0)

}
; j = 1, . . . , 6. Since, min{

γ̃j
}
= min

{
<(γ̃j)

}
= min

{
1 13
1176 , 0,

−351
392 ,

97
98 , 0, 0

}
=

−35
302 , j = 1, . . . , 6, thus, x̃3 should enter and becomes the
basic variable.

Again, from Table 4, and in the min ratio’s col-
umn we have; min <

{
(20, 1

14 ,
1
7 ), (

9760
1503 ,

2207
10521 ,

2207
21042 ),

( 200157 ,
1217
1822 ,

611
670 )

}
. Since, min

{
20 1

56 , 6
79
169 , 1

72
215

}
= 1 72

215 ,
hence, the leaving variable is s̃3.
The pivotal element is 471

980 . Thus, by using the Gaussian
elimination process and the row operations on Table 4 as
follows; 980

471R3 → R′3,
−24
49 R

′

3 + R1 → R′1,
−1503
980 R′3 +

R2 → R′2 and ( 5149 ,
195
196 ,

81
196 )R

′

3 + R0 → R′0. The result is as
in Table 5.

Since,
{
(̃zj − c̃j)

}
=
<

{
(−1118695 , 1019641 ,

1671
506 ), (0, 0, 0),

(0, 0, 0), (−10141493 ,
112
157 ,

258
157 ), (0, 0, 0), (

946
419 ,

325
157 ,

135
157 )

}
; j =

1, . . . , 6, and
{
γ̃j
}
=
{
<(γ̃j)

}
=

{
−556
471 , 0, 0,

−2547
5702 , 0,

1091
546

}
.;
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TABLE 6. The status of the solution-iv.

TABLE 7. The solution of the objective functions.

j = 1, . . . , 6 = −556471 . Thus, x̃1 should enter and becomes the
basic variable.

Again, from Table 5, and in the min ratio’s column we
have; min <

{
( 1333281 ,

1471
5905 ,

845
4114 ), (

1081
682 ,

685
1994 ,

157
669 )

}
. Since,

min
{
1931
408 ,

1293
830

}
=

1293
830 , hence, the leaving variable is s̃2.

The pivotal element is 5687
1126 . Thus, by using the Gaussian

elimination process and the row operations on Table 5 as
follows; 1126

5687R2→ R′2,
−901
466 R

′

2+R1→ R′1,
5409
2210R

′

2+R3→
R′3 and ( 1118695 ,

1671
506 ,

1019
641 )R

′

2 + R0 → R′0. The result is as
in Table 6:

Now, in the current solution in Table 6,
{
(̃zj − c̃j)

}
=
<{

(0, 0, 0)(0, 0, 0)(0, 0, 0)(−1018144 ,
5751
2762 ,

1752
761 )(

859
2697 ,

3028
4631 ,

96
305 )

( 40373252 ,
289
94 ,

1099
373 )

}
; j = 1, . . . , 6, and

{
γ̃j
}
=

{
<(γ̃j)

}
={

0, 0, 0, 367
8613 ,

772
3303 ,

2143
1772

}
≥ 0; j = 1, . . . , 6.

Thus, according to the optimality feasible condition of
STEP5 of the CSA, no more variable may enter the

basis. In addition,
{
<(̃xBi )

}
= <

{
( 2333382 ,

1028
1099 ,

1540
1451 ),

( 1081682 ,
685
1994 ,

157
669 ), ( 2891561 ,

863
572 ,

1195
804 )

}
≥ 0; i = 1, 2, 3.

The fuzzy set,
{
Z̃ ; X̃ (̃x1, x̃2, x̃3)

}
=

{
( 5081118 ,

2521
226 ,

659
69 );

X̃ (( 1081682 ,
685
1994 ,

157
669 ), (

2333
382 ,

1028
1099 ,

1540
1451 ), (

2891
561 ,

863
572 ,

1195
804 ))

}
is

the fuzzy optimal solution for the problem (15), because it
is the fuzzy feasible solution through the environment of
the linear ranking function in (3) and its properties for the
comparison of fuzzy numbers in Section II, as verified below.

