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ABSTRACT Pairs trading is one of the most successful strategies for stock investment. The performance
of pairs trading heavily depends on modeling how similarity of two paired financial signals. Conventional
methods measure similarity based on one-way or two-way signal, ignoring multiple information sources.
In this paper, we propose a tensor-based framework to capture the intrinsic relations among multiple factors.
Equities data is represented by tensors in firm-time-trading modes, on which tensor decomposition method is
applied to seek a set of multilinear patterns for each mode. In this process, structural information is preserved
which provides supplementary information for pairs trading. Experiments on stocks data of all constituent
firms of S&P500 demonstrate the superior performance of the proposed framework when compared with
some state-of-the-art methods.

INDEX TERMS Data mining, time series, tensor theory.

I. INTRODUCTION
It is widely known that equity movements are affected by
various sources that cover a wide range of topics includ-
ing economics, politics, and psychology. Portfolio design
is a tradeoff between desired profit and potential risks.
In recent years, many researchers have been devoted to study-
ing the relationship among financial signals in investment
strategy [1], [2].

One of the most successful approach is termed pairs
trading [3]. Pairs trading enables traders to profit from almost
any market condition by building an investment portfolio that
includes a set of related stocks whose relative pricing deviates
from their equilibrium state. When the correlation between
the two equities weakens, i.e. one stock moves down while
the other moves up, the pairs trading would be to go long
on the undervalued one and to short on the overvalued stock,
making a profit by unwinding the position upon convergence
of the spread, or the measure of relative mispricing.

Pairs trading usually take the form of statistical arbitrage or
risk arbitrage. Statistical arbitrage is a stock trading strategy,
which uses signal processing methods to identify the rela-
tive mispricing between stocks [4], [5], while risk arbitrage
refers to strategies involving stocks of merging companies
[6]. Recently, several studies try to find pairs by modeling

how similarity of two paired equities, such as correlation,
partial correlation, cosine distance and matrix decomposition
based distance measures [1], [7], [8].

Generally, previous studies usually measure the similar-
ity between equities based on vector or matrix methods by
vectorization or matricization of financial signals, such as
correlation mentioned above, and factor model based meth-
ods. However, these approaches inevitably diminish the inter-
relations among the various information sources.

To address problems mentioned above, we introduce a ten-
sor based similarity measure method for paired high-related
financial signals, aiming at capturing the intrinsic relations
among different modes. Tensor provides an effective and
faithful representation of the structural properties of data [9],
in particular, when multidimensional data or a data ensemble
affected by multiple factors are involved [10], [11]. We first
represent multiway stocks with a tensor form in three modes:
time, firms and publicly available trade information. After
that, we try to capture the inherent structure of stocks by
tensor decomposition, yielding low-dimensional factors rep-
resenting each mode. Finally, we calculate the similarity
between equities in firmsmode using Kullback-Leibler diver-
gence and propose a tensor cluster algorithm for selecting
pairs candidates.
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The main contributions in this paper includes:
1) To the best of our knowledge, this is the first tenso-

rial framework for similarity measures between paired
correlative financial signals which attempts to cap-
ture the intrinsic relations among multiple trading
sources.

2) The latent patterns in firm-time-trading modes are
obtained by tensor decomposition, by which the inher-
ent relations and interactions between each mode
can be studied, providing additional information for
investors.

3) In order to pick the most significant behavior
patterns of firm, a significant similarity measures
method, which combine multiple-modality informa-
tion based on multilinear interactions in tensor, is pro-
posed, yielding a superior performance of pairs
trading.

In the rest part of the paper, Section 2 introduces the
notations and basic multilinear algebra operations. Details
of tensorial framework is elaborated in Section 3. Finally,
we give a brief discussion and conclusion about our work in
Section 4 and Section 5, respectively.

