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ABSTRACT The explosion of different fault detection (FD) statistics in multivariate statistics-based FD
approaches has meant that the practitioner is faced with the unenviable job of determining which to use in a
given circumstance. Moreover, compared to extensive investigations on additive faults, the performance of
commonly used FD statistics for detectingmultiplicative faults has not been holistically evaluated. Therefore,
this paper seeks to investigate the different statistics that can be applied to detect multiplicative faults in
order to provide users and practitioners in the FD field with guidance to select an appropriate method. The
considered statistics are broadly classified into three groups: traditional methods (e.g. T 2-statistic) and their
extensions; the Wishart distribution-based methods; and those methods created in the information and com-
munication fields to describe the measurement variance and covariance (e.g. Kullback-Leibler divergence).
These three groups are compared by considering the required probability distributions, interconnections,
and detection performance for multiplicative faults. Using simulated data from numerical examples and
the Tennessee Eastman benchmark process, the theoretical results are validated, and the applicability of
multivariate statistics-based FD methods incorporating all considered statistics for detecting multiplicative
faults is examined at the end of this paper.

INDEX TERMS Fault detection statistics, multiplicative fault, fault detection rate, multivariate
statistics-based fault detection.

I. INTRODUCTION
Since the scale and degree of automation of industrial pro-
cesses have increased, it nowadays become necessary to
design fault detection (FD) methods to guarantee the safety
and stability of process operations. Date back to 1950s
and intensively investigated since 1990s, the multivariate
statistics-based FDmethods have nowadays become an active
area of research in the data-driven FD field due to its simplic-
ity and high-efficiency to handle high-dimensional process
data [1]–[3]. Proposed in a chemistry background [4], [5],
it has currently been recognized and extended to a
wider scope of industry, including polymers, microelec-
tronics manufacturing, iron and steel, and pharmaceutical

processes [2], [6]–[8]. In this field, recent work reveals
that such methods are comprised of two important tech-
niques: multivariate data analysis (MDA) methods and FD
statistics [9], [11], [12]. They have established a unified
framework as shown in Fig. 1 that the process data are first
modeled usingMDAmethods, then the modeled data are sent
to appropriate FD statistics to examine whether the process is
operating properly [9]. Compared with directly sending data
to FD statistics, multivariate statistics-based FD methods can
significantly improve the FD performance and resolve the
specific problem met in real industry [1], [3], [5], [9]. Note
that MDA can be referred to as the residual generator, which
is commonly used in model-based FD methods [9].
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FIGURE 1. A schematic of multivariate statistics-based FD methods.

The most popular MDA methods are principal component
analysis (PCA), partial least squares (PLS), and canonical
correlation analysis (CCA) [9], [13]–[16]. The core of PCA is
reducing the dimension of process data such that significant
variations of the process data are kept in low-dimensional
scores. Monitoring scores instead of the original data can,
on one hand, save the computational resource caused by FD
statistics, on the other hand, improve the detecting perfor-
mance compared to directly using high-dimensional data [1].
As the foundation of chemometrics, PLS was proposed to
address the numerical problem when implementing least
squares for liner regression [17]. PLS-based FD methods
were developed to resolve the quality-related process mon-
itoring problem, that is, using the readily available process
data to monitor the hard-to-measure or infrequent quality
index data [2]. CCA was proposed to examine the correlation
between two data sets, which, thus, has commonly been
used to monitor the relationship between process inputs
and outputs [8]–[10]. Other alterative MDA methods have
also drawn much attention, such as independent component
analysis and factor analysis. Moreover, as shown in Fig. 1,
they can be extended to model processes with other char-
acteristics like multibatch, dynamics and nonstationary etc.
Although previous work has tended to focus on the develop-
ment and modification of classic MDA methods [19], [20],
it is the case that only FD statistics can directly affect
the detection performance. In the statistical FD framework,
the FD statistic plays the central role in identifying potential
faults in industrial processes [9]. Depending on the nor-
mal process situation where the data are assumed to be
normally distributed, a statistic using a specific probabil-
ity distribution is chosen and appropriate thresholds, either
one (upper) or two (upper and lower), can be determined
based on the distribution properties. Then, faulty or normal

operating performance can be observed by comparing
the statistic against the thresholds. In the previous liter-
ature, different statistics have been developed for detect-
ing additive faults. The most commonly used methods are
T 2- and Q-statistics [1], [3], [5], [18], and the assumed prob-
ability functions are χ2 or F-distributions [1], [3], [9]. Since
the additive fault model was introduced to FD field, it is
straightforward to evaluate the detectability of different FD
statistics. When dealing with additive faults, it was found
that T 2- and Q-statistics can detect undesired changes in
the mean values of process data using only the time series
samples. Furthermore, T 2, in terms of the fault detection rate
(FDR), performs better than Q [9]. Unlike the mean value
change case, the covariance change case, which can be well
described using a multiplicative fault model, will change the
elements in the covariance matrix [9], [12], [21], [22]. The
performance of T 2 and Q for detecting the variance change
was evaluated, where it was shown that they have inherent
weakness to deal with this type of change [23]. The weakness
can be due to the different expressions of calculating the
FDR index compared to detecting additive faults. Similarly,
in [12], the typical multivariate statistics-based FD methods
incorporating the two statistics and typical MDA methods
for detecting multiplicative faults are evaluated, in which
the expected detection delay (EDD) evaluating index was
taken [11] which is similar to the average run length index
widely used in statistical quality control field [24]. The poor
performance with large EDD for multiplicative faults was
shown due to the bad detectability offered by the two statis-
tics. Therefore, to detect well this type of process changes,
more efficient FD statistics that can be developed based on a
sequential of samples covered by a moving window-based
approach and using some advanced distributions are
needed [25].
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In statistics, the Wishart distribution was created based
on the Wishart matrix to describe the property of covari-
ance matrix. Thus, using this distribution, some relevant
FD statistics can be designed to track the process covari-
ance changes. In [26], a FD statistic using the 2-norm of
the Wishart matrix was developed. Similarly, applying other
metrics to the Wishart matrix would allow the development
of new statistics [27]–[29]. Furthermore, some FD statistics
that were not originally proposed for multiplicative faults
would have an improvement to detect this type of fault,
such as the statistical local approach [30]–[35]. Some use-
ful tools in communication field such as entropy [25] and
Kullback-Leibler (KL) divergence [36]–[39], [41] have been
reported to be useful in dealing with this type of change.
For example, in [36], the KL-based statistic was developed
and compared with T 2 and statistical local approach using
the additive fault model. In [25], multivariate control charts
for monitoring covariance matrix were investigated. In [43],
basic FD statistics for detecting multiplicative faults were
briefly reviewed. However, there is still no work focused on
reviewing and comparing in detail these methods in order to
determine the interconnections between different statistics.
In addition, the problem of using FDR to evaluate the per-
formance of them and providing the users and practitioners in
FDfield with information about whichmethods are to be used
in which conditions. It should be noted that the false alarm
rate (FAR) index is also commonly used in real applications.
For statistics developed based on explicit probability distri-
butions, the FAR value can appropriate a fixed value, thus
will not be considered in this paper. Also note that rather than
above methods proposed in the statistics framework, there are
other methods in the literature, for example, the dissimilar-
ity analysis-based methods [44], [45], data description-based
methods, e.g. support vector data description [14], local out-
lier factor [46] and k nearest neighbor [14]. These methods
have fell out of the scope of this paper, thus will not be deeply
compared herein.