(3,
1
2
,
1
2
)̃x1 + (4,

1
3
,
2
3
)̃x2 + (2,

1
3
,
1
3
)̃x3 ≤
<

(40,
1
7
,
2
7
),

(2,
2
5
,
3
5
)̃x1 + (1,

1
10
,
1
5
)̃x2 + (2,

1
7
,
2
7
)̃x3 ≤
<

(20,
1
4
,
1
8
),

(1,
1
9
,
2
9
)̃x1 + (3,

1
6
,
1
6
)̃x2 + (2,

3
10
,
1
10

)̃x3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3.⇒

(3,
1
2
,
1
2
)(
1081
682

,
685
1994

,
157
669

)+ (4,
1
3
,
2
3
)(
2333
382

,
1028
1099

,
1540
1451

)+ (2,
1
3
,
1
3
)(
2891
561

,
863
572

,
1195
804

) ≤
<

(40,
1
7
,
2
7
),

(2,
2
5
,
3
5
)(
1081
682

,
685
1994

,
157
669

)+ (1,
1
10
,
1
5
)(
2333
382

,
1028
1099

,
1540
1451

)+ (2,
1
7
,
2
7
)(
2891
561

,
863
572

,
1195
804

) ≤
<

(20,
1
4
,
1
8
),

(1,
1
9
,
2
9
)(
1081
682

,
685
1994

,
157
669

)+ (3,
1
6
,
1
6
)(
2333
382

,
1028
1099

,
1540
1451

)+ (2,
3
10
,
1
10

)(
2891
561

,
863
572

,
1195
804

) ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3.⇒

<((3,
1
2
,
1
2
)(
1081
682

,
685
1994

,
157
669

)+ (4,
1
3
,
2
3
)(
2333
382

,
1028
1099

,
1540
1451

)+ (2,
1
3
,
1
3
)(
2891
561

,
863
572

,
1195
804

)) ≤ <(40,
1
7
,
2
7
),

<((2,
2
5
,
3
5
)(
1081
682

,
685
1994

,
157
669

)+ (1,
1
10
,
1
5
)(
2333
382

,
1028
1099

,
1540
1451

)+ (2,
1
7
,
2
7
)(
2891
561

,
863
572

,
1195
804

)) ≤ <(20,
1
4
,
1
8
),

<((1,
1
9
,
2
9
)(
1081
682

,
685
1994

,
157
669

)+ (3,
1
6
,
1
6
)(
2333
382

,
1028
1099

,
1540
1451

)+ (2,
3
10
,
1
10

)(
2891
561

,
863
572

,
1195
804

)) ≤ <(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3.⇒
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<((3,
1
2
,
1
2
)(
1081
682