II. NOTATIONS AND TENSOR ALGEBRA
N th-order tensors (multi-way arrays) are denoted by calligra-
phy letters, matrices (two-way arrays) by boldface capital let-
ters, and vectors by boldface lower-case letters, e.g.,X , P and
t are examples of a tensor, a matrix and a vector, respectively.
The ith entry of a vector x is denoted by xi, element (i, j) of a
matrix X is denoted by xij , and element (i1, i2, . . . , iN ) of an
N th-order tensor X ∈ RI1×I2×···×IN is denoted by xi1,i2,...,iN .
The order of a tensor is the number of dimensions, also knows
as ways or modes. The nth element in a sequence is denoted
by a superscript in parentheses, e.g.,U(m). Matricization, also
known as unfolding, is the process of recording the elements
of a tensor into a matrix. More, specifically, the mode-m
matricization of a tensor X ∈ RI1×I2×···×IN is denoted by
X(m) ∈ RIn×I1×···×Im−1×Im+1···×IM , while the vectorization of
a tensor is denoted as vec(X ).
Definition 2.1 (Inner Product): The inner product of two

same-sized tensors X ,X ′ is defined by:

〈X ,X ′〉 =
∑

i1i2···iM

xi1i2···iM x
′
i1i2···iM (1)

The Frobenius norm by ‖X‖F =
√
〈X ,X ′〉.

Definition 2.2 (Outer Product): The outer product of the
tensors X and Y is given by

(X ◦ Y)i1i2...iM j1j2...jN = xi1i2...iM yj1j2...jN (2)

Definition 2.3 (Mode-n Product): The mode-n product of
a tensor X ∈ RI1×I2×···×IN and vector v ∈ RIn is denoted by
(X×nv) ∈ RI1×···In−1×In+1×···×IN and is defined as:

(X×nv) =
In∑

in=1

xi1i2...iN vin (3)

The mode-n product of a tensor X ∈ RI1×I2×···×IN and
matrix A ∈ RJn×In is denoted by Y = X ×n A ∈

RI1×I2×···×In−1×Jn×In+1×···×IN and is defined as:

yi1 ...in−1jnin+1 ...iN =
∑
in

xi1...iN ajnin (4)

The mode-n product of a tensor X ∈ RI1×I2×···×IN and mul-
tiple matrices {A(n)

∈ RJn×In , n = 1, . . . ,N } is denoted by

Y = X
N∏
n=1
×nA(n)

∈ RJ1×J2×···×JN . Especially, the product

of X and multiple matrices {A(n)
}
N
n=1 except the k-th one is

denoted as

X (k̄)
= X

N∏
n=1,n 6=k

×nA(n)
∈ RJ1×···×Jk−1×Ik×Jk+1...×JN (5)

Definition 2.4 (Tensor Contraction): The contraction
of a tensor is obtained by equating two indices and
summing over all values of the repeated indices. Con-
traction reduces the tensor order by 2. Given two
tensors X ∈ RI1×I2×···×IM×J1×J2×···×JN and Y ∈

RI1×I2×···×IM×K1×K2×···×KP , the contraction on the tensor
product X ⊗ Y along the first M modes is

[[X ⊗ Y; (1 : M )(1 : M )]]

=

I1∑
i1

· · ·

IM∑
iM

xi1...iM j1...jN yi1...iM k1...kP (6)

Especially, contracted product of X and Y on all indices
except the k-th index is denoted as [[X ⊗ Y; (k)(k)]].
Definition 2.5 (Tensor Matricization): Matricization is a

process of reordering the elements of an N -th order ten-
sor into a matrix. The mode-n unfolding of tensor X ∈

RI1×I2×···×IN is denoted by X(n) arranges the mode-n fibers
into columns of a matrix. More specifically, a tensor element
(i1, i2, . . . , iN ) maps onto a matrix element (in, j), where

j = 1+
N∑
k=1
k 6=n

(ik − 1)Jk , Jk =
k−1∏
m=1
m6=n

Im (7)

III. SYSTEM FRAMEWORK
In this paper, we propose a tensor-based financial time series
framework, called TeFTS, to systematically study the rela-
tions between multiple sources on stocks like time, firms
and publicly available trade information. The framework of
TeFTS is sketched in Figure 1. We first represent multiway
stocks in tensor form. Afterwards, tensor decomposition is
applied to remove noise and capture intrinsic relations of
different modes in these tensors, generating low rank tensors
containing the structural information of the original data.
Finally, we map the low rank tensors back to the source
space, which are feed into the analytical model for extracting
significant paired firms.
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FIGURE 1. A brief view of the tensor-based framework. The framework is consisted of four
components: tensor representation, tensor decomposition, analytical model and trading model.