Therefore, motivated by above observations, the objectives
of this paper are:

• to review the available FD statistics for detecting mul-
tiplicative faults and classify them according to their
properties,

• to compare the methods, including their links and detec-
tion performance,

• to assess, using a numerical example, their detection
performance based on the FDR index, and

• to perform simulation studies using the Tennessee East-
man (TE) benchmark process to show their applicability.

Notation: Let Rm be the m-dimensional Euclidean space;
Rn×m be the set of n × m real matrices; Im be the m × m-
dimensional unit matrix; tr(·) represent the trace of a matrix;
x ∼ Nm (µx , 6x) represent a m-variate normally distributed
vector x with mean vector µx and covariance matrix6x ; S ∼
Wm (6, n) represent Wishart distribution with covariance
6 ∈ Rm×m and degree of freedom n; E(·) and Var(·) denote

the mean and variance values; χ2
m be the χ2-distribution with

m degrees of freedom;χ2
m(δ) be the noncentral χ

2 distribution
with m degrees of freedom and noncentrality parameter δ.
Let prob

(
χ2 > χ2

m,α
)
= α represent the probability that

χ2 > χ2
m,α equals α.

II. BACKGROUND AND MOTIVATION
In the model-based FD framework, the key step involves the
generation of residual signals that, during normal operation,
only contain system disturbances, but during process upsets
contain both the system disturbances and fault information.
The design of these residual generators has been the focus
of much research. It can be noted that from this perspective,
all MDA methods used in the multivariate statistics-based
FD field can be referred as to different data-driven residual
generators, for example, PLS generates residuals reflecting
quality-related information.

A. BASIC FD STATISTICS
In the model-based FD framework, the key step is to gen-
erate residual signals that contain only system disturbances
in normal operations and fault information as well as dis-
turbances when a fault has occurred. Thus, significant effort
has been made to design different residual generators. From
this viewpoint, it can be assumed that MDA methods used
in MSPM field are equivalent to different data-based residual
generators, for example, PLS generates residuals reflecting
the quality-related information.

Let y ∈ Rm be the residual data including m correlated
signals. When the process operates under normal conditions,
it is assumed that y ∼ Nm(0, 6y), where 6y is the covari-
ance matrix of y. Often 6y is unknown and must be esti-
mated using historical process data, y1, ..., yN , using 6y =
1

N−1

∑N
i=1 yiyi

T [11]. On the other hand, when abnormal
changes occur in the process, it can be assumed that yf ∼
Nm(µf , 6f ), where µf 6= 0 , 6f 6= 6y, or both. Note that
faults that only lead to µf 6= 0 are generally called additive
faults [9]. They can be expressed as yf = y + f and give
yf ∼ Nm(f , 6y). Those process changes that lead to6f 6= 6y
are called multiplicative faults, which can be expressed as
yf = My with yf ∼ Nm(0,M6yMT ). It should be further
noted that the mean vector of y is assumed to be unchanged
for multiplicative faults.

The general fault detection procedure requires defining a
FD statistic, J , and a corresponding threshold, Jth, or two
thresholds, Jth,1 (upper) and Jth,2 (lower). Based on the
relationship between the FD statistic and the threshold, two
different cases can be determined:

• Case I: If J > Jth, or J > Jth,1 or J < Jth,2 then a fault
is assumed to have occurred.

• Case II: If J ≤ Jth, or Jth,1 ≤ J ≤ Jth,2 then it is
assumed that the process is operating properly.

Since additive faults have a large and immediate impact
on process safety, a wealth of different methods and
approaches have been proposed in the literature to handle
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such circumstances. The most commonly used FD statistics
are T 2- and Q-statistics:

JT 2 = yT6−1y y ∼ χ2
m

JQ = yT y ∼ gχ2
h (1)

where g = tr
(
62
y

)/
tr
(
6y
)
, h = tr2

(
6y
)/

tr
(
62
y

)
. Note

that Eq. (1) holds based on the assumption that the training
data size is sufficiently large such that the estimated 6y
approximates the real one. In general, JT 2 is used when the
covariancematrix,6y, is numerically stable, while JQ, is used
when the covariance matrix is not stable, that is, it may be
difficult to compute 6−1y .

B. PERFORMANCE EVALUATION FOR FD STATISTICS
Different metrics are used to evaluate the performance of a
proposed fault detection method. The most commonmetric is
FDR, which measures how accurately the proposed method
can detect a given fault [11]. Mathematically, it can be written
as [11]

FDR =

∞∫
Jth

fJf (x)dx (2)

where fJ ,f is the probability density function (PDF) of J for
detecting a specific fault. For additive faults, the resulting
distribution for fJ ,f is a noncentral χ2 distributed fJf (x) [12].
Furthermore, it can be noted that any f 6= 0 can be tracked
by JT 2 [12].
However, for multiplicative faults the behaviour of

standard T 2-statistic is different. Before going into a
detailed explanation, it is helpful to first consider a simple
two-dimensional numerical example that shows the differ-
ence between the performance of the JT 2 statistic for additive
and multiplicative faults. Let the normal covariance matrix be

given as 6y =

[
2 0.5
0.5 1

]
Assume that the additive fault can

be described as f =

[ √
2
2√
2
2

]
× 1.5 while the multiplicative

fault can be described as M =
[
3 0
0 3

]
.

