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ABSTRACT The selection of the penalty functional is critical for the performance of a regularized
learning algorithm, and thus lq-regularizer (1 ≤ q ≤ 2) deserves special attention. We consider the
regularized least-squares regression learning algorithm for the non-identical and weakly dependent samples.
The dependent samples satisfy the polynomially β-mixing condition and the sequence of the non-identical
sampling marginal measures converges to a probability measure exponentially in the dual of a Hölder space.
We conduct the rigorous unified error analysis and derive the satisfactory learning rates of the algorithm by
the stepping stone technique in the error decomposition and the independent-blocks technique in the sample
error estimates.

INDEX TERMS Regression function, empirical covering number, drift error, blocking technique, learning
rate.

I. INTRODUCTION
In this paper we consider the regularized least-squares regres-
sion learning algorithm with lq-regularizer (1 ≤ q ≤ 2).
Let X be a compact metric space and Y = R be a compact
subset ofR. Let ρ be a unknownBorel probability distribution
on Z = X × Y . A set of random samples z = {zi}mi=1 =
{(xi, yi)}mi=1 ∈ Zm are drawn according to the measure ρ.
We define the generalization error as follows:

E(f ) =
∫
Z
(f (x)− y)2dρ, ∀f : X → Y . (1)

The regression function fρ minimizing E(f ) is defined by

fρ(x) =
∫
Y
ydρ(y|x),

where ρ(·|x) is the conditional probability distribution
induced by ρ on Y . Regression learning algorithms aim at
finding a good approximation fz of fρ based on {zi}mi=1. Our
task is to estimate the error

‖fz − fρ‖2ρX = E(fz)− E(fρ),

where ‖f (·)‖ρX = (
∫
X |f (·)|

2dρX )
1
2 and ρX is the marginal

distribution of ρ on X , see [1], [2]

A kernel K is called a Mercer kernel if it is a continuous,
symmetric, and positive semi-definite function on X×X . The
hypothesis space HK is defined by the closure of the linear
span of the set of functions {Kx := K (x, ·) : x ∈ X}. It takes
the following inner product〈 n∑

i=1

αiKxi ,
m∑
j=1

βjKyj
〉
K
:=

n∑
i=1

m∑
j=1

αiβjK (xi, yj).

The reproducing property is given by

f (x) = 〈f , Kx〉K , for all f ∈ HK , x ∈ X . (2)

We study the following least-squares regularization algo-
rithm with lq-regularizer

fz,λ = argminf ∈HK

{
Ez(f )+ λ‖f ‖qK

}
, 0 < q ≤ 2, (3)

where Ez(f ) = 1
m

∑m
i=1(f (xi) − yi)2 and λ is the positive

regularization parameter with limm→∞ λ(m) = 0.
Smale and Zhou [3], Lv and Feng [4], Caponnetto

and Vito [5], Cucker and Smale [6], Vito et al. [7], and
Mendelson and Neeman [8] carried out the error analysis
of the algorithm (3) with q = 2 for the independent and
identical (i.i.d.) samples. However, the samples are not inde-
pendent but are not far from being independent in some real
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data analysis. The mixing conditions can quantify how
close to independence a sequence of random samples.
Guo et al. [10], Sun and Wu [12], Chu and Sun [13],
Pan and Xiao [14], and Guo and Ye [16] carried out the
regression estimation of the least squares algorithm with the
α-mixing and φ-mixing samples. Error estimates for classi-
fication and coefficient regularized regression learning with
the β-mixing samples have been conducted in [10] and [15].
Since the β-mixing is quite easy to establish and covers a
more general non-i.i.d. cases such as Gaussian and Markov
processes. As pointed out in [15], the β-mixing is‘‘just the
right’’ assumption for extending the analysis of several learn-
ing algorithms to the case of weakly dependent samples,
since there exists some available results under β-mixing
conditions, see [15]. And we can replace the empirical pro-
cess by another independent empirical process built over an
independent block technique for the β-mixing. In this paper,
following the approach in [10] and [15], we obtain error
bounds of the algorithm (3) for the β-mixing and the sequence
of non-identical probability distributions.
Definition 1: The stochastic process {zt } is said to satisfy