A. MULTILINEAR TENSOR DECOMPOSITION
We utilize a tensor decomposition technique to derive latent
relationships between different information modes on mul-
tiway stock tensor which are first constructed in multiway
form. After that, higher-order tensor decompositions are
nowadays frequently used in a variety of fields including
psychometrics, chemometrics, image analysis, graph analy-
sis, and signal processing. Two of the most commonly used
decompositions are the Tucker decomposition and Canoni-
cal Decomposition /Parallel Factor Analysis (also known as
CANDECOMP or simply CP) which are often considered as
higher-order generalizations of the principal component anal-
ysis (PCA) or matrix singular value decomposition (SVD).

1) TUCKER DECOMPOSITION
Given a N th-order tensor X ∈ RI1×I2×···×IN , its
(i1, i2, · · · , iN )th entry is denoted by Xi1,i2,··· ,iN , where in =
1, · · · ,N . The standard Tucker decomposition is defined by

X = G ×1 U(1)
×2 U(2)

× · · · ×N U(N ) (8)

{U(n)
∈ RI1×Rn}Nn=1 are a set of mode-n factor matrices, G ∈

RR1×R2×···×RN denotes the core tensor and (R1,R2, · · · ,RN )
denote the dimensions of mode-n latent space, respectively.
The overall model complexity can be represented by

∏
n Rn or∑

n Rn, whose minimum associated values {Rn}Nn=1 is termed
as multilinear rank of tensorX . For a specificU(n), we denote
its row vectors by {u(n)rn |rn = 1, · · · ,Rn}
Definition 3.1 (Kronecker Products): Let {U(n)

∈

RI1×Rn}Nn=1 denote a set of matrices, the sequential Kronecker
products in a reversed order is defined and denoted by⊗

n

U(n)
= U(N )

⊗ U(N−1)
⊗ · · · ⊗ U(1).⊗

k 6=n

U(k)
= U(N )

⊗ · · · ⊗ U(n+1)
⊗ U(n−1)

⊗ · · · ⊗ U(1)

(9)

FIGURE 2. Tucker model is a weighted sum of the product of multiple
component matrices representing each mode and a core tensor defining a
linking structure between the set of components.

The symbol ⊗ denotes Kronecker product.
⊗

n U
(n) is a

matrix if size (
∏

n In×
∏

n Rn) The Tucker decomposition can
be also represented by using matrix, vector or element-wise
forms, given by

X(n) = U(n)G(n)

⊗
k 6=n

U(k)T

,
vec(X ) =

(⊗
n

U(n)

)
vec(G),

Xi1···iN =

(⊗
n

u(n)Tin

)
vec(G). (10)

It should be noted that the multilinear operation is signifi-
cantly efficient for computation. For example, if we com-
pute

⊗
n U

(n) firstly and then multiply it with vec(G), both
the computation and memory complexity is O(

∏
n InRn).

In contrast, if we apply a sequence of multilinear operations
(·) ×n U(n) without explicitly computing

⊗
n U

(n), the com-
putational complexity isO(minn

(
Rn)

∏
n In
)
while the mem-

ory cost is O(
∏

n In). In this paper, we use notation
⊗

n(·)
frequently for clarity however, the implementation can be
performed by using multilinear operations.
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2) CANDECOMP-PARAFAC (CP) DECOMPOSITION
The CP Decomposition algorithm decomposes a given tensor
into a sum of multi-linear terms, which can be formulated as
follows. Given a three order tensor X I×T×Q and the positive
index J , find three-component matrices, also called loading
matrices or factors, A = [a1, a2, . . . , aJ ] ∈ RI×J , B =
[b1, b2, . . . , bJ ] ∈ RT×J and C = [c1, c2, . . . , cJ ] ∈ RQ×J

which perform the following approximate factorization:

X =
J∑
j=1

aj ◦ bj ◦ cj + E (11)

or equivalently in the element-wise form

xitq =
J∑
j=1

aij ◦ btj ◦ cqj + E (12)

Essentially, CP decomposition is a particular case of
Tucker decomposition. Thus, in this study, we apply Tucker
decomposition on stock tensors to derive latent relationships
inherent in a tensor. Tucker decomposition is a form of
higher-order PCA, which decomposes a tensor into a core
tensor multiplied by a matrix along each mode.

B. ANALYTICAL MODULE
The core tensor G and projected matrices U(i) (ith mode)
learned in tensor decomposition will be fed into the analysis
module shown in Fig. 3, which are consisted of the clustering
methods and measuring methods based on each sector.

FIGURE 3. Analysis module: clustering method and measuring methods
based on each sector. Both clustering method and measuring method
aims to find the significant firms in each sector. Here U2 represents the
projection matrix of firm mode.

We aim to explore the connection and significant firms by
historical data, thus we model each firm by U(in) in the other
modes, and reconstruct the original tensor by:

X̂ = G ×i
∏
i 6=j

U(in)
(13)

Where j is firm mode of tensor X , and U(in) is n principle
components of U(i) since Tucker decomposition is a form
of higher-order PCA. In this process, each firm is elite by
dimensionality reduction. Then, we split them into a N − 1-th
order tensor in the firm mode.

1) DISTANCE DEFINITION
Once we obtain the reconstructed tensor X̂ , we introduce
β-divergence to calculate the distance among firms.
Definition 3.2 (β-Divergence): The β-divergence between

two tensors A and B with the same size is

dβ (A,B) =
1

β(β − 1)∑
IN

(
Aβ
IN + (β − 1)BβIN − βAINB

β−1
IN

)
(14)

where β > 0 is a constant, and IN = i1, · · · , iN .
For completeness, by making use of the limit theory,

we define dβ (A,B) for β = 0 and β = 1 between two
matrices A and B as follows.

d0(A,B) = lim
β→0

∑
ij

Aij
Bβ−1ij

1− β
−

Aβij − Bβij
β

+
Aβij
β − 1


=

∑
ij

Aij(logAij − logBij)+ (Bij − Aij) (15)

d1(A,B) = lim
β→1

∑
ij

Aij
Aβ−1ij − Bβ−1ij

1− β
+

Bβij − Aβij
β


=

∑
ij

Aij(logAij − logBij)+ (Bij − Aij) (16)

β-divergence is a very general divergence: d0(A,B),
d1(A,B), d2(A,B) correspond to the Itakura-Saito distance,
generalized Kullback-Leighbler divergence and Euclidean
distance [12].

2) CLUSTERING ALGORITHM
Given tensor datasets S = {X̂i}

N
i=1, which containN elements

and nc(> 0) clusters. {mj}
nc
j=1 denotes the data elements of

each cluster center, e.g., X̂mj is the jth cluster center. {ci}Ni=1
represents element i belongs to cluster ci. {bi}Ni=1 denotes the
distance closest element among datasets S, in which the local
density is larger than X̂i. It is defined as

nqi =

{
argmin
qj,j<i

{dβ (qi, qj)}, i > 2,

0, i = 1.
(17)

Where qi is a subscript sequence of descend ordered local
density ρi. ρi is defined as

ρi =
∑

j∈IS\{i}

χ
(
dβ (i, j)− dβ (c)

)
(18)

χ (x) = 1 if x < 0 and χ (x) = 0, otherwise. dβ (c) is cut-off
distance. δi is the distance of the closest data point of higher
density, and defined as δi = min

j:ρj>ρi
(dβ (i, j)). {hi}Ni=1 is a flag

of whether the data element is a cluster core or cluster halo.
If hi = 0, it means X̂i belongs to cluster core [13]. The main
process of cluster analysis is showed in Algorithm 1.
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Algorithm 1 The Clustering Analysis of Tensor Datasets