Fig. 2 shows the distribution of the statistic as well as
the computed FDR for both the additive and multiplicative
faults. The FDR is obtained by integrating fJf (x) from Jth,
which is shown as the vertical dashed line, to infinity. First,
it can be seen from Fig. 2 (top, left) that once an additive
fault occurs, the distribution of the FD statistic changes from
a central χ2-distribution (blue) to a noncentral one (green),
while the threshold stays constant. On the other hand, for a
multiplicative fault, the threshold shifts when a fault occurs.
This shift can be obtained by dividing the original threshold
by the magnitude of the fault. This is shown in Fig. 2 (top,
right) by the movement of the dashed vertical line to the
left, that is, to Jth/32 in this case. The FDR would then be
computed by integrating between this new value of Jth/32

and infinity. In order to understand the impact that this shift

FIGURE 2. Comparisons between detecting additive and multiplicative
faults.

has on the overall performance of the given method, addi-
tive and multiplicative faults with different magnitudes were
simulated and the FDR values were computed. From Fig. 2
(bottom, left), it can be seen that for additive faults, above
a given fault magnitude f , FDR will equal 1. However, for
multiplicative faults, as seen in Fig. 2 (bottom, right), as the
fault magnitude increase, M , the FDR will approach 1, but
never reach it. This is a consequence of the fact that the
threshold will approach zero, but not reach it. Thus, it can
be seen that traditional FD statistics do not perform well
for multiplicative faults. Thus, this motivates an investigation
of other statistics that can improve the FD performance for
multiplicative faults.
Remark 1: In this paper, we pay more attention on inves-

tigating from the theoretical viewpoint the detectability of
different statistics to detect multiplicative faults. Thus, it is
assumed in the whole paper that only multiplicative faults
have occurred, i.e. yf = My. However, from a practical
perspective, it is unknown whether the occurred fault is
multiplicative or additive or both. In most practical cases,
the occurrence of a fault can cause both types of changes to
y, i.e. yf = My + f . To prejudge the property of a potential
fault, on can refer to [47].

III. SURVEY OF FD STATISTICS FOR
MULTIPLICATIVE FAULTS
In this section, the available FD statistics for multiplica-
tive faults can be classified, based on their area of applica-
tion and underlying statistical assumptions, into three broad
groups: modified T 2- andQ-statistic-based methods, Wishart
distribution-based methods, and information theory-based
methods.

A. MODIFIED T 2- AND Q-STATISTIC-BASED METHODS
Eq. (1) shows that JT 2 and JQ are calculated using only
the time series data of y. One method commonly used to
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improve the performance of such statistics for multiplicative
faults is to consider not only the current sample, but also past
samples from a given time horizon. Two common extensions,
the cumulative T 2 and Q-statistics and the statistical local
approach are considered.

1) CUMULATIVE T 2- AND Q-STATISTICS
Since it is commonly assumed that y is independent and
identically distributed (i.i.d.), a simple extension of T 2 and Q
is to incorporate a series of y samples to define a cumulative
T 2-statistic as

JT 2
n
=

n∑
i=1

JT 2
i
=

n∑
i=1

yTi 6
−1
y yi ∼ χ2

nm (3)

Since ∀i, yi is i.i.d, JT 2
n
follows aχ2

nm distribution. Let Jth,T 2
n
=

χ2
nm,α , the condition for Case I is determined by JT 2

n
> Jth,T 2

n
.

Similarly, the cumulative extension of the Q statistic can be
developed identically to the T 2 case. Practically, we can chose
an appropriate value for n and calculate JT 2

n
at the current time

instance i using y data within the interval from i − n + 1 to
i. Note that another extension of the T 2-statistic that takes
the form of ȳT6T

y ȳ ∼
1
nχ

2
m with ȳ = 1

n

∑n
i=1 yi has been

recently proposed [51]. However, since it cannot be applied
to multiplicative faults, it will not be considered.

2) STATISTICAL LOCAL APPROACH
The statistical local approach was proposed in model-based
FD field for detecting changes in system model parame-
ters. It has been incorporated into various methods, such as
PCA, PLS, and CCA [31], [32], [35] as well as somemachine
learning techniques like support vector and kernel-based
methods [33], [34], to detect incipient or small faults. The key
contribution of this method is that it detects changes in6y by
taking into account the eigenvalues and eigenvectors of the
system.

The statistical local approach requires a series of manipula-
tions of the data in order to obtain appropriate thresholds and
metrics. The first step is to perform a singular value decom-
position on 6y to give 6y = P3PT with P = [p1, ..., pm] ∈
Rm×m and3 = diag(λ1, ..., λm). Then, define a new variable,
li , zTi zi − λ

2
i with zi = pTi y for i = 1, ...,m, which form

an m-dimensional vector L = [l1, ..., lm]T . It should be noted
that E(li) = 0 and E(L) = 0. Using K samples of y, define a
new random variable, φ as

φ(li,K ) 1=
1
√
K

K∑
j=1

li (4)

Based on the central limit theorem, it follows that

lim
K→∞

ψK = [φ(l1,K ), ..., φ(lm,K )]T ∼ Nm
(
0, 6ψ

)
(5)

where 6ψ = lim
K→∞

(
1
/
K
)∑K

j=1
∑K

j=1 E
(
ψKψ

T
K

)
.

Practically, a small k0 can be used, which gives ψk0 =
[φ(l1, k0), ..., φ(lm, k0)]T . Finally, based on the T 2-statistic,

the statistical local approach defines its FD statistic
as [30], [31]:

JL = ψ
T
k06
−1
ψ ψk0 ∼ χ

2
m (6)

This statistic can be used to detect those multiplicative faults
that affect the eigenvalues of6y [30], [31]. Let Jth,L = χ2

m,α .
Then, the condition for Case I is given as JL > Jth,L. Note
that JL can also been determined based on the idea of the Q-
statistic.
A brief summary of the steps required to compute this

statistic is:
S1: Calculate L using y, P, and 3;
S2: Select k0 and calculate 6ψ using L;
S3: Obtain JL using the online L and 6ψ .