the β-mixing, if

β(k) = sup
j≥1

E sup
A∈σ∞j+k

|P(A|σ j1)− P(A)| → 0,

as k → ∞, where σ ji is the σ -algebra generated by {zt =
(xt , yt )}

j
t=i, i, j ∈ N ∪ {+∞}. It satisfies a polynomially

β-mixing, if for some positive constants β0 > 0 and γ > 0,
we have

β(k) ≤ β0k−γ ,∀k ≥ 1. (4)
We consider the non-identical setting in [10], [14],

and [15]. The probability measure of zi = (xi, yi) is the Borel
probability measure ρ(i) on Z . ρ(i)X is the marginal probabil-
ity measure of ρ(i) and ρ(·|x) is the conditional probability
measure of {ρ(i)}i=1,2,··· at x, for x ∈ X , independent of i.
We assume the sequence {ρ(i)X } converges to ρX exponentially
fast in the dual (Cs(X ))∗ of the Hölder space Cs(X ), that is,∣∣∣∣ ∫

X
f (x)dρ(i)X −

∫
X
f (x)dρX

∣∣∣∣
≤ Cαi(‖f ‖∞ + |f |Cs(X )), ∀f ∈ Cs(X ), i ∈ N, (5)

where Cs(X ) is defined by the set of all continuous functions
on X and

‖f ‖Cs(X ) := ‖f ‖∞ + |f |Cs(X ),

where

|f |Cs(X ) := sup
x 6=y∈X

|f (x)− f (y)|
(d(x, y))s

.

The above assumption of probability measures is reasonable.
We can generate the non-identical sequence by iterations of
a stochastic linear operator acting on an initial probability
measure or induced by dynamical systems, see [15], [17].

The goal of this paper is to obtain the unified error bounds
of the algorithm (3) that covers the case 1 ≤ q ≤ 2 under
the conditions (4) and (5). To the best of our knowledge,
this is the first time that a generalization error analysis of the
algorithm (3) is extended to the β-mixing and non-identical
sampling case. The remainder of this paper is organized as
follows. In Section II, we will give our main result and the
error decomposition analysis of the total error. The upper
bounds of the drift error, the approximation error and the
sample error will be obtained in Section III. In Section IV,
we will derive the learning rate. Finally, Section V concludes
the paper with future research lines.

II. MAIN RESULT AND ERROR DECOMPOSITION
To state the bound of ‖fz, λ − fρ‖2ρX , we firstly provide the
following assumptions of K , HK and fρ and some concepts
usually used in studying the learning algorithms.

The kernel K is said to satisfy the kernel condition of
order s, if for some positive constant κs, we have

|K (x, x)− 2K (x, x ′)+ K (x ′, x ′)| ≤ κ2s |x − x
′
|
2s,

∀x, x ′ ∈ X . (6)

WhenX is a domain ofRn with smooth boundary andK isC2,
the kernel condition holds true, see [21].

We assume that the unit ball

B1 =
{
f ∈ HK : ‖f ‖K ≤ 1

}
(7)

ofHK has the capacity condition measured by the l2 empiri-
cal covering number, see [18], [19],

logN2(B1, ε) ≤ cpε−p, ∀ε > 0, (8)

where cp is the positive constant and 0 < p < 2. In particu-
larly, when X ⊆ Rn and K ∈ Cs(X × X ) with some s > 0,
the condition (8) is valid with

p =


2n/(n+ 2s), 0 < s ≤ 1,
2n/(n+ 2), 1 < s ≤ 1+ n/2,
n/s, s > 1+ n/2.

Since theHölder spaceCs(Y ) and its dual (Cs(Y ))∗ arewell
defined for the compact subset Y ofR, the sequence {ρ(y|x) :
x ∈ X} satisfies Lipschitz s in (Cs(Y ))∗, that is, for some
positive constant Cρ ,

‖ρ(y|x)− ρ(y|u)‖(Cs(X ))∗ ≤ Cρ |x − u|s, ∀x, u ∈ X . (9)

Then we can use (9) to derive the upper bounds of |fρ(x)|Cs(X )
and

∣∣ ∫
Y y

2dρ(y|x)
∣∣
Cs(X ).