Input: Tensor dataset S = {X̂ I1×I2×···×IM−1
n }

N
n=1,

X̂ I1×I2×···×IM−1
n denotes the n-th element of

tensor for clustering; the cut-off distance
dβ (c) ∈ (0, 1)

Output: {ci}Ni=1 represents element i belongs to cluster
ci; {hi}Ni=1, flag of cluster core or cluster halo.

begin
dij = dβ (i, j), i < j, i, j ∈ IS ; ni = 0;
ρi =

∑
j∈IS\{i} χ

(
dβ (i, j)− dβ (c)

)
{qi}Ni=1 = descend ordered index of ρi
for i = 2, 3, · · · ,N do

δi = max
i<j

(dβ (i, j))

for j = 1, 2, · · · , i− 1 do
if dβ (X̂qi , X̂qj ) < δqi then

δqi = dβ (X̂qi , X̂qj )
nqi = qj

δq1 = max
j>2
{δj}

Pick k points as centers from top k ρ,δ elements into
{K }
for i = 1, 2, · · · ,N do

if X̂i /∈ {K } then
ci = −1; cqi = cnqi

else
ci = k

for each cluster, set {ρbi }
nc
i=0 as mean density

for i = 1, 2, · · · ,N do
if ρi < ρbci then

hi = 1

C. PAIRS PICKING AND TRADING STRATEGY
In each sector, different firms are clustered into different
classes, in which p-score is utilized to pick a seed representing
the significant firm for each cluster. p-score is defined as

{p-score}i = aσ
(
U(in)
i

)
+ (1− a)dβ

(
X̂i, X̂c

)
(19)

where σ (x) is the variance of vector x. X̂c denotes the center
element of a cluster. We choose the highest p-score element
as the seed firm, and then calculated the closest β-divergence
as paired firm in each cluster.

Here we define some basic notations. Let PtA represents
price of equity A on day t . Spread value SPtA,B as SPtA,B =
log(PtB) − γ log(PtA), where γ is the regression coefficient
of log(PtA) and log(PtB) by OLS (ordinary least squares).
Afterwards, we utilize z-score to evaluate the difference
between prices, in which z-scoretA,B =

SPtA,B−mean(SPA,B)
var(SPA,B)

.
Finally, SPA,B needs to be statistical cointegration, which
means we need to test the stability of time series, such as

Augumented Dickey-Fuller(ADF) test, Elliott-Rothenberg-
stock test, Schmidt-Phillips test, etc [14], [15], [16].

Pairs trading strategy is simplified as the below rules:
Rule 1: (BASB) when z-scoretA,B > Ca, buy a setting quota

of equity A, and sell B.
Rule 2: (SABB) when z-scoretA,B < Cb, sell a setting quota

of equity A, and buy B.
Rule 3: (SASB) when z-scoretA,B ∈ (λ1Cb, λ2Ca), balance

A and B in order to withdrawn from the market.
Where Ca,Cb,λ1,λ2 are parameters adjusted by different

market situation.
Once the pairs trading candidate is captured, we apply the

trading strategy on all the constituent firms, as described in
Algorithm. 2.

Algorithm 2 Pair Trading Strategy
Input: Paired Stocks A and B; Marketing information of

paired stocks on day t PtA, P
t
B; Given investment

amount M .
Output: Position Ratio of equity A and B in day t ,

POA(t), POB(t). market capitalisation of invest
in day t , Mt

begin
Set Initial Parameters: Ca,Cb,λ1,λ2;
Set Initial Position Ratio: POA(0), POB(0) ;
Set Trading Ratio: τ
for t = 1, 2, · · · ,T do

SPtA,B = log(PtB)− γ log(PtA);

z-scoretA,B =
SPtA,B−mean(SPA,B)

var(SPA,B)
;

if z-scoretA,B > Ca then
Buy A in ratio τ , Sell B the same;
Update Position Ratio Position Ratio;

else if z-scoretA,B < Cb then
Buy B in Ratio τ , Sell A the same;
Update Position Ratio Position Ratio;

else if z-scoretA,B ∈ (λ1Cb, λ2Ca) then
Trade A and B based on current POA(t),
POB(t);
Adjust POA(t), POB(t) to POA(0), POB(0) in
in Ratio τ ;

Calculating Mt ;

IV. EXPERIMENTS
In this section, we present the experimental results based on
S&P 500 stock data. In detail, we show the low rank char-
acteristic of tensor stock by tensor decomposition, followed
by the illustration of significant firms by clustering method.
Finally, pairs trading strategy is applied on the paired firms
for investment.

