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ABSTRACT A major challenge in training deep neural networks is overfitting, i.e. inferior performance
on unseen test examples compared to performance on training examples. To reduce overfitting, stochastic
regularization methods have shown superior performance compared to deterministic weight penalties on
a number of image recognition tasks. Stochastic methods, such as Dropout and Shakeout, in expectation,
are equivalent to imposing a ridge and elastic-net penalty on the model parameters, respectively. However,
the choice of the norm of the weight penalty is problem dependent and is not restricted to {L1,L2}. Therefore,
in this paper, we propose the Bridgeout stochastic regularization technique and prove that it is equivalent to
an Lq penalty on the weights, where the norm q can be learned as a hyperparameter from data. Experimental
results show that Bridgeout results in sparse model weights, improved gradients, and superior classification
performance compared with Dropout and Shakeout on synthetic and real data sets.

INDEX TERMS Bridge regularization, deep neural networks, dropout, image classification, neural network
regularization, neural network training.

I. INTRODUCTION
Deep neural networks (DNN) are expressive machine
learning models that have been effective on many difficult
computer vision tasks involving large amounts of image data.
Being supervisedmachine learningmodels, DNNs are trained
by minimizing the discrepancy between the model output
and the original labels of the images in a training set. The
goal, however, is to minimize the error in labeling previously
unseen data known as the generalization error. Thus, training
DNNs is an optimization problem where the training error
serves as a proxy for the true objective: the generalization
error [1]. When the complexity of the model is roughly the
same as that of the task, the training error serves as a faithful
proxy for the generalization error. However, with the expres-
sive power of DNNs, even small architectures can capture the
random noise in the training samples and therefore result in
high generalization error.

To overcome this problem, researchers have devised differ-
ent strategies to prevent DNNs from misinterpreting random
variations in the training data as patterns responsible for
the labels. Increasing the training dataset size is one poten-
tial solution, but often not possible. Augmenting the data
with new samples that are slight variations of the original
samples is also a commonly used approach. Early-stopping,

i.e. stopping the training process before the validation error
starts ascending, is another effective way to stop overfitting.
While early-stopping is the easiest to exercise, in practice it
does not match the performance achieved by more sophisti-
cated techniques that regularize the models [2].

The simplest model that fits the training data will gener-
alize better than more complex models. There is, however,
no easy way to choose a simple model that will yield the
best performance, and a simple model may perform worse
due to sensitivity to initial conditions and the bias–variance
tradeoff [3]. Therefore, a common approach is to start with a
large neural network and then constrain the model in some
way to prevent it from learning sampling noise. This pro-
cess is known as regularization. Deterministic techniques
either prune the network by removing less important neu-
rons or impose a weight penalty on the magnitude of the
weights of each layer. Penalizing the weights with the L1
norm can be seen as feature selection procedure, whereas,
penalizing the L2 norm of the weights can be interpreted as
continuous shrinkage of the weights, which prevents overly
complicated decision boundaries.

Stochastic regularization techniques approach overfitting
by constructing an ensemble of poorly trained models and
then averaging their predictions. Given a neural network, for
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each training example in the training set, Dropout [4] sets the
units in the network to zero with a probability 1−p. Thus each
training example is used to train a slightly different network.
At inference time, all the units in the network are kept but
their outputs are scaled with p which serves as averaging the
prediction of many networks. Dropout is equivalent to a ridge
penalty on the model weights (L2 norm). Shakeout [5], a tech-
nique similar to Dropout, where all the outgoingweights from
a unit are either set to a signed constant or incremented by
a signed constant. Shakeout can be interpreted in terms of
deterministic regularization techniques as performing both
ridge and lasso (L2 and L1 norm) regularization.

Current stochastic methods implicitly result in a weight
penalty whose norm is decided a priori independent of the
dataset. Since different datasets may require different norm
of the weight penalty [6], we hypothesize that a stochastic
method with an adaptive norm will result in superior perfor-
mance to fixed-norm stochastic methods, such as Dropout
and Shakeout. Also, an adaptive norm formulation is more
general, and therefore would incorporate the fixed norm
methods as special cases.