The integral operator LK : L2ρX (X ) → L2ρX (X ) is defined
by

(LK f )(x) =
∫
X
K (x, t)f (t)dρX (t), x ∈ X .

And

LrK (f ) =
∞∑
i=1

µri 〈f , ei〉L2ρX
ei, f ∈ L2ρX (X ),
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where {µi} and {ei} are the eigenvalues and eigenfunctions,
respectively, see [14].

Throughout this paper, we assume all constants are inde-
pendent of δ, m, λ or σ and |y| ≤ M almost surely. So we can
use the truncation function πM : X → [−M ,M ], M > 0,
which is defined by

πM (x) =


M , if x > M ,
x, if |x| ≤ M ,
−M , if x < −M .

(10)

And πM (f )(x) = πM (f (x)) for any x ∈ X ,
see [20], [22], [23].

Next we can state the learning rates of the algorithm (3).
Theorem 1: Suppose the sampling process satisfies (4), (5)

and (9),K satisfies (6),HK satisfies (8) and L−rK fρ ∈ L2ρX with

r > 0. If m ≥
{
8

1
ζ ,
(
4β0
δ

) 1
(γ+1)(1−ζ )−1

}
, ζ ∈

(
0, γ

γ+1

)
, then

for any 0 < δ < 1, with confidence 1− δ, we have

‖πM (fz,λ)− fρ‖2ρX ≤ D̃
(
1
m

)θ (r)
log

(
8
δ

)
, (11)

where

θ (r) =



2r min
{

q
2rq− 2r + 2

,
ζq

2rq− 2(2r − 1)
,

ζq
rq(2+ p)+ p

}
,

0 < r <
1
2
;

min
{

q
1+ q

,
2ζq

(2+ p)q+ 2p
, ζ

}
,

r ≥ 1/2.
From the above result, we see that, for the case q = 2,
the learning rate tends toO

(
m−min{ 23 , ζ }

)
as p→ 0. It is faster

than O(m−
1
2 ) of Theorem 2 in [14] for the α-mixing samples

when ζ ≥ 1
2 . This shows that our learning rate has the certain

advantage.
Now we are in a position to give the decomposition of the

total error. The limit of fz,λ is given by

fλ := arg min
f ∈HK
{‖f − fρ‖2ρX + λ‖f ‖

q
K }. (12)

It plays a stepping stone role between fz,λ and the regression
function fρ . To measure the error generated by the difference
of the marginal measures {ρ(i)X }, we present

Em(f ) =
1
m

m∑
i=1

∫
Z
(f (u)− y)2dρ(i)(u, y). (13)

Then we decompose E(πM (fz,λ))−E(fρ) into several parts:

E(πM (fz,λ))− E(fρ) ≤ E(πM (fz,λ))− E(fρ)+ λ‖fz,λ‖qK
= P(z, λ)+ S(z, λ)+D(λ)

+{(Ez(πM (fz,λ))+ λ‖fz,λ‖
q
K )

− (Ez(fλ)+ λ‖fλ‖qK )}, (14)

where

P(z, λ) = {E(πM (fz,λ))− Em(πM (fz,λ))}
+{Em(fλ)− E(fλ)},

S(z, λ) = {Em(πM (fz,λ))− Ez(πM (fz,λ))}
+{Ez(fλ)− Em(fλ)},

D(λ) = ‖fλ − fρ‖2ρX + λ‖fλ‖
q
K .

From the definition of fz,λ, it is easy to see that the last term
in the second equality of (14) is not exceeding to zero, thus

E(πM (fz,λ))− E(fρ) ≤ P(z, λ)+ S(z, λ)+D(λ), (15)

and D(λ), P(z, λ), S(z, λ) are known as the approximation
error, the drift error, the sample error, respectively. Compared
with the error analysis for the regularization scheme with the
sample dependent hypothesis spaces in [10], the hypothesis
space in our algorithm (3) is independent of the sample.
Hence we do not need to introduce an extra hypothesis error,
which is caused by the difference between norms of two
different Hilbert spaces.