,
685
1994

,
157
669

))+<((4,
1
3
,
2
3
)(
2333
382

,
1028
1099

,
1540
1451

))+<((2,
1
3
,
1
3
)(
2891
561

,
863
572

,
1195
804

)) ≤ <(40,
1
7
,
2
7
),

<((2,
2
5
,
3
5
)(
1081
682

,
685
1994

,
157
669

))+<((1,
1
10
,
1
5
)(
2333
382

,
1028
1099

,
1540
1451

))+<((2,
1
7
,
2
7
)(
2891
561

,
863
572

,
1195
804

)) ≤ <(20,
1
4
,
1
8
),

<((1,
1
9
,
2
9
)(
1081
682

,
685
1994

,
157
669

))+<((3,
1
6
,
1
6
)(
2333
382

,
1028
1099

,
1540
1451

))+<((2,
3
10
,
1
10

)(
2891
561

,
863
572

,
1195
804

)) ≤ <(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3.⇒

<(3,
1
2
,
1
2
)<(

1081
682

,
685
1994

,
157
669

)+<(4,
1
3
,
2
3
)<(

2333
382

,
1028
1099

,
1540
1451

)+<(2,
1
3
,
1
3
)<(

2891
561

,
863
572

,
1195
804

) ≤ <(40,
1
7
,
2
7
),

<(2,
2
5
,
3
5
)<(

1081
682

,
685
1994

,
157
669

)+<(1,
1
10
,
1
5
)<(

2333
382

,
1028
1099

,
1540
1451

)+<(2,
1
7
,
2
7
)<(

2891
561

,
863
572

,
1195
804

) ≤ <(20,
1
4
,
1
8
),

<(1,
1
9
,
2
9
)<(

1081
682

,
685
1994

,
157
669

)+<(3,
1
6
,
1
6
)<(

2333
382

,
1028
1099

,
1540
1451

)+<(2,
3
10
,
1
10

)<(
2891
561

,
863
572

,
1195
804

) ≤ <(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3.⇒

(3)(
1293
830

)+ (
49
12

)(
2388
389

)+ (2)(
1673
325

) ≤
1121
28

,

(
41
20

)(
1293
830

)+ (
41
40

)(
2388
389

)+ (
57
28

)(
1673
325

) ≤
639
32
,

(
37
36

)(
1293
830

)+ (3)(
2388
389

)+ (
39
20

)(
1673
325

) ≤
541
18
,

x̃j ≥
<

0̃, j = 1, 2, 3.⇒

1121
28
≤

1121
28

,

19
221
229
≤ 19

31
32
,

541
18
≤

541
18
, x̃j ≥

<

0̃, j = 1, 2, 3.

As the same way to solve (15), we can obtain the solution
for Max. Z̃i (̃x), i = 2, 3 andMin. Z̃i (̃x), i = 4, 5. The solution
is shown in Table 7.

Now, by employing the model (8) in the CSA, we can
convert the system problem in (13) to the SFFLP problem
into a unique objective function in the form of the first part
of the compromise problem in (12), as follows:

Max. Z̃φ̃ (̃x)

=
<

[((2,
1
2
,
1
3
)̃x1 + (4,

1
3
,
1
2
)̃x2

+ (3,
3
4
,
1
4
)̃x3)/(

5081
118

,
2521
226

,
659
69

)

+ ((3,
1
3
,
2
3
)̃x1 + (1,

1
2
,
1
3
)̃x2

+ (2,
1
4
,
3
4
)̃x3)/(

1200
41

,
445
123

,
1645
246

)+ ((1,
1
5
,
3
5
)̃x1

+ (1,
2
3
,
1
4
)̃x2 + (2,

1
2
,
1
2
)̃x3)/(

1120
57

,
98
19
,
287
57

)]

− [((
−5
2
,
1
2
,
2
3
)̃x1 + (−2,

1
3
,
2
3
)̃x2

+ (−2,
1
2
,
1
2
)̃x3)/(

−2338
85

,
3277
515

,
15671
1463

)

+((−1,
2
3
,
1
3
)̃x1 + (−3,

1
5
,
3
5
)̃x2

+ (−2,
3
4
,
1
4
)̃x3)/(

−6647
220

,
6661
679

,
4435
497

)]

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (16)

By applying the algebra arithmetic processes on the
SFFLP problem in (16) within the framework of the fuzzy
algebra properties on TrFNs, we get the following model
in (17) as;

Max. Z̃φ̃ (̃x)

=
<

(
1762
3567

,
402
2735

,
699
3788

)̃x1

+(
99

16639
,
233
1205

,
377
2452

)̃x2 + (
137
1358

,
699
4033

,
377
1876

)̃x3

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (17)
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Utilizing fuzzy simplexmethod through the proposed solu-
tion algorithm of the FFLP problem in the CSA, the solution
of (17) can be obtained as follows;

{
Max. Z̃φ̃ (̃x); X̃1 (̃x1, x̃2, x̃3)

}
=

{
(
1653
343

,
647
433

,
2299
1256

); X̃1((
400
41
,
5
41
,
5
82

),

(0, 0, 0), (0, 0, 0))
}
.

This obtained solution is a fuzzy compromise solution for
the FFMLP problem in (13).

Using FAAAM in (9) in the CSA, we can convert the
system problem in (13) to the SFFLP problem into a unique
objective function in the form of the second part of the fuzzy
compromise problem in (12), as follows:

˜Max.φ̃FAAA (̃x)

=
<

[((2,
1
2
,
1
3
)̃x1 + (4,

1
3
,
1
2
)̃x2 + (3,

3
4
,
1
4
)̃x3

+ (3,
1
3
,
2
3
)̃x1 + (1,

1
2
,
1
3
)̃x2 + (2,

1
4
,
3
4
)̃x3

+ (1,
1
5
,
3
5
)̃x1 + (1,

2
3
,
1
4
)̃x2 + (2,

1
2
,
1
2
)̃x3)