A. DATASETS
We collect the dataset from S&P 500, which traded from
Jan 1, 2004 to Dec 31, 2015, to verify the effectiveness
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of our proposed framework. 448 firms of them sectors are
chosen listed in S&P 500. These sectors include: Industri-
als, Health Care, Information Technology, Financial, Utili-
ties, Materials, Consumer Staples, Consumer Discretionary,
Energy and Telecommunication Services. All publicly firms’
trading information in a day are corporated including opening
price, closing price, highest price, lowest price and trading
volume.

In data cleaning process, we first fill the missing value.
There are total 9 companies with missing values in last
12 years, e.g., AAL(American Airlines Group) was public
traded since Feb 2, 2015, which means there is no data
between Jan 1, 2004 and Feb 2, 2005. In this paper, we fill
the missing data by means of historical value.

After data cleaning, we construct the three dimensional
tensor data, consisted of time, firms and trading modes.
In total, There are 3021 trading days, 448 firms and 5 trading
values, which are split into training set and testing set by
time mode. Data from the early 2769 of 3021 trading days
was chosen as the training set represented as tensor X ∈
R2769×448×5, while the latest one year data is reserved for
testing, denoted by Y ∈ R252×448×5.

B. TENSOR DECOMPOSITION RESULTS
In this paper, we utilize tucker decomposition to find
low-rank multilinear patterns in high order data, reserving
the structural information. Afterwards, by visualizing the firm
patterns obtained during tucker decomposition, we try to find
the significant firms in each sector.

1) LOW RANK PATTERNS
In order to display structural information of stock data,
we illustrate the tensor rank contained in the core tensor and
corresponding residual, as showed in Fig. 4. In Fig. 4, left
part shows all the rank values in descending order while
right part represents the residual when we reconstruct the
data into source space under different number of principle
components. It is obvious that the rank values declined and
are close to 0 when the rank number reaches 30, revealing the
sparsity characteristic and distinctive structural information
of the stock data. Moreover, since Tucker decomposition
is a form of higher-order PCA, we try to reconstruct the

FIGURE 4. Rank information underlied in core tensor. Left part shows all
the rank values in descending order while right part represents the
residual when we reconstruct the data into source space under different
number of principle components.

data into source space under different number of principle
components, and then calculate the residual. Here, residual is

calculated by Res =
‖(X−X̂ )‖22
‖X ‖22

, where X is the original data

and X̂ is the reconstruction data. It is obvious that the resid-
ual is relatively small when we only adopt top 30 principle
components for reconstruction, which means we can get an
acceptable trade-off between computational complexity and
data representation performance.

2) FIRM PATTERNS
In this paper, we focus on capturing significant firms in
each sector which were fed into pairs trading strategy for
investment. By visualizing the firm patterns in each sector,
we try to find the difference between significant firms and
conventional ones, revealing the particular characteristic in
each sector. Figure 5 presents the projection matrix obtained
during tensor decomposition for firm mode in four sectors.
Each row represents each firm and columns denote principle
component number. Red color represents higher value while
green one show lower values. The more diverse in a row,
the more significant of the company. For most firms of the
firms, we can see that the values changed slightly with the
increase of principle component number. However, there exist
some small part of firms where they are highly diversed
historically in all sectors, which reminds us the behavior of
significant firms change a lot in time series. Interestingly,
there are still some difference among sectors. Majority of
firms in sectors are gray, in particular, only one company in
industry is diversed. However, there are more diverse firms in
I.T. (information technology) sector, which may imply that
there are more behavior significant firms in last decades in
I.T. compared with conventional industry sector.