III. ESTIMATES FOR THE ERROR BOUNDS
We mainly derive the upper bounds for D(λ), P(z, λ) and
S(z, λ), respectively.

A. ESTIMATES FOR THE APPROXIMATION ERROR
AND THE DRIFT ERROR
For the approximation error, we have the same result as
[10, Proposition 3.2].
Proposition 1: Assume L−rK fρ ∈ L2ρX with r > 0, there

holds

D(λ) ≤ C1λ
min{2r,1}. (16)

For the drift error, the estimation is similar to that in [10]
with the main differences are the bounds on fλ and fz,λ.
Proposition 2: Suppose the sampling process satisfies (5)

and (9), K satisfies (6), there holds

P(z, λ) ≤
C2

m

(
λ
−

1
q + λ

−
1
q

(
D(λ)
λ

) 1
q

+

(
D(λ)
λ

) 2
q
)
. (17)

Proof: It is known from Proposition 4.1 in [10] that{(
E(πM (fz,λ))− E(fλ)

)
−
(
Em(πM (fz,λ))− Em(fλ)

)}
≤

1
m

m∑
i=1

Cαi(3M + κ‖fλ‖K ){2|fz,λ|Cs(X )

+ 2|fλ|Cs(X ) + 2|fρ |Cs(X ) + 4M + 2κ‖fλ‖K }. (18)

By (9), we have

|fρ(x)|Cs(X ) ≤ Cρ(2M )1−s. (19)

By (2) and (6), for any f ∈ HK .

|f |Cs(X ) = sup
x,x ′∈X

|f (x)− f (x ′)|
|x − x ′|

≤ sup
x,x ′∈X

‖f ‖K
√
K (x, x)− 2K (x, x ′)+ K (x ′, x ′)

|x − x ′|
≤ κs‖f ‖K . (20)
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We directly invoke the following error bound of ‖fλ‖K and
‖fz,λ‖K in [24].

‖fλ‖K ≤
(
D(λ)
λ

) 1
q

, (21)

‖fz,λ‖K ≤
(
M2

λ

) 1
q

. (22)

Combining (21) and (22) with (20), we have

|fλ|Cs(X ) ≤ κs

(
D(λ)
λ

) 1
q

, (23)

|fz,λ|Cs(X ) ≤ κs

(
M2

λ

) 1
q

. (24)

Which implies[(
E(πM (fz,λ))− E(fλ)

)
−
(
Em(πM (fz,λ))− Em(fλ)

)]
≤
C3Cα
1− α

1
m

(
λ
−

1
q + λ

−
1
q

(
D(λ)
λ

) 1
q

+

(
D(λ)
λ

) 2
q
)
.

This proves Proposition 2.

B. ESTIMATES FOR THE SAMPLE ERROR
For the sample error, we decompose it into two parts:

S(z, λ) = {Em(πM (fz,λ))− Em(fρ)}
− {Ez(πM (fz,λ))− Ez(fρ)}
+ {Ez(fλ)− Ez(fρ)}
− {Em(fλ))− Em(fρ)}

:= S1(z, λ)+ S2(z, λ).

To estimate them, we use the same blocking technique
in [10], [15], and [25]. The sample points are divided into 2bm
blocks of length am. Let Q

am
k be the marginal distribution of

block (z(k−1)am+1, z(k−1)am+2, · · ·, zkam ) and (z′1, · · ·, z
′

2bmam
)

be a random sequence with product distribution
∏2bm

k=1 Q
am
k ,

for 1 ≤ k ≤ 2bm. Denote

Z1 = (z1, · · ·, zam , z2am+1, · · ·, z3am , · · ·,

z2(bm−1)am+1, · · ·, z2(bm−1)am ),

Z2 = (zam+1, · · ·, z2am , z3am+1, · · ·, z4am , · · ·,

z(2bm−1)am+1, · · ·, z2bmam );

and

Z ′1 = (z′1, · · ·, z
′
am , z

′

2am+1, · · ·, z
′

3am , · · ·, z
′

2(bm−1)am+1,

· · ·, z′2(bm−1)am ),

Z ′2 = (z′am+1, · · ·, z
′

2am , z
′

3am+1, · · ·, z
′

4am , · · ·,

z′(2bm−1)am+1, · · ·, z
′

2bmam ).