− ((
−5
2
,
1
2
,
2
3
)̃x1 + (−2,

1
3
,
2
3
)̃x2 + (−2,

1
2
,
1
2
)̃x3

+ (−1,
2
3
,
1
3
)̃x1 + (−3,

1
5
,
3
5
)̃x2

+ (−2,
3
4
,
1
4
)̃x3)]� (

2081
324

,
5671
541

,
5025
544

)

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (18)

˜Max.φ̃FAAA (̃x) =<
(
810
2081

,
1949
2160

,
675
649

)̃x1

+(
324
2081

,
307
568

,
757
1221

)̃x2 + (
972
2081

,
1145
1041

,
820
737

)̃x3

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

s.t.
41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

s.t.
37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

s.t. x̃j ≥
<

0̃, j = 1, 2, 3. (19)

Again, utilizing fuzzy simplex method through the pro-
posed solution algorithm of the FFLP problem in the CSA,

the solution of (19) can be obtained as follows;{
Max.Z̃φ̃FAAA (̃x) =<

(̃x); X̃2 (̃x1, x̃2, x̃3)
}

=

{
(
413
90
,
2466
227

,
1359
124

); X̃2((0, 0, 0),

(0, 0, 0), (
560
57
,
7
57
,

7
114

))
}
.

This obtained solution is a fuzzy compromise solution for
the FFMLP problem in (13).

Using the fuzzy arithmetic mean in (10) in the CSA, we can
convert the system problem in (13) to the SFFLP problem into
a unique objective function again in the form of the third part
of the fuzzy compromise problem in (12), as follows:˜Max.φ̃mean

(̃x)

=
<

[(6,
31
30
,
8
5
)̃x1 + (6,

3
2
,
13
12

)̃x2

+ (7,
3
2
,
3
2
)̃x3]� (

3955
129

,
4119
620

,
25109
3541

)	 [(
−7
2
,
7
6
, 1)̃x1

+ (−5,
8
15
,
19
15

)̃x2 + (−4,
5
4
,
3
4
)̃x3)]

�(
−4733
164

,
3550
439

,
2027
203

)

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (20)

˜Max.φ̃mean
(̃x)

=
<

(
502
6745

,
249
1687

,
1124
6351

)̃x1

+ (
357

15902
,
466
2497

,
290
1857

)̃x2 + (
219
2441

,
251
1507

,
257
1355

)̃x3

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (21)

Again, utilizing fuzzy simplex method through the pro-
posed solution algorithm of the FFLP problem in the CSA,
the solution of (21) can be obtained as follows;{

Max. Z̃φ̃mean
(̃x) =
<
(̃x); X̃3 (̃x1, x̃2, x̃3)

}
=

{
(
1353
1535

,
967
587

,
499
267

); X̃3((0, 0, 0),

(0, 0, 0), (
560
57
,
7
57
,

7
114

))
}
.
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TABLE 8. The different fuzzy compromise solutions.

This obtained solution is a fuzzy compromise solution
for the FFMLP problem in (13). Using the fuzzy arithmetic
median in (11) in the CSA, we can convert the system prob-
lem in (13) to the SFFLP problem into a unique objective
function again in the form of the fourth part of the fuzzy
compromise problem in (12), as follows:

˜Max.φ̃median
(̃x)

=
<

[(6,
31
30
,
8
5
)̃x1 + (6,

3
2
,
13
12

)̃x2

+ (7,
3
2
,
3
2
)̃x3]� (

1200
41

,
445
123

,
1645
246

)	 [(
−7
2
,
7
6
, 1)̃x1

+ (−5,
8
15
,
19
15

)̃x2 + (−4,
5
4
,
3
4
)̃x3)]

�(
−4733
164

,
3550
439

,
2027
203

)

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (22)

˜Max.φ̃median
(̃x)

=
<
(
268
3201

,
438
2905

,
3920
24139

)̃x1

+ (
217
6835

,
390
2047

,
561
3985

)̃x2 + (
338
3361

,
281
1646

,
482
2801

)̃x3

s.t. 3̃x1 +
49
12
x̃2 + 2̃x3 ≤

<

(40,
1
7
,
2
7
),

41
20
x̃1 +

41
40
x̃2 +

57
28
x̃3 ≤
<

(20,
1
4
,
1
8
),

37
36
x̃1 + 3̃x2 +

39
20
x̃3 ≤
<

(30,
1
9
,
1
3
),

x̃j ≥
<

0̃, j = 1, 2, 3. (23)