In this work, we propose Bridgeout: stochastic regulariza-
tion with an adaptive norm. Since the analysis of stochas-
tic regularization for nonlinear models such as DNNs is
intractable, we use GLMs for the theoretical analysis and
evaluate Bridgeout empirically for DNNs. We theoretically
prove that Bridgeout is equivalent to Lq weight penalty for the
generalized linear models (GLM) and show that for q = 2 it is
equivalent to Dropout. We empirically verify our theoretical
results for DNNs and show that Bridgeout results in better
image classification performance than Dropout and Shakeout
on MNIST and Fashion-MNIST datasets.

The rest of the paper is organized as follows: Section II
provides the background and works related to our main
contribution, followed by a description of the Bridgeout
stochastic regularization in Section III. Section IV describes
experimental results. Discussion and summary are given in
Sections VI and VII.

II. BACKGROUND AND RELATED WORK
A. FEEDFORWARD NEURAL NETWORKS
In this paper we propose a regularization method for fully
connected feedforward neural networks. Consider a neural
network with L layers, the output of the l-th layer with
weightsW l

∈ Rk×d is given by

νl = W lal−1 + bl, (1)

al = σ
(
νl
)
, (2)

for l = 1 · · · L, where al−1 is the output of layer l − 1, bl is a
bias vector, σ is a non-linear activation function and a0 is the
input to the network. The weights of the neural network are
trained by minimizing a cost function J such as cross entropy,
over the training set. The minimization is done using variants
of the gradient descent algorithm. The gradients of the cost
function with respect to network weights are calculated using

the backpropagation algorithm [7]. The i-th update of weights
of the l-th layer is as follows

W l
i+1 = W l

i − µ
∂J

∂W l
i

, (3)

where µ is the learning rate.

B. DETERMINISTIC REGULARIZATION
Deterministic regularization methods constrain the neural
network model directly based on the model structure and the
training data. Pruning and weight penalties are the two dom-
inant deterministic regularization techniques used in neural
networks.

1) PRUNING
Pruning attempts to match the size of the model to that which
is inherently required for the problem by removing redun-
dant neurons from the network. A number of different prun-
ing methods have been proposed to identify the redundant
neurons (see Reed [3] for review), including skeletoniza-
tion based on error gradient [8] and optimal brain damage
based on the Hessian of the error with respect to a partic-
ular neuron [9]. Recently Han et al. [10] proposed magni-
tude based pruning, which permanently drops connections
that have low magnitude weights followed by retraining the
pruned network. The authors reported significant reductions
in computations and memory usage on state of the art image
classification tasks without affecting classification accuracy.

2) WEIGHT PENALTIES
While pruning explicitly removes redundant parts of the net-
work, weight penalization methods add a penalty term to
the cost function, so as to favour simpler models over more
complicated ones, in terms of weight magnitudes, during
training.

The most popular weight penalization method is the ridge
regularization, which adds the L2 norm of the network
weights to the cost function [11]. Ridge regularization con-
tinuously shrinks the network weights during training. While
ridge regularization achieves smaller weights and better gen-
eralization error, it does not result in a sparse weight matrix
of the trained network, which indicates that ridge regression
is useful when all the input features are important.

Sparse weights are desirable in networks for problems
where some input features are unimportant or noisy. This
is often the case in high dimensional problems such as
image classification where, although, the images are high
dimensional, images belonging to the same class exhibit
degenerate structure, lying near a low-dimensional mani-
fold [12]. Sparse models can exploit such low-dimensional
structure. Therefore, lasso regularization has also been previ-
ously proposed [13], which adds the L1 norm of the model
weights to the cost function. Elastic-net regularization has
also been proposed to combine both L1 and L2 norms of the
weights [14].
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Towards a more general form of regularization, Frank
and Friedman [6] proposed to optimize for the norm of the
weight penalty based on the problem at hand, known as
bridge regularization. It has been shown that bridge regu-
larization performs better than ridge, lasso and elastic-net
in certain regression problems [15]. Besides linear regres-
sion, bridge regularization has been applied to support vector
machines [16] with strong results. As a special case of bridge
regularization, L1/2 has been shown to exhibit useful statis-
tical properties including sparseness and unbiasedness [17].
Different training algorithms have been proposed for training
neural networks with L1/2 weight penalty [18], [19].
In terms of Bayesian estimation, ridge and lasso penalties