C. SEED FIRMS SELECTION BY CLUSTERING
In this section, we try to find the most significant firm as
seed firm in each sector, assembling pairs of seeds for pairs
trading strategy. Here we use cluster method mentioned in
section III-B.2 to differentiate significant firms from conven-
tional ones. Consequently, we need to correctly find firms,
which are far away from cluster centers, as the significant
firms. Thus, in each sector, we set the cluster number to
one and then find the cluster center of all firms. Afterwards,
by calculating the β-divergence between each firm and the
center firm, where β is set to 0.5 [12], we evaluate the scatter
divergence of firms in each sector. Finally, top-K firms whose
distance are away from the center firm are selected as seed
candidates.

Figure 7 shows the clustering degree for the four cho-
sen sectors of Financials, Consumer Discretionary, I.T., and
Industry. x-axis shows the firm ID while y-axis are the dis-
tance. It is obvious that most of the firms are close to the cen-
ter firm, demonstrating firms clustered well around the center
firm. A few firms are relatively far away from the the center
firm, which means that our cluster algorithm could differ-
entiate significant firms. The distance of each firms with its

VOLUME 6, 2018 43409
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FIGURE 5. Illustration of firm patterns in eight chosen sectors. Each row represents each firm and columns denote
principle component number. Red color represents higher value while green one show lower values.

cluster center is ordered descending, where top-K candidates
are picked as seed firms for the next step of pairs trading.
In this paper, we choose top-100 firms as candidates, as the
rest part are not significant at all.

D. PAIRS TRADING
Once we get the seed firms in each sector, we utilize a greedy
strategy to pick the potentially pairs firms. In detail, we pick
the most significant seed in each iteration, and paired it with
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FIGURE 6. Clustering degree for the four chosen sectors of Financials,
Consumer Discretionary, I.T., and Industry. x-axis shows the firm ID while
y-axis are the distance.

the next significant once, where the Augumented Dickey-
Fuller(ADF) test [17] is applied on the paired firms to test if
they are co-integrated. If so, these paired firmswere treated as
candidates. If not, pick next onces. In this paper, ADF testing
is applied on stock data collected from Jan, 2014 to Jan 2015,
as we only need to verify the cointegration in the latest time.
The trading strategy is employed on data from Jan, 2015 to
Dec, 2015.

For comparison, we test our proposed method with four
classic approaches in financial literature: correlation, cosine,
top variance with correlation (marked as VarCor), top vari-
ance with cosine (marked as VarCos). They are also calcu-
lated based on historical data from Jan 2004 to Jan 2015.
Afterwards, for correlation and cosine methods, we pick
them one by one in the order of distance descending to
pass the ADF test (from Jan 2014 to Jan 2015). Once
passed, the paired equities are fed to pairs trading strategy

(on Jan 2015 to Dec 2015). For VarCor and VarCos, we first
choose the company with top variance as seed, measure other
companies distance with seed and order them descending as
a candidate list, pick them one by one to pass the ADF test.

We pick the first 5 successfully paired equities obtained by
all the methods. We measure the performance of pairs trading
strategy in five popular benchmarks: Largest Loss in A Day,
The Number of Event Days [2], Maximum Drawdown [18],
[19], Expected Shortfall on 5% [20], Sharpe Ratio and
Total Cumulative Return [21]. Here largest loss in a day
in the minimal daily return, denoted as min(xt ), where xt
is the return of equity x on day t . Expected Shortfall is
the average result obtained when the result is worse than
the Value at Risk for the α fraction of best results, for
a given distribution P(x), Expected Shortfall is denoted as
ρES (P) = − 1

1−α

∫ P−1(1−α)
−∞

x · dP(x). Maximum drawdown is
the largest single drop from peak to bottom in the value of
a portfolio. The Sharpe Ratio measures a portfolio’s excess
return relative to the total variability of the portfolio [21]. It is
formulated as S = E(x−x̂t )√

var(x−x̂t )
. Here, x̂t is the index reference

return. Cumulative Return Xt (i) from dat 1 to day t is given
by Xt (i) =

∏t
k=1 (xt (i)+ 1) − 1. For example, the total

cumulative return Xt (i) is the overall return of equity i from
the beginning to day t .