Finally, when the fuzzy simplex method employed in the
environment of the proposed solution algorithm of the FFLP
problem in the CSA, the solution of (23) can be obtained as

follows;{
Max.Z̃φ̃median

(̃x) =
<
(̃x); X̃4 (̃x1, x̃2, x̃3)

}
=

{
(
412
417

,
664
393

,
901
531

); X̃4((0, 0, 0),

(0, 0, 0), (
560
57
,
7
57
,

7
114

))
}
.

This obtained solution is a fuzzy compromise solution for
the FFMLP problem in (13).

Now, we collect the obtained compromise solutions in the
four different cases in the following table to discuss and
analyze the results in the next section.

VI. ANALYSIS OF THE RESULTS AND
LOGICAL INTERPRETATION
This section deals with analytic results and tries to find
logical justifications for different obtained results relatively.
It explores how changes in an FLP problem’s coefficients
in objective functions, right hand sides and technological
coefficients affect the fuzzy compromise optimal solution.
In other words, we are checking the sensitivity analysis of
our illustrated numerical example.

Now, let us analyze and discuss how the two following
types of changes in an MFLP problem’s parameters impact
in the fuzzy compromise solution. These types are:

1) changing the parameters by;
• changing the objective function coefficient of a
basic variables,

• changing the objective function coefficient of a
nonbasic variables,

• changing the right-hand side of a constraints, and
2) adding a new variables or constraints by;

• adding a new variables,
• adding a new constraints.

With respect to the addition of a new variables or anew
constraints, nothing like those happened. With respect to the
changing of the parameters, the coefficients of the basic vari-
ables of the objective functions had been changed. Thus in:
Case 1: Max.Z̃φ̃ (̃x) in (17), the initial tableau is given

in Table 9, while the corresponding optimal tableau is
in Table 10.
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TABLE 9. The status of the solution.

TABLE 10. The status of the solution.

The fuzzy compromise solution for (17) was;{
Max.Z̃φ̃ (̃x); X̃1 (̃s1, x̃1, s̃3)

}
=

{
(
1653
343

,
647
433

,
2299
1256

);

X̃1((
400
41
,
5
41
,
5
82

), (0, 0, 0), (0, 0, 0))
}
.

Thus, the B̃V = {̃s1, x̃1, s̃3}, and ÑBV = {̃x2, x̃3, s̃2}.
<(the coefficient of s̃1) = <(0, 0, 0) = 0, <(̃c1) =
<( 40041 ,

5
41 ,

5
82 ) = 0.5034 and <(̃c)2 = −0.00395. Now,

we will compute cBVB−1 if <(̃c1)+4 = 0.5034+4:

[
0 0.5034+4 0

]

1

−60
41

0

0
20
41

0

0
−185
369

1


=

[
0 0.2455+

20
41
4 0

]
,

<(̃c)2 = −0.00395, <(̃c)3 = 0.1078 and <(the coefficient
of s̃2) = <(0, 0, 0) = 0.

Since

a1 =


3
41
20
37
36

 , a2 =


49
12
41
40
3

 and a3 =


2
57
28
39
20



hence,

c2 = cBVB−1a2 − c2

=

[
0 0.2455+

20
41
4 0

]
49
12
41
40
3


− (−0.00395)0.25569+ 0.54

c3 = cBVB−1a3 − c3

=

[
0 0.2455+

20
41
4 0

]
2
57
28
39
20


− 0.1078 = 0.3922+

285
287
4

coefficient of s2in row 0= second element of cBVB−1 =

0.2455+ 20
414.

Now, row 0̃ of the optimal tableau (Table 10) is:

z̃+ (0.25569+ 0.54)̃x2 + (0.3922+
285
287
4)̃x3

+ (0.2455+
20
41
4)̃s3 = (Some amount)? (24)

From the row 0 of (24), BV will remain optimal if and only
if the following hold:

0.25569+ 0.54 ⇔ 4 ≥ −0.51138

0.3922+
285
287
4 ⇔ 4 ≥ −0.3950

0.2455+
20
41
4 ⇔ 4 ≥ −0.5033 (25)
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TABLE 11. The different fuzzy compromise solutions and their sensitivities.