imply a Gaussian and Laplacian prior on model weights,
respectively. On the other hand, an Lq penalty corresponds
to the Generalized Gaussian prior on the model weights [6].
Generalized Gaussian distribution [20] is more comprehen-
sive encompassing Gaussian and Laplacian distributions as
special cases.

C. STOCHASTIC REGULARIZATION
In contrast to deterministic methods that only depend on the
training data set and the network weights, stochastic methods
add random noise to the model. Adding random noise to
the model reduces the correlation between the neural activa-
tions, which result in robust performance and better gener-
alization. Different theoretical interpretations for stochastic
regularization methods have been proposed, including their
equivalence to the deterministic methods when the random-
ness is marginalized and as an approximation to Bayesian
model averaging. In practice, stochastic methods have shown
superior performance to that of deterministic regularization
methods in a wide range of problems [21], [22].

1) DROPOUT
Dropout [4] randomly drops units from the network during
training with probability 1 − p. For each training example,
a random binary mask vector m = [m1 · · ·md ]T is sampled
from a Bernoulli distribution with probability p

m ∼ Bernoulli(p). (4)

In practice the random mask m is scaled with 1/p so that no
changes are needed during the testing phase of themodel. The
random mask vector m is multiplied with the inputs (which
are the outputs of the neurons in the previous layer) and the
output is calculated as

ãl−1 = al−1 �
m
p
, (5)

al = σ
(
W l ãl−1 + bl

)
, (6)

where � is the elementwise product. In terms of weight per-
turbation, Dropout either turns off or scales all the outgoing

weights from a neuron as follows

W̃:,j =

0 if mj = 0,
1
p
W:,j if mj = 1.

(7)

Randomly dropping neurons in the network forces indi-
vidual neurons to learn useful representations on their own
rather than developing dependencies on other neurons. Dur-
ing testing the weights are scaled with p, emulating the effect
of averaging an ensemble of many (2|m|) models. Each model
in the ensemble differs from the others by having different
units dropped. The individual models in the ensemble are
trained using a few training examples (same binary mask
generated a few times) or none at all. Such an ensemble of
models is interpreted as an approximation to the Bayesian
model averaging [23].

In expectation, Dropout has been shown to be equivalent
to penalizing the weights with L2 norm for the cases of linear
regression [4] and GLMs [24].

2) SHAKEOUT
Shakeout [5] is an extension of Dropout that results in both L1
and L2 regularization. Similar to Dropout, a Bernoulli random
mask m with probability p is generated, but the Shakeout
operation perturbs the weights as follows:

W̃ij =

−csgn(Wij) if mj = 0,
1
p
Wij + c(

1
1− p

)sgn(Wij) if mj = 1,
(8)

where c is the strength of L1 regularization and sgn is the sign
function. Thus, rather than zeroing out weights, Shakeout sets
them to a constant cwith the opposite sign of the weight if the
mask is zero and adds the constant c to the weight if the mask
is one.

3) DROPOUT VARIANTS
In addition to Shakeout, many variants of Dropout for feed-
forward neural networks have been proposed: Dropcon-
nect [25] removes certain weights instead of complete units
from the network; Alternating Dropout, where neurons that
are retained in the current iteration are made more likely to be
dropped in the next iteration; Standout [26] trains a separate
network along with the main neural network that predicts an
adaptive Dropout rate p; Monte-Carlo Dropout [27], where
instead of scaling the weights to achieve averaging, multiple
stochastic passes of the network are used to estimate the aver-
age, which gives ameasure of the uncertainty in the prediction
of the network; Swapout [28] samples network models from a
much larger set of architectures, where neurons in each layer
can be dropped, entire layers can be skipped or a combination
of the two can be performed.