B. WISHART DISTRIBUTION-BASED METHODS
Let S =

∑n
i=1 yiy

T
i be the Wishart matrix. It follows that

S ∼ Wm
(
6y, n

)
. Given a sufficiently large n, S

/
n will

approximate 6y. Therefore, changes in the elements of S
can approximately mirror changes occurring in 6y. Using
the properties of the Wishart distribution, three different met-
rics, the 2-norm, trace, and determinant, can be applied to S
to develop the following FD statistics to deal with process
changes affecting 6y. The Wishart distribution-based meth-
ods can be summarized as:
S1: Obtain the Wishart matrix S;
S2: Calculate the metrics for measuring S, and form the

appropriate statistic;
S3: Compare the statistics to the corresponding thresh-

olds.

1) ||S||2-BASED METHOD
Let ȳ = 6

−1/2
y y, which implies ȳ ∼ Nm(0, Im). As well,

let S̄ =
∑n

i=1 ȳiȳ
T
i , which gives S̄ ∼ Wm(Im, n).

Since γ =

∥∥∥ S̄m∥∥∥2 and n
m ≥ 1, it follows that

γ−µnm
σnm

∼ TW1 [26], where TW1 is the Tracy-Wisdom

distribution [27], and µnm =
1
n

(√
n− 1

/
2+

√
m− 1

/
2
)2

and σnm =
√
µnm

/
n
(
1
/√

n− 1
/
2+ 1

/√
m− 1

/
2
)1/3

.
Using these results, the FD statistic becomes

Jγ =
γ − µnm

σnm
(7)

It can be designed to detect changes in γ , which implies
changes that occur in S. The upper and lower thresholds,
Jth,γ1 and Jth,γ2 , are determined using TW1,α1 and TW1,α2 by
properly selecting α1 and α2 [26]. The condition for Case I
are either Jγ > Jth,γ1 or Jγ < Jth,γ2 .

2) tr(S)-BASED METHOD
Let T = tr(S). Its distribution can be approximated by T ∼∑m

i=1 λiχ
2
n [28], where λi is the ith eigenvalue of 6y. Then,

based on above results, the FD statistic can be defined as

JT = tr(S) (8)
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The threshold, Jth,T , is computed as

Jth,T =
m∑
i=1

λiχ
2
n,α (9)

The condition for Case I is then Jγ > Jth.

3) det(S)-BASED METHOD
Let D be

∣∣ S
n

∣∣. It has been proven that (2n)m D
|6y|

∼∏m−1
i=0 χ

2
2(n−i) [29]. Then, the FD statistic can be defined as

JD = (2n)
m D∣∣6y

∣∣ (10)

This statistic can be used to track those changes in 6y that
increase the determinant of S. The threshold is determined as

Jth,D =
∏m−1

i=0
χ2
2(n−i),α (11)

The condition for Case I is JD > Jth,D.

C. INFORMATION THEORY-BASED METHODS
It is possible to use some of the methods in information
theory for measuring the characteristics of communication
signals for detecting multiplicative faults. The two most com-
monly used such methods are the conditional entropy and
the Kullback-Leibler divergence-based methods. The infor-
mation theory-based methods can be summarized as:
S1: Offline train σ 2

y or σ 2
z ;

S2: Online estimate the required matrices and calculate
JC and JK;

S3: Compare the statistics to the corresponding
thresholds.

Finally, it should be noted that there are other metrics and
concepts, such as mutual information, that are of interest for
designing FD statistics [49]. However, at present, there does
not exist any information about the associated probability
distributions. Instead, the thresholds must be computed using
kernel density estimation, which is an empirical method that
does not provide any information. Thus, these methods are
not considered in this paper.

1) CONDITIONAL ENTROPY-BASED APPROACH
The concept of entropy was first proposed in the statistical
thermodynamics field. It was brought to the information the-
ory as a logarithmic measure of the number of states with sig-
nificant probability of being occupied. Given y ∼ Nm(0, 6y),
the entropy of y is

H (y) =
1
2
m ln (2πe)+

1
2
ln
∣∣6y

∣∣ (12)

Guerrero-Cusumano [40] proposed an alternative expression
for H (y):

H (y) =
1
2
m ln (2πe)+

1
2

m∑
i=1

σ 2
i − T (y) (13)

where T (y) is called the mutual information of y and σ 2
i is the

variance of yi. Assume that the correlation measured by T (y)
is known. Let

1 = H (y)− Ĥ (y) =
∑m

i=1
ln

(
s2i
σ 2
i

)
(14)

which measures the difference between the estimated and
theoretical entropy, where s2i is the estimate of σ 2

i using n
online y data. Let

C =
√
n− 1
2m

∑m

i=1
ln

(
s2i
σ 2
i

)
(15)

Arthur et al. [25] showed that C is distributed asymptotically
as a univariate standard normal distribution. Thus, JC can be
taken as a FD statistic to detect multiplicative faults affecting
the entropy. The upper threshold Jth,C1 and lower threshold
Jth,C2 are [25]:

Jth,C1 = m

√
2 (n− 1)

m

[
G′
(
n− 1
2

)
− ln

(
n− 1
2

)]
+ gα/2n

√
mG′′

(
n− 1
2

)
+

2
n− 1

tr(P0 − Im)2

Jth,C2 = m

√
2 (n− 1)

m

[
G′
(
n− 1
2

)
− ln

(
n− 1
2

)]
− gα/2n

√
mG′′

(
n− 1
2

)
+

2
n− 1

tr(P0 − Im)2

where G′ and G′′ are the first and second derivative of the
natural logarithm of the0-function and gα is the 1−α quantile
of N (0, 1). The condition for Case I can be given as either
JC > Jth,C1 or JC < Jth,C2 .