Then the following results on the upper estimates of S1(z, λ)
and S2(z, λ) are obtained by using the same method as
employed in [10].

Proposition 3: Suppose the sampling process satisfies (4),
(5) and (9), K satisfies (6) and HK satisfies (8), then for any
0 < δ < 1, with confidence 1− δ/2,

S1(z, λ) ≤
1
2
{E(πM (fz,λ))− E(fρ)} + Cp,8,ρηR

+
(192M2

+ 2)t
bm

log
( 4
δ − 4bmβ(am)

)
, (25)

with confidence 1− δ/2,

S2(z, λ) ≤ C4

{
b−1m

(
1+

(
D(λ)
λ

) 2
q
)
+ D(λ)

}
× log

( 4
δ − 4bmβ(am)

)
, (26)

where ηR :=

(
Rpλ
bm

) 2
2+p

+
α

1−α
1
m max{Rλ, 1}

and Rλ :=
(M2

λ

) 1
q .

Proof: We firstly estimate the bound of S2(z, λ).
Consider g(z) = (y − fλ(x))2 − (y − fρ(x))2, z = (x, y) ∈ Z ,
we have∥∥∥∥g(z)− ∫

Z
gdρ(i)

∥∥∥∥
∞

≤ 2
(
3M + κ

(
D(λ)
λ

) 1
q
)2

:= 2Bλ,

and ∫
Z
g2dρ(i) ≤ Bλ

∫
Z
gdρ(i).

We need to invoke the following lemma from [15].
Lemma 1: If g is a measurable function on Z satisfying∥∥g(z) − ∫

Z gdρ
(i)
∥∥
∞
≤ M , for any δ > 0, with confi-

dence 1 − δ, the quantity 1
m

∑m
i=1

(
g(zi) −

∫
Z gdρ

(i)
)
can be

bounded by{
8
3
M log

(
2

δ − 2bmβ(am)

)

+

√√√√ 2
am

2ambm∑
i=1

∫
Z
g2dρ(i) log

(
2

δ − 2bmβ(am)

)
+M

}
b−1m .

Then with confidence 1− δ/2, we have

1
m

m∑
i=1

(
g(zi)−

∫
Z
gdρ(i)

)

≤

(
19t
3
+ 2

)
Bλb−1m +

1
2ambm

2ambm∑
i=1

∫
Z
gdρ(i)

≤

(
19t
3
+ 2

)
Bλb−1m + 2

(
Em(fλ)− Em(fρ)

)
. (27)

It has been proved in [10] that

Em(fλ)− Em(fρ)≤
1
m

m∑
i=1

Cαi
∥∥∥∥(fλ(x)− fρ(x))2∥∥∥∥

Cs(X )
+D(λ).

(28)
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By (19),∥∥∥∥(fλ(x)− fρ(x))2∥∥∥∥
Cs(X )

≤ 2
(
M + κ

(
D(λ)
λ

) 1
q
)

×

(
M + (κ + κs)

(
D(λ)
λ

) 1
q

+ Cρ(2M )1−s
)
. (29)

Thus we obtain the upper estimate (26) of S2(z, λ) by substi-
tuting (28) and (29) into (27).

Next we estimate S1(z, λ). It has been proved in [10] that,
with confidence 1− δ/2,

S1(z, λ) ≤
1
2
{E(πM (fz,λ))− E(fρ)} + Cp,8,ρηR

+
(192M2

+ 2)
bm

log
( 4
δ − 4bmβ(am)

)
, (30)

where

ηR :=

(
Rpλ
bm

) 2
2+p

+
α

1− α
1
m

max{Rλ, 1}. (31)

Then we can obtain the bound (30) of S1(z, λ) by only setting

Rλ =
(M2

λ

) 1
q .