Thus, from (25), the current basis will remain optimal if
and only if 4 ≥ −0.3950. The determination of range of
values on <(̃c1) ≥ −0.3950 for which the current basic
remains optimal. By the same method and logic, the same
conclusion applies to all the other cases.
Case 2: For Max.Z̃φ̃FAAA (̃x) in (19), the current basis will

remain optimal if and only if 4 ≥ −0.049. In other words,
the values on <(̃c3) ≥ −0.049 for which its current basic
remains optimal.
Case 3: For Max.Z̃φ̃mean

(̃x) in (21), the current basis will
remain optimal if and only if 4 ≥ −0.0143. In other words,
the values on <(̃c3) ≥ −0.0143 for which its current basic
remains optimal.
Case 4: For Max.Z̃φ̃median

(̃x) in (23), the current basis will
remain optimal if and only if 4 ≥ −0.01489, or, the values
on <(̃c3) ≥ −0.01489 for which its current basic remains
optimal.

Table 11 collects all four different cases of the fuzzy
compromise solutions and their sensitivities. Note that the
optimality of all cases will remain optimum if and only if
4 ≥ −0.0143.

VII. ADVANTAGES OF THE PROPOSED METHOD OVER
THE EXISTING METHODS
In this section, we will list recent existing methods on solving
fully fuzzy linear programing (FFLP) problems in order to
compare with our proposed method. In 2017, Das et al. [48]
proposed a lexicographic ordering method which depends on
ordering trapezoidal fuzzy numbers. The method suggested
the auxiliary MLP model to be used to solve the corre-
sponding LP. Hence it is not applicable to solve complicated
problem areas in risk investment, engineering management,
supply chain management and transportation problem. This
method is an improvement of Das [49] published in the same
year 2017whichmodified Lotfi et al. [22]method established
in 2009. It converted the FLP problems into MLP problems,
in which the solution cannot be obtained without converting
the fuzzy system into its correspondingmultiple deterministic
of objective functions. This method is limited to single fuzzy
objective function and did not cover MFLP problems. A year
earlier in 2016, Hosseinzadeh and Edalatpanah [50] sug-
gested the use of L-R fuzzy numbers method using both the

lexicography and linear programming models. Even though
the method gave promising results in terms of computing
performance, it is only limited to nonnegative fuzzy numbers.
Hence our CSA method is proposed to rectify these deficien-
cies. As mentioned in the preceding section, the CSAmethod
is able to define FFMLP problems. The variables can be
either triangular or trapezoidal fuzzy numbers, with practical
computational applications. The methodology used is novel
yet simple by converting FFMLP to SFFMLP and solved
interactively to find a fuzzy compromise solution. Hence
our proposed method is able to solve FFMLP problems with
variables being triangular or trapezoidal fuzzy numbers, defi-
cient in other previous models. Previous models are of MLP
problems and are limited to variables being trapezoidal [48],
[49] or nonnegative fuzzy numbers [50].

VIII. CONCLUSION
In this paper, the fully fuzzy multiobjective linear program-
ming (FFMLP) problems have been defined, where the coef-
ficients of the objective functions, constraints, right hand side
parameters, and variables are of the type of the Triangular
Fuzzy Number (TrFN)s. A solution strategy of such FFMLP
was presented in the circumstance of certain linear ranking
function, namely, Compromise Solution Algorithm (CSA).
The revised simplex method together with Gaussian elim-
ination in the environment of the linear ranking function
which was described in the proposed was first converted
from FFMLP problem to partially SFFMLP problem. The
obtained SFFMLP problems were gathered together, and then
was solved by four different methods to find a fuzzy com-
promise solution. The results show that the proposed CSA is
applicable and practicable within computational applications.
We intend to expand this research further to practical con-
tributions. The work will be able to help solve real life and
industrial problems which are usually complicated, uncer-
tain and continuously subject to changes, by considering the
fuzziness in the formulation of the model. In addition, poten-
tial research will be the application of our proposed solution
procedure to real life problems which usually involve many
variables and require quick optimum solutions. We believe
that this study will spur other research so as to have positive
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impacts on organization productivity and competitiveness in
many industries.
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