2) KULLBACK-LEIBLER DIVERGENCE
In probability and statistics theory, Kullback-Leibler (KL)
divergence is a measure of the nonsymmetric difference
between two probability distributions. Since z = PT y, which
satisfies z ∼ Nm(0, 6z) with 6z being diagonal. Suppose
that we have obtained Nm(0, 6z) offline. As well, we have
estimated z̃ ∼ Nm(0, 6̃z) using n online z data. Using the KL
divergence, it can be shown that

KL
(
f̃z (z) , fz (z)

)
=

1
2

{
tr
(
6−1z 6̃z

)
− m

}
+

1
2
ln

 det (6z)

det
(
6̃z

)
 (16)

where fz(·) and f̃z(·) are the actual and online estimated PDFs
of z. It was further proven in [36] that, given a sufficiently
large n,

JK = 2nKL(f̃z(z), fz(z)) ∼ χ2
m (17)

is satisfied, where [13], [37]

KL
(
f̂z (z) , fz (z)

)
=

1
2

m∑
i=1

{
ln

(
σ 2
z,i

s2z,i

)
+
s2z,i
σ 2
z,i

− 1

}
(18)

VOLUME 6, 2018 43813



K. Zhang et al.: Comparison of Different Statistics for Detecting Multiplicative Faults

TABLE 1. Comparison of FD statistics using χ2 distribution.

TABLE 2. Parameters involved in JT 2 and JQ for detecting multiplicative faults.

Thus, the relevant FD statistic is JK = 2nKL(f̃z(z), fz(z)),
which can be used to track changes in 6y. The associated
threshold is Jth,K = χ2

m,α . The condition for Case I is
JK > Jth,K.

IV. COMPARISON AND PERFORMANCE EVALUATION OF
FD STATISTICS FOR MULTIPLICATIVE FAULTS
This section will compare the different FD statistics, as well
as their performance for detecting multiplicative faults.

A. GENERAL COMPARISONS
Before considering the performance of the different statistics,
it is helpful to consider how the different statistics can be
summarised. Firstly, it can be noted that many of the statistics
have been developed based on the χ2 distribution. In fact,
the thresholds for such statistics can bewritten as Jth = aχ2

b,α ,
where a and b are constants that depend on the specific
method. A summary of the different statistics and their values
of a and b is shown in Table 1. It should be noted that,
although JT 2 , JL and JK use different formulae to calculate
the statistic, they all have the same χ2 distribution for normal
operating data. This implies that they will have the same
threshold. Furthermore, it can be ascertained that based on
the properties of the χ2, the detection signal will always be
positive for such statistics.

Note that not all methods can be summarized using this
formulation. Some, such as the third Wishart-based method,
require the use and construction of complex additional param-
eters and distributions. Furthermore, the statistics based on
2-norm of the Wishart matrix S and conditional entropy do
not assume aχ2-related distribution and cannot be guaranteed
to be positive. Thus, J must be compared against upper and
lower thresholds given as Jth1 and Jth2 to check the condition
for Case I.

B. PERFORMANCE EVALUATION
This section will evaluate the performance of the different
statistics for detecting multiplicative faults. The three key

evaluations will be considered: comparison of the T 2 and
Q-based statistics, comparison of the Wishart statistics, and
a comparison of the KL-based method with the T 2-based
methods.

1) EVALUATION OF THE DIFFERENT T 2 AND
Q-BASED STATISTICS
As has been mentioned, when detecting multiplicative faults
of the form yf = My, the standard JT 2 and JQ can be rewritten
for the faulty case as:

JT 2
f
= yTf 6

−1
y yf

JQf = yTf yf (19)

Since the thresholds for these statistics can be written in
compact form as cχ2

d,α , with the values read from Table 2,
it is possible to compactly analyse the performance of these
methods using the FDR. From Eq. (2), the compact expres-
sion for the FDR is

FDR = prob
(
χ2
d > ζ

)
=

∫
∞

ζ

fχ2
d
(x)dx (20)

where ζ is computed based on the formulae in Table 2. Thus,
FDR performance for JT 2

n
is computed as

FDRT 2
n
= prob

(
χ2
nd > χ2

nm,α

/
c
)

(21)

With these definitions, it is now possible to state some
results regarding the performance between the standard and
cumulative T 2-statistics. Firstly, it can be obtained that when
d is close to m,

FDRT 2 = prob
(
χ2
d > χ2

d,α

/
c
)

< prob
(
χ2
nd > χ2

nd,α

/
c
)
= FDRT 2

n
(22)

thus, the cumulative T 2-statistic is better than the plain T 2-
statistic. For the case that c is sufficiently large, χ2

d,α

/
c

approximates χ2
nd,α

/
c, which also guarantees Eq. (22). Sim-

ilarly, when c� g, FDRQn ≥ FDRQ.
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FIGURE 3. Performance of ϑ for different c and d , m = 10, n = 10.

Since there exist regions where one or the other form of
the FD statistic performs better, it is important to under-
stand how the performance changes in each of the regions.
In order to accurately measure the difference, define the ratio
of the FDR for the two statistics as the performance index
ϑ = FDRT 2

n

/
FDRT 2 . When ϑ > 1, this implies that JT 2

n
performs better than JT 2 .
In order to further investigate the performance differences,

a series of simulations was performed for different values of
c and d between 5 and 10 and the results compiled. Fig. 3
shows ϑ as a function of c and d . It can be observed that
in all cases, ϑ is larger than 1, which means JT 2

n
gives a

better performance. In Section 2, it was shown that FDRT 2

approaches 1 but cannot theoretically reach 1 when detecting
multiplicative faults, even if they gets large enough. Using
JT 2

n
, can in some cases can overcome this disadvantage.

This improvement can be observed from the two subfig-
ures in Fig. 3. The first one corresponds to a fault with
c = d = 5. It can be clearly seen that FDRT 2

n
= 1

compared to FDRT 2 < 1. Considering another fault with
c = d = 8, the second subfigure shows that FDRT 2 has
increased, but is still smaller than 1. On the other hand, using
JT 2

n
guarantees FDRT 2

n
= 1. Fig. 4 examines the performance

of ϑ corresponding to different n, where the fault with c = 5
and d = 5 is used. It can be found that as n increases, ϑ
likewise increases and finally approaches 1.65. Since, a large
n requires extensive computation efforts, n = 8 or 9 can
be chosen for detecting this fault. In other cases, JT 2

n
may

perform worse than JT 2 . For example, let c = 3, d = 3 and
n = 5, it leads to FDRT 2 = 0.1067 > 0.0953 = FDRT 2

n
.