Another approach to learn robust network weights is
variational learning [29], [30], where rather than learning a
single value for each connection in the network, a probability
distribution over each connection in the network is learned.
If the distributions are modeled as Gaussian, these methods
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at least double the parameters in the network while having
performance approaching that of Dropout.

Most of the aforementioned variants of Dropout are
empirically motivated and do not have rigorous theoretical
equivalence to deterministic regularization and model selec-
tion. To the extent of our knowledge, there is no stochastic
regularization technique that is equivalent to a general Lq
penalty on the network weights.

III. BRIDGEOUT
In this paper we propose the Bridgeout stochastic regu-
larization, which is equivalent to an Lq penalty on model
weights. During training, a Bernoulli randommask matrixM
is generated with probability p. The Bridgeout operation then
perturbs the weights as follows

W̃ l
= W l

+ |W l
|
◦
q
2 �

(M
p
− 1

)
, (9)

where ◦ is the elementwise power, p is the hyperparameter
determining the strength of regularization and q is the hyper-
parameter determining the power of the norm.

Both the hyper-parameters are theoretically-grounded and
have intuitive meanings: q specifies the normed space from
whichmodel weights are learned and p is themagnitude of the
Lagrangian enforcing the normed space constraint. Normed
spaces with q < 2 exhibit sparsity, which is practically
desirable for faster convergence and reduced computational
cost through network pruning.

Bridgeout subtracts the normed weight from the weight if
the mask is 0 otherwise it adds a scaled normed weight as
given below

W̃ l
ij =

W
l
ij − |W

l
ij|

q
2 if Mij = 0,

W l
ij + |W

l
ij|

q
2
(1− p

p

)
if Mij = 1.

(10)

The output of the l-th layer is then calculated as

νl = W̃ lal−1 + bl, (11)

al = σ
(
νl
)
. (12)

To compute the gradient of the cost function for updating
the network weights, the gradient of the pre-activations with
respect to inputs and weights are given as

∂νli

∂al−1j

= W l
ij + |W

l
ij|

q
2

(Mij

p
− 1

)
, (13)

∂νli

∂W l
ij

= al−1j

(
1+

q
2
|W l

ij|
q
2−1

(Mij

p
− 1

)
sgn(W l

ij)
)
, (14)

respectively.
As indicated by Srivastava et al. [4], stochastic regulariza-

tion with a high learning rate can cause weights to diverge.
To help with convergence, we use the max-norm regulariza-
tion [31] where each weight is constrained to be less than a
threshold |w| < t where t is a hyperparameter. We set t = 3.5
in our experiments unless otherwise specified.

A. EQUIVALENCE TO BRIDGE REGULARIZATION
Theorem 1: For generalized linear models, the Bridgeout

operation is equivalent to an Lq penalty on the model weights.
Proof: A generalized linear model (GLM), with param-

eter vector β and identity link function is given by

pβ (y|x) = h(y)e(yx·β−A(x·β)), (15)

where x and y are the input and response variables, A is the
log-partition function and h is a function of the response
variable y [32]. Assume that the Bernoulli random mask m
is scaled with 1

p , then the Bridgeout weight perturbation can
be expressed as feature noise as following

x̃j = xj
[
1+ |βj|

q−2
2 sgn(βj)(mj − 1)

]
. (16)

With feature noise, the GLM is trained by minimizing the
noise-marginalized negative log likelihood loss function over
a dataset with n samples as follows

β̂ = argmin
β∈Rd

n∑
i=1

Em[l̃x,y(β)], (17)

where the loss function l̃x,y can be split into two terms: the
negative log likelihood term and a regularization term as
follows

n∑
i=1

Em[l̃x,y(β)] =
n∑
i=1

lx,y(β)+ R(β), (18)

where R(β) is given by

R(β) =
n∑
i=1

Em[A(̃x(i) · β)]− A(x(i) · β). (19)

In general the form of R(β) is unknown, however,
Wager et al. [24] have shown that a quadratic approximation
provides good fidelity to R(β). To get a quadratic approxima-
tion, we expand A(̃xi · β) using Taylor series around x(i) · β