IV. ESTIMATES FOR THE LEARNING RATE
Now we derive the learning rates.

Proof of Theorem 1: Combining the upper bounds of
Proposition 1, 2 and 3 with (15), with confidence 1 − δ,
we have

‖πM (fz,λ)− fρ‖2ρX

≤ D1t
{
D(λ)+

(
m−1λ−

1
q + m−1λ−

1
q

(
D(λ)
λ

) 1
q

+ b−1m

(
D(λ)
λ

) 2
q
)
+ λ
−

1
q

2p
2+p b

−
2

2+p
m + b−1m

}
.

Assume am satisfies m1−ζ
≤ am < m1−ζ

+1 with ζ ∈ [0, 1],
bm = [ m

2am
] and m ≥ 8

1
ζ . Then

1
bm
≤

1
m
2am
− 1
≤

2(m1−ζ
+ 1)

m− 2m1−ζ

≤
4m1−ζ

m− 2m1−ζ =
4m−ζ

1− 2m−ζ

≤ 8m−ζ . (32)

For the case 0 < r < 1/2,

‖πM (fz,λ)− fρ‖2ρX

≤ D2t
{
λ2r + m−1λ

2r−2
q + m−ζλ

2(2r−1)
q + λ

−
1
q

2p
2+pm−

2ζ
2+p
}
.

If λ = m−θ1 , then we have

‖πM (fz,λ)− fρ‖2ρX ≤ D2tm−θ , (33)

where

θ = min
{
2rθ1, 1+

2r − 2
q

θ1, ζ

+
2(2r − 1)

q
θ1,

2ζ
2+ p

−
2p

(2+ p)q
θ1

}
.

To minimize the learning rate, we take θ as below:

θmax = min
{
max
θ1

min
{
2rθ1, 1+

2r − 2
q

θ1

}
,

max
θ1

min
{
2rθ1, ζ +

2(2r − 1)
q

θ1

}
,

max
θ1

min
{
2rθ1,

2ζ
2+ p

−
2p

(2+ p)q
θ1

}}
.

Let

2rθ1 = 1+
2r − 2
q

θ1, 2rθ1 = ζ +
2(2r − 1)

q
θ1,

2rθ1 =
2ζ

2+ p
−

2p
(2+ p)q

θ1.

We have

θmax

=2r min
{

q
2rq− 2r+2

,
ζq

2rq− 2(2r − 1)
,

ζq
rq(2+p)+ p

}
.

For the case r ≥ 1/2,

θ = min
{
θ1, 1− 1

qθ1, ζ,
2ζ
2+p −

2pθ1
(2+p)q

}
.

In the same way, we take

θmax = min
{

q
1+ q

,
2ζq

(2+ p)q+ 2p
, ζ

}
to obtain the learning rate.

To ensure δ − 4bmβ(am) ≥ δ
2 , from β(am) ≤ β0(am)−γ ,

we take

m ≥
(4β0
δ

) 1
(γ+1)(1−ζ )−1

, ζ ∈
(
0,

γ

γ + 1

)
,

therefore

log
4

δ − 4bmβ(am)
≤ log

8
δ
.

We complete the proof of Theorem 1.

V. CONCLUSION AND FURTHER DISCUSSION
We obtain the upper error bound of the algorithm (3), 1 ≤
q ≤ 2, based on the β-mixing and non-identical samples.
Moreover, for the identical and independent samples, we can
obtain the following result by the same method employed in
Theorem 1. We only need take α = 0 and ζ = 1.

‖πM (fz,λ)− fρ‖2ρX ≤ D̃
′

(
1
m

)θ ′(r)
log

(
8
δ

)
, (34)
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where

θ ′(r) =



2r min
{

q
2rq− 2(2r − 1)

,
q

rq(2+ p)+ p

}
,

0 < r <
1
2
;

min
{

2q
(2+ p)q+ 2p

, 1
}
, r ≥ 1/2.

We can see that 2q
(2+p)q+2p → 1 as p → 0. This is a

satisfactory learning rate.
In some practical applications, we may encounter the other

mixing sampling processes such as α-mixing or ϕ-mixing
processes, see [14], [25]. It may be interesting to continue our
error analysis for the other weakly dependent samples.
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