Likewise, Fig. 5 shows the value of the ϑ performance index
for different n. It can be found that ϑ < 1 for all choices
of n. As n increases, ϑ decreases. This shows that when

FIGURE 4. Performance of ϑ for different n, m = 10, c = 5 and d = 5.

d � m and c is not big enough, JT 2
n
cannot improve the

FDR performance even if a large n is chosen. Note that it is
difficult to find a condition explicitly distinguishing the use
of JT 2

n
and JT 2 . Finally, it should be mentioned that in cases of

improving the FDR performance, JT 2
n
and JQn cannot increase

the probability of false detection alarms.

2) EVALUATION OF THE WISHART DISTRIBUTION-BASED
STATISTICS
The methods based on the Wishart distribution can detect
multiplicative faults that affect the Wishart matrix S. The
following results present some key observations regarding the
different Wishart-based statistics and their relationships with
other statistics.
Theorem 1: JT , which takes the trace of S, can only track

faults that increase the variance of y.
Proof: This theorem will be proved by examining

the performance of the method for both the normal and
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FIGURE 5. Performance of ϑ for different n, m = 10, c = 3 and d = 3.

faulty cases. A multiplicative fault, yf ∼ Nm
(
0,M6yMT

)
implies that the faulty Sf follows Wm(M6yMT , n). Thus,
JT becomes JT ,f ∼

∑m
i=1 λf ,iχ

2
n . This implies that only if∑m

i=1 λf ,i = tr
(
6y,f

)
> tr

(
6y
)
=
∑m

i=1 λi, the fault can be
detected by JT . Thus, those faults that increase the variance
can be tracked by this statistic. �
Theorem 2: JT provides a more conservative threshold

than JQn .
Proof: Firstly, note that both JT and JQn have the

same formulation, but different estimates for the distribution,
that is, JQn is based on the Q-statistic with a distribution
approximated using the scaled χ2 distribution, while JT is
based on the Wishart distribution. The mean value of the two
statistics is

E(JQn ) = ngh = n
∑m

i=1
λi = E(JT ) (23)

The variance is

Var
(
JQn

)
= 2ng2h = 2n

∑m

i=1
λ2i

≤ Var (JT ) = 2n
(∑m

i=1
λi

)2
(24)

Thus, since the means are the same, but the variance for
JT is larger, it can be concluded that JT provides a more
conservative threshold. �
Theorem 3: JT 2

n
can also be interpreted using the Wishart

distribution, and JT is a special case of JT 2
n
using Im instead

of 6−1y .
Proof: In order to prove the result, it will be necessary to

show that the two statistics have a similar form. From Eq. (3),
we have that

E(JT 2
n
) = E(χ2

nm) = nm (25)

and

Var(JT 2
n
) = Var(χ2

nm) = 2nm (26)

Now, note that JT 2
n
can be alternatively expressed as

JT 2
n
= tr(S6−1y ) = tr(6−1/2y S6−1/2y ) (27)

Since S ∼ Wm(6y, n) and 6
−1/2
y S6−1/2y follows Wm(Im, n)

[42], it follows that

E(tr(6−1/2y S6−1/2y )) = tr(E(6−1/2y S6−1/2y ))

= tr(E(Wm(Im, n))) = nm (28)

and

Var(tr(6−1/2y S6−1/2y )) = tr(Var(6−1/2y S6−1/2y ))

= tr (Var(Wm(Im, n))) = 2nm (29)

Comparing Eqs. (25) and (26) with Eqs. (28) and (29) implies
that JT 2

n
can be understood using the Wishart distribution. Let

6−1y = Im, JT 2
n
reduces to JT . �

Finally, we can note that Jγ is preferred for detecting faults
that lead to changes in the 2-norm of S. Such faults can
either increase or decrease ‖S‖2 and still be tracked by Jγ .
Similarly, JD is designed to deal with faults that increase
the determinant of S. Since |S| =

∏
i λs,i, where λs,i is

the eigenvalue of S, it can be seen that faults that affect Jγ
will also affect JD. Thus, based on the above results, it is
recommended that these three statistics be used together in
order to achieve better FD performance.

3) EVALUATION OF JL AND A COMPARISON WITH JT 2

This section will show how JL can improve the performance
over JT 2 . Theorem IV-B.3 shows that JL transfers the detec-
tion of multiplicative faults to detecting additive faults.
Theorem 4: The FDR for JL can be obtained using a non-

central χ2 distribution.
Proof:Amultiplicative fault yf = My gives zf = PTMy,

such that E
(
lf ,i
)
= E

(
zTf ,izf ,i − λ

2
i

)
6= 0. Thus, we have

lim
K→∞

ψK ,f =
[
φ
(
l1,f ,K

)
, . . . , φ

(
lm,f ,K

)]
∼ Nm

(
1ψ,6ψ,f

)
(30)

where 1ψ 6= 0. In this case, according to [48], JL,f =
ψT
K ,f
6−1ψ ψK ,f follows a scaled noncentral χ2 distribution

defined as

JL,f ∼
m∑
i=1

ciχ2
hi (δi) (31)

where the details on the computation of ci and hi can be found
in [48]. Therefore, we can use a noncentral χ2

h (δ) distribu-
tion to approximate the above distribution. Thus, FDRL =
prob

(
χ2
h (δ) > χ2

m,α
)
is obtained, which establishes the theo-

rem. �
Based on Theorem 4, the following proposition is given to

show that the performance given by JL is better compared to
JT 2 .
Proposition 1: For the case with an individual y, FDRL

is obtained using the noncentral χ2
1 distribution. Given that

M ≥ 1, it further leads to FDRL ≥ FDRT 2 .
Proof: In this case, yf = My with M being a scalar.

Using JT 2 gives

JT 2
f
=
M2y2

σ 2 ∼ M2χ2
1 (32)
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Then, the FDR for JT 2 is calculated as:

FDRT 2 = prob

(
χ2
1 >

χ2
1,α

M2

)
(33)

It can be observed that when M < 1, FDRT 2 < α, such
faults cannot be detected by JT 2 . Considering JL, it can be

rewritten as JL =
ψ2

σ 2ψ
, where ψ = 1

√
k0

k0∑
i=1

(
y2i − σ

2
)
,

σ 2
ψ = var

(
y2 − σ 2

)
= 2σ 4, and σ 2 is the variance of y.