R̂(β) =
n∑
i=1

A′′(x(i) · β)
2

Var [̃x(i) · β], (20)

where

Var [̃x(i) · β] = E[(̃x(i) · β)2]− E[(̃x(i) · β)]2. (21)

The E[(̃x(i)j βj)] = x(i)j βj since the noise has unit expectation.
We have E[m2

j ] =
1
p and E[mj] = 1 thus

Var [̃x(i) · β] =
d∑
j=1

1− p
p
|βj|

q(x(i)j )2. (22)

Now by substituting the variance in the quadratic approxima-
tion of the regularizer, we have

R̂(β) =
1− p
2p
||0β||qq , (23)

where

0 = [XTDX ]◦
1
q , (24)

D is a diagonal matrix with elements A′′(x(i) · β).
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Corollary 2: For q = 2 the Bridgeout operation is equiv-
alent to Dropout regularization for GLMs.

Proof: Setting q = 2 in Equation 23, it becomes
identical to the Dropout formulation given by Equation 11 in
Wager et al. [24].

IV. EXPERIMENTAL RESULTS
In this section, we provide experimental results to show the
sparsity inducing property of Bridgeout and its effectiveness
in the case of synthetic data classification with noisy features.
We also evaluate Bridgeout for image classification using
MNIST, Fashion-MNIST and CIFAR10 datasets.

A. CHARACTERIZING BRIDGEOUT
1) SPARSE WEIGHT DISTRIBUTION
In order to demonstrate the effect of Bridgeout regulariza-
tion on model weights and to empirically test Corollary 2,
we apply Bridgeout regularization to a generalized linear
model: the linear regression model, with synthetic data. The
data was generated as follows: 400 100-dimensional samples
were generated from a Gaussian distribution, a Gaussian ran-
domweight matrix of dimensions 100×10 was used to trans-
form the input samples to 10-dimensional output samples.
A linear regression model with different regularization meth-
ods was trained for 5000 iterations using gradient descent.
The normalized histograms of the weight matrices (Figure 1)
illustrate that a smaller value of q in Bridgeout results in
weight distribution concentrated around zero. As expected,
setting q = 2 in Bridgeout results in the same weight distri-
bution as Dropout.

FIGURE 1. Distribution of weights of the linear regression model trained
with stochastic regularization techniques.

To see the impact of Bridgeout regularization on the
weights of non-linear models, we used an autoencoder con-
sisting of 784 − 256 − 784 neurons. We used the MNIST
dataset [33] to train the autoencoder for 500 epochs using
backpropagation. Different regularizations were applied to
the encoder part of the autoencoder. As in the case of linear
regression, Bridgeout with smaller values of q resulted in
sparser weight distributions as shown in Figure 2. Since
autoencoders are non-linear models, for q = 2 Bridgeout

FIGURE 2. Distribution of the weights of the encoder of the autoencoder
trained with stochastic regularization.

does not result in identical weight distribution as that of
Dropout but is closest to the Dropout’s weight distribution.

Visualizing the weights of the encoder in Figure 3, we see
that both with Bridgeout and Dropout each neuron in the
network learns interesting features by itself while in the case
of standard backpropagation individual neurons do not seem
to have learned any specific features indicating dependencies
on other neurons, resulting in a fragile network.

2) SYNTHETIC DATA CLASSIFICATION
For classification tasks withmany noisy predictors, we expect
that a regularization norm other than q = 2will provide better
performance. To show the impact of Bridgeout in the case of
noisy predictors, we adopt the experimental setup proposed
by Liu et al. [16]. For each trial of the experiment we generate
400 samples from {0, 1}20 uniformly. For each input sample
the class label y is assigned as sgn(f (x)), where

f (x) = 2x0 + 4x1 + 4x2 − 4.8. (25)

Thus only the first three predictors in the input are important
for the class labels while the other 17 are noise variables.
Based on this we expect that L2 will not be a good regularizer
in this case. For each experiment a test set of 3000 was
generated. A learning rate of 0.001 with 8000 iterations of
gradient descent optimizer was used. Retention probability p
was set to 0.5, while for Bridgeout the norm q was set to
1.0 and for Shakeout the L1 regularization strength was set
to 0.3. The experiments were repeated 50 times and the mean
and standard error of the misclassification rate are reported
in Table 1. As can be seen from the results Dropout performs
poorly because it spreads out the weights and forces them
to be non-zero, effectively expanding the search space from
3-dimensions to 20-dimensions. On the other hand, Bridgeout
and Shakeout result in the best performance due to their
sparsity inducing nature.