Table 1 gives the experimental results of the aforemen-
tioned five popular benchmarks when using pairs trading
strategy when combined with our methods and the other four
competing methods. We chose the top five suggested pairs
by each method, and apply them with same pairs trading
policy. Results are the average of five runs. The results show
that our method outperformed all the other algorithms in
total cumulative return, which is the key indicator for an
investment, while our method also get comparable methods
in sharp ratio, expected shortfall and max drawdown.

TABLE 1. Pairs Trading Returns.

E. LIMITATIONS
However, there are still some limitations in this experiment.
Firstly, since we trade paired equities based on market con-
dition and renews the position ratio daily, which incurs trans-
action costs consequently. But these costs are ignored in our
methods. Secondly, because the main purpose of this paper
is to find the paired companies by TeFTS, in order to clarify
the effectiveness of our method, we only apply a basic trading
strategy as described in section 3.3, which does not include
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FIGURE 7. Clustering degree for the four chosen sectors of Financials, Consumer Discretionary, I.T., and Industry.
x-axis shows the firm ID while y-axis are the distance.

stop-loss strategy (cut the lose and let the winning run) [22].
However, there are still some advanced trading strategy could
be applied in future work.

V. DISCUSSION
This study presented a tensor-based framework for similarity
measures between paired correlated stocks which attempted
to capture the inherent relations among multiple trading
sources like firms, time, and the publicly available trade infor-
mation. First, stocks are represented by high order tensors
(multiway arrays) i.e., multiple-modality patterns in the firm-
time-trading mode. Second, tensor decomposition method is
applied on high order tensors to obtain low-rankedmultilinear
patterns for each mode, and thus high-dimensional tensors
are mapped to low-dimensional representative tensors. Next,
the most significant firms are selected using cluster method
by combining the captured relations in the other modes.
Finally, pairs trading strategy is applied on the picked firms
for investment strategy.

We test our farmworker on all constituent firms of
S&P500, which are public traded in 12 years, from Jan-01-
2004 to Dec-31-2015. The result shows our model consis-
tently compete conventional methods, including correlation,
partial correlation, SVD, etc. In particular, when consider-
ing the structure of stocks, one interesting phenomenon was
observed: not only stocks in all sectors but also stock in each
sector are with low-rank information, implying that there are
some leading firms influencing the whole sectors.

To explore the reasons why the tensor-based framework
can achieve high performance, firstly, it could be the fact
that our framework, which are different from the vector or
matrix based methods, takes multiple trading sources into
consideration. This makes sense, since equity movements
are affected by various factors and each factor contains use-
ful information for investment. Thus, the previous studies
do not work well since they only used one or two factors.
Secondly, the intrinsic relations among different sources can

be captured, providing interrelated information for similar-
ity measures. This is interpretable, e.g., relations between
upstream and downstream firms can be obtained by tensor
decomposition, leading to a low-rank stock data. Thirdly,
dimensional reduction in the time and trading modes extract
minimum redundant information for similarity measures in
the firmmode, they complement each other, both contributing
to the superior performance.

Finally, we would like to remark that our tensor-based
framework is, although very well suited to stock analysis,
a general framework that can be readily applied to other mul-
tivariate financial time-series analysis, and can be transferred
to some other practical applications.

VI. CONCLUSION
The financial time series is strongly affected by various
types of highly interrelated information that interact in a
complex fashion. Previous studies, which are based on one
or two order methods, ignored the interrelations among the
various sources. In this paper, a tensor-based framework is
proposed for similarity measuring among equities. Multiway
financial signals are constructed in tensor form, on which
tensor decomposition method is applied. In this process,
structural information is preserved which provides supple-
mentary information for pairs selecting and trading algo-
rithms. Experiments on S&P500 datasets demonstrate the
superior performance of the proposed algorithm when com-
pared with some state-of-the-art methods.
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