In the presence of multiplicative faults, JL changes to

JL,f =
ψ2
f

σ 2
ψ

=
1
k0

k0∑
i=1

(
M2y2i − σ

2
)2

2σ 4 (34)

As E
(
ψf
)
=
√
k0
(
M2
− 1

)
σ 2 and Var

(
ψf
)
= 2M4σ 4,

then it holds for JL,f that

JL,f
M4 ∼ χ

2
1 (δ)→ JL,f ∼ M4χ2

1 (δ) (35)

where δ =
k0
(
M2
−1
)2
σ 4

2M4σ 4
=

k0
(
M2
−1
)2

2M4 is the noncentrality
parameter. Likewise, the FDR for JL is calculated as

FDRL = prob

(
χ2
1 (δ) >

χ2
1,α

M4

)
(36)

Given M ≥ 1, it holds that

FDRL = prob

(
χ2
1 (δ) >

χ2
1,α

M4

)
≥ prob

(
χ2
1 >

χ2
1,α

M4

)

≥ prob

(
χ2
1 >

χ2
1,α

M2

)
= FDRT 2 (37)

�
A numerical example is used to demonstrate the above

results. Before evaluating their performance using Eqs. (33)
and (36), we first examine the property of δ. Let k0 = 50,
the trajectory of δ along with M is shown in Fig. 6. It can be
seen that the minimum value, namely δ = 0 occurs atM = 1,
otherwise, it increases asM increases to infinity or decreases
to zero. Comparedwith the results in Fig. 2, it can be observed
that the formula calculating FDR for JL can be described
using the noncentral χ2 distribution, which is equivalent to

FIGURE 6. Trajectory of δ along with M (k0 = 50).

using T 2 and Q statistics to detect additive faults. To show
the improvement, define an index, υ as υ = E(Jf )

χ2
1,α

to exam-

ine their detectability. υ measures the gap between the FD
statistic value over the threshold and the larger υ is, the bet-
ter detectability the FD statistic gives. Based on Eq. (32),
E
(
JT 2

f

)
= M2 is obtained, and taking the expectation of JL,f

gives E
(
JL,f

)
=

(k0+2)M4
−2k0M2

+1
2 . Fig. 7 shows the results.

With M varying from 1 to 50, it can be found that JL always
offers a larger υ, which implies JL performs better in all these
cases. In terms of FDR, it can be found that JL gives a larger
index. This can be verified as shown in Fig. 8, where the FDR
values given by JL are higher than those by JT 2 . Further note
that as M increases, JL can rapidly reach FDR = 1, while
JT 2 cannot, even though M is sufficiently large.

For faults decreasing the variances of y, according to
Eq. (35), δ will likewise increase, which will increase the
FDR. However, from Eq. (35), these faults results in the
increase of χ2

1,α

/
M4, which will decrease the FDR. The final

performance to this type of fault can be affected by these
two factors. Fig. 9 shows the performance of JL by setting

FIGURE 7. Performance of υ for JT 2 and JL. (n = 50).

FIGURE 8. Performance of FDR for JT 2 and JL (n = 50).
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FIGURE 9. Performance of FDR for detecting multiplicative faults
decreasing measurement variances (n = 50).

0.01 < M <= 1. It can be observed that the trend of FDR
increases with the decrease of M . For the case when M is
close to 1, the second factor impacts more than the first, thus
the FDR is smaller than α. In other cases, JL shows good
performance, and at around M = 0.6, JL can completely
detect this fault.

4) COMPARISON BETWEEN JL AND JK
This section investigates the equivalence between JL and JK
in the fault-free case. Theorem 5, which follows, shows the
relationship between JL and JK.
Theorem 5: Given a large number of y data, JK and JL

have the same formula to calculate.
Proof: For the case with an individual y, JK is rewrit-

ten as:

JK = n
(
ln
(
1
x

)
+ x − 1

)
(38)

where x = s2

σ 2
. Note that a sufficient large n can lead to s2 =

1
n−1

n∑
i=1

y2i → σ 2, namely x → 1. In this case, JK can be

approximated using the second order Taylor series at the point
x = 1, that is

JK ≈ n
(
1
2
(x − 1)2

)
(39)

Then, plugging x = s2

σ 2
into Eq (39), it can be obtained as:

JK = n

(
1
2

(
s2

σ 2 − 1
)2)
= n

((
s2 − σ 2

)2
2σ 4

)

= n


(

1
n−1

n∑
i=1

y2i − σ
2
)2

2σ 4



=
n

(n− 1)2


(

n∑
i=1

(y2i − σ
2)
)2

2σ 4



→
1
n


(

n∑
i=1

(y2i − σ
2)
)2

2σ 4


k0→n
⇔ JL (40)

That is to say, if k0 is chosen so big as n, JK will be equivalent
to JL. For the case with multiple variables in y, zi = pTi y
with i = 1, . . . ,m, is sent to these two statistics. Since ∀i,
zi are mutually independent, the above results can be simply
extended to the multiple y case. �
This result explains why in Table 1 that JK and JL are

assumed to follow the same distribution.

C. ADDITIONAL OBSERVATIONS
1) COMPUTATIONAL REQUIREMENTS
Although many of the methods only require a small amount
of data, JC , JK and JL are calculated using a large amount of
online y data, which implies that they require more memory.
However, the advantage of these methods is that they can
detect faults that increase or decrease the variance.

As well, it can be noted that, for computing JK, the residual
signal y should be first converted to z using z = PT y. Such
handling can not only increase the computational complex-
ity, but also lead to a loss of fault information. Similarly,
this paper does also not consider how changes in P affect
the detection performance of JL. However, as shown above,
compared with JC and JK, JL detects multiplicative faults in
an efficient way. Finally, a movingwindow-basedmethod can
be incorporated with JL to improve its applicability.