B. IMAGE CLASSIFICATION
We evaluated the performance of Bridgeout in comparison
to Dropout and Shakeout on standard image classification
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FIGURE 3. Visualization of the weights learned by the encoder neural network trained with different regularization methods. (a) Standard
backpropagation. (b) Dropout. (c) Bridgeout with q = 2.0.

TABLE 1. Binary classification with logistic regression.

datasets. For all our experiments we used the Adam [34]
optimizer with all the default values that are highly opti-
mized to Dropout. We initialized the weights using Xavier
initialization [35] for all the layers. For hyperparameter opti-
mization we used the Tree-structured Parzen Estimator (TPE)
algorithm [36] with 30 evaluations for all the methods. For
Dropout we optimized the retention probability p, for Shake-
out we optimized the retention probability p and L1 regu-
larization strength c, and for Bridgeout we optimized the
retention probability p and the norm q.

In all experiments we used the training set for training the
models, the validation set to select hyperparameters and the
test set only for reporting the error rate of the trained models.
Once the hyperparameters were obtained, 5 independent net-
works with different random seeds were trained. The mean
and standard error of the misclassification rate was reported
for each method.

1) CLASSIFYING MNIST
MNIST is a benchmark dataset for image classification tasks
consisting of grayscale images of handwritten digits from
0 to 9 of size 28 × 28 [33]. MNIST consists of 50000
training images, 10000 validation images and 10000 test set
images. To check classification performance and the behavior
of gradients, while keeping the training time to a minimum
for hyper-parameter optimization, we trained deep neural
networks with three fully connected layers of size 200 with
non-linear activations, followed by a softmax output layer
of size 10. Two different non-linear activations were used
for the hidden neurons in the network: sigmoid and rectified

linear units (ReLU). We applied regularization to all the three
fully connected layers. No preprocessing was applied to the
MNIST dataset except normalizing the pixel values to [0, 1].
We trained the network with subsets of the training set to
see the impact of overfitting and used the full validation
set to select the hyperparameters. For all the methods the
hyperparameter pwas optimized over [0.2, 0.8] except for the
case of Dropout in Table 4 where the search range was set to
[0, 1].

After hyperparameter optimization of p and q, we found
that the optimal value of the norm q for Bridgeout varied
across different subsets of the dataset (Table 2) demonstrating
that q ∈ {1, 2} are not the optimal values for regularization.
The error rates for the MNIST test set (Tables 3 and 4) show
that for this task Bridgeout resulted in the lowest error rates
across all training set sizes. Moreover, as shown in Figure 4,
when sigmoid activations are used, Bridgeout results in larger
gradients in the near-input layers when sigmoid units are
used. This could help in avoiding the gradient vanishing
problem that exist in networks with sigmoid activations.

TABLE 2. The optimal norm q in Bridgeout varies for different sampling
of the dataset and is not restricted to {1,2}.

We also trained a convolutional neural network (CNN)
with the architecture similar to the one used by
Wan et al. [25]. The CNN consisted of two convolutional
layers with 32 and 64 channels of filter size 5 × 5, each
with max pooling of size 2 × 2 and ReLU activation. The
convolutional layers were followed by a fully connected layer
of size 150 with ReLU activation. Regularization was applied
to the fully connected layer. Finally a fully connected layer of
size 10 with softmax activation was used to output the image
label probabilities.
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TABLE 3. Error rates (%) of deep neural network with sigmoid activations, trained on MNIST dataset with different training set sizes.

TABLE 4. Error rates (%) of deep neural network with ReLU activations, trained on MNIST dataset with different training set sizes.

FIGURE 4. Average gradients of the cost function calculated as
1

|W l |

∑
w∈W l

∂J
∂w of the sigmoid deep neural network trained with a

subset of MNIST of size 5000.

Similar to the deep neural network case, for CNNs, a non-
integral value was found to be optimal for the norm q in
Bridgeout. Bridgeout resulted in the lowest classification
errors for both the full MNIST and a subset of MNIST dataset
as shown in Table 5. As shown in Figure 5(left), Bridgeout
results in higher gradients of the cost function specifically
with respect to the input convolutional layer. Compared to the
other methods, Bridgeout takes longer to converge but results
in the lowest validation error as shown in Figure 5(right).

TABLE 5. Error rates (%) of convolutional neural network trained on
MNIST dataset.

2) CLASSIFYING FASHION-MNIST
Fashion-MNIST [37] is a new dataset that is very similar in
structure and size to MNIST but comprises of images of fash-
ion products instead of handwritten digits. Fashion-MNIST
consists of images belonging to 10 classes of fashion products

such as t-shirts, trousers and bags etc. as shown in Figure 6.
Thus Fashion-MNIST provides a semantically more chal-
lenging alternative to MNIST.

We used the same convolutional neural network archi-
tecture for Fashion-MNIST as used for the MNIST dataset
described in the previous section. Table 6 shows the results of
training the CNN with 5000 and 50000 training images from
Fashion-MNIST. For the training set of size 5000, Bridgeout
resulted in around 1% improvement over Dropout while for
the full training set, Bridgeout and Dropout resulted in similar
performance. This indicates that Bridgeout can effectively
reduce overfitting when the dataset size is comparatively
small.

TABLE 6. Error rates (%) of convolutional neural network trained on
Fashion-MNIST dataset.

3) CLASSIFYING CIFAR-10
CIFAR-10 [38] is a dataset of labeled color images of size
3 × 32 × 32 belonging to 10 categories of objects. Sample
images from the CIFAR-10 dataset are shown in Figure 8.
The dataset is divided into a training set of 50000 examples
and a test set of 10000 examples. The dataset contains equal
number of images from each category.

To classify CIFAR-10 images, we trained the same archi-
tecture as used by Kang et al. [5], which consists of three
convolutional layers followed by a fully connected layer
of 64 ReLU units.

For this experiment we did not perform hyperparameter
search and the recommended values for the hyperparameters
were used. For Dropout we used the Dropout probability of

p = 0.5. For Shakeout we used p = 0.5 and c =
√

1
N where

N is the number of training examples. For Bridgeout we used
p = 0.5 and q = 1.75. Following Kang et al. [5], for the
full dataset we trained for 100 epochs with a learning rate of
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FIGURE 5. CNN trained with MNIST, average gradients of the cost function with respect to different layers (left), classification errors (right).

FIGURE 6. Fashion-MNIST [37] dataset comprising of images of fashion
products.

TABLE 7. Error rates (%) of convolutional neural network trained on
CIFAR dataset.

0.001 followed by 50 epochs of training with a learning rate
of 0.0001.

For each method we trained 5 independent networks and
reported the mean and standard errors in Table 7. As evi-
denced in Table 7, Bridgeout achieved 4% classification error
reduction over backpropagation for the case of 5K samples
and 3% reduction in classification error for the full dataset.
The test error rates for the full dataset as the training pro-
gresses are shown in Figure 8.

FIGURE 7. CIFAR10 [38] dataset comprising of images of objects from
10 categories.

TABLE 8. Optimal q for p = 0.5 for Bridgeout applied to DNN trained on
the MNIST dataset.

V. PRACTICAL RECOMMENDATION FOR
HYPERPARAMETERS
For a particular problem it is recommended to optimize for p
over [0.3, 0.7] and for q over [0.5, 2.0]. In our experiments,
we found that setting p = 0.5 and optimizing for q, the opti-
mal value of q reaches 2.0 as the dataset size increases as
shown in Table 8. Depending on the problem at hand, q can
be decreased to increase regularization strength and sparsity
of the weights.

VI. DISCUSSION
Dropout and other stochastic regularization techniques are
often used to reduce overfitting in image classification with
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FIGURE 8. CIFAR-10 (full dataset) classification using convolutional
neural network.

deep neural networks. Many problems, including image clas-
sification, can benefit from a sparsity inducing penalty while
keeping the properties of stochastic regularization. Shakeout
augments Dropout by adding an L1 norm term to encourage
weight sparsity. Bridgeout, on the other hand, allows for a
fractional norm that can be tuned to better match the shape
of the penalty to the problem at hand. Image classification
experiments with Bridgeout did yield optimal values of q
less than 2, which encourages sparsity, and resulted in the
best performances on image classification using both fully
connected and convolutional neural networks.

Both Dropout and Bridgeout resulted in interesting learned
features in individual neurons of the network, as indicated
in Figure 3; however, they did so in very different ways.
Neurons in the networks trained with Dropout are forced
to learn representations that are useful in the absence of
other neurons since during training only a fraction p of the
neurons are present. Bridgeout, on the other hand, forces
neurons to learn robust representations in a more adversarial
environment where synapses are randomly damped-down
(a norm of the weight is subtracted) or spiked-up (a scaled
norm is added) as evident from Equation 10. This could be
biologically more plausible since activities of the neurons in
the brain are noisy.

Since Bridgeout does not zero out weights during training,
it prevents the vanishing gradients problem that is common in
Dropout-based regularization. Better gradients are important
for training very deep neural networks as was shown by
He et al. [39] with the residual neural networks. Bridgeout
could potentially help in training deep networks in a manner
similar to the residual learning paradigm, which we plan to
investigate in future studies with deeper networks than used
in the present study.

It is interesting to note that the Shakeout perturbation
becomes analytically equivalent to the Dropout perturbation
when the L1 regularization strength c is set to zero. On the
other hand, for the norm q = 2, the Bridgeout weight
perturbation (Equation 10) is analytically different from the
Dropout perturbation (Equation 7), but, in expectation, they
are equivalent, as shown theoretically in Corollary 2 and
demonstrated empirically in Figure 1.

Regularization techniques work well in practice and result
in superior classification performance. The improvement
in performance due to the stochastic regularization tech-
niques is high, specifically in the scarce training data regime.
As shown in Table 3, for training set sizes less than 20000
Bridgeout results in about 2% improvement in the gen-
eralization error over standard backpropagation. However,
recently Zhang et al. [40] showed that deep neural networks
with or without regularization have sufficient capacity to
achieve zero training error on image classification where the
labels are assigned randomly. Thus, it is still an open question
as to why neural networks generalize better even though they
have much higher capacity than the one required for the
task. Nevertheless, regularization remains standard practice
and Bridgeout could be used in many current real-world
problems, such as biomedical image classification/diagnosis
where labeled data is limited.

In order to provide a fair comparison with respect to
hyperparameter optimization, we chose the relatively simple
4-layer neural network and a 4-layer CNN, with relatively
easy datasets MNIST and Fashion-MNIST. Besides being
simple, MNIST is also relatively easy to generalize from
very small training sets, thus achieving better performance
on these datasets with regularization is challenging. Also,
the use of simple models makes improvement over backprop-
agation challenging since there is relatively less overfitting.
We expect the benefits to Bridgeout to be greater for larger
architectures or problems with scarce data where regulariza-
tion is more important to combat overfitting. As future work,
we plan to extend our theoretical results to non-linear neural
networkmodels and performing generalization analysis of the
Bridgeout for neural networks.

VII. SUMMARY
In this paper, we have presented Bridgeout: the first stochastic
regularization technique that is equivalent to an Lq penalty on
the model weights. We proved theoretically and empirically
that, for GLMs, Dropout is a special case of Bridgeout. Eval-
uation on image classification tasks using neural networks
showed that the flexibility and sparsity-inducing properties
of Bridgeout outperform Dropout and Shakeout in terms of
classification accuracy.
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