2) OTHER PERFORMANCE METRICS
In addition to the FDR index, another commonly used index
to evaluate the performance of FDmethods is DD. Compared
to JT 2 and JQ, all considered statistics are calculated using
more than one y data. Even with the moving window-based
methods, there exist cases such that some samples within the
window are fault-free. For such cases, implementing these
statistics may cause a larger detection delay. For example,
Fig. 10 shows an comparison of using JL and JT 2 to detect
a fault with a change in σ 2 from 4 to 9. It can be seen that
the improvements in the FDR performance are gained at the
cost of causing a larger detection delay. This brings new
challenges to investigating how to balance the two impor-
tant indices in practical applications. Additional information
regarding this issue can be found in [51] and [52].

It can be noted that, although the theoretical research
shows that the considered statistics themselves are capable
of detecting multiplicative faults, in practice in multivariate
statistics-based FD approaches they must be incorporated
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FIGURE 10. Detection delay caused by the statistical local method
(M = 1.5, n = 50).

with MDA methods to achieve a better FD or monitoring
performance, of which MDA methods are responsible for
generating residual signals that contain valuable faulty infor-
mation. How to properly modify MDA methods such that
they can be linked well with FD statistics also plays an
important role in FD approaches. Additional information can
be found in [31], [32], and [34]–[36].

V. SIMULATIONS AND INDUSTRIAL BENCHMARK STUDY
This section consists of case studies using a numerical model
and the TE benchmark process.

A. CASE STUDY ON NUMERICAL EXAMPLES
To evaluate the overall performance of the considered statis-
tics, two numerical multiplicative fault scenarios are first
implemented:

• Scenario 1: 6y =

 2 0.5 0.4
0.5 1 0.3
0.4 0.3 0.5

 → 6f = 2 0.5 0.4
0.5 1 0.3
0.4 0.3 5


• Scenario 2: 6y =

 2 0.5 0.4
0.5 1 0.3
0.4 0.3 0.5

 → 6f = 2 0.5 0.4
0.5 1 0.3
0.4 0.3 0.1


Using6y generate 1,000 fault-free samples, then the required
parameters for some of the statistics can be trained. For Sce-
nario 1, 1,000 samples are generated with the fault occurring
from 501 to 1000. Fig. 11 shows the performance of JT 2 ,
JT 2

n
, JQ and JQn . It can be observed that JT 2

n
and JQn have

significantly improved the detection performance compared
to JT 2 and JQ. Fig. 12 shows the performance of Jγ , JT and
JD, where all can successfully detect this fault, and perform
better than JT 2 . Of them, Jγ gives the best performance,

FIGURE 11. Performance of JT 2 , J
T 2
n

, JQ and JQn for Scenario 1.

FIGURE 12. Performance of Jγ , JT and JD for Scenario 1.

FIGURE 13. Performance of JL for Scenario 1.

which is followed by JD and JT . Note that JQn and JT
are equivalent, while Jth,Qn is smaller than Jth,T . This is
consistent with Theorem 2. From Fig. 13, JL gives the best
performance for this fault.
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FIGURE 14. Performance of JT 2 , J
T 2
n

, JD , Jγ and JL for Scenario 2.

Scenario 2 simulates a fault that decreases the variance of y.
The detection results given by JT 2 , JT 2

n
, JD, Jγ and JL are

shown in Fig. 14. It can be observed that the fault can only be
tracked by JL. Thus, for such type of fault, JL is suggested.

B. CASE STUDY ON THE TE BENCHMARK PROCESS
The TE process has been widely used as an industrial bench-
mark to evaluate the performance of different methods in
process control and monitoring fields [50]. It simulates a real
chemical plant that produces the liquid products G and H
with five gaseous reactants: A-E. The detailed piping and
instrumentation diagram of TE process is shown in Fig. 15.
The five reactants are fed into the reactor, where products G
and H as well as by-product F are produced. Then, the prod-
ucts go through the condenser and reach the separator, where
the uncondensed part is compressed back to the reactor by
the compressor, the condensed part will be shifted to the
stripper where the remaining reactants are removed, then the
purified liquid products G an H are generated. TE process
defines 22 process variables and 12 manipulated variables as
summarized in Table 3, where the variable tags are consistent
with their original definitions in [50]. The process variables
mainly record the running environment in different units of
the process, and the manipulated variables are chosen to
manipulate the amount of input reactants, velocity of flow,
and agitator speed, such that, given control laws, the process
can operate as desired performance. In addition to the two
types of variables, TE process also provides another type of
variables to measure the component of five reactants and two
products in different units, of which the most important two
are the component of G and H at the exit of the process. They
have often been called as quality variables that should be spe-
cially concerned. However, these variables are observed with
a time delay varying from 6 to 15 min compared to process
variables. Formore detailed descriptions, one can refer to [50]
and [53]. The MATLAB simulator is downloadable from a

publically available website.1 The simulator allows a simple
setting of operating conditions, measurement noises, sam-
pling time, and simulations of different faults, which makes
it convenient to support the validation and demonstration of
different multivariate statistics-based FD methods and FD
statistics in the statistical framework.

Fig. 15 shows the proposed simulation platform for exam-
ining the performance of the considered statistics to detect
multiplicative faults. It can be seen that these statistics are
connected with three basic MDA methods: PCA, CCA and
PLS respectively, and they together accomplish three kinds of
tasks covered by multivariate statistics-based FD approaches,
that is, the system overall operating performance monitor-
ing, subsystem fault detection, and quality index monitoring.
Of these, the operating performance of the whole system is
monitored by implementing PCA-based methods built on all
process and manipulated variable data. The performance of
a subsystem, such as the reactor, is monitored by performing
CCA-based methods on manipulated and process variables
of the concerned subsystem as shown in Table 3. The key
quality index reflected by components variables G and H is
monitored using PLS-basedmethods developed by amapping
between process and manipulated variables and quality vari-
ables. Within the three methods, residual signals from MDA
methods are sent to FD statistics to determine whether they
behave well.

The operating conditions are: the sampling time is 3 min
and the process is run for 100 h in the fault-free cases
with 2,000 samples obtained for developing FD methods,
and 1,000 h in faulty cases with faults occurring at 501 h.
In practical applications, to evaluate the performance of dif-
ferent methods, the numerically estimated FDR index is often
implemented as [53] :

FDR =
Number of samples (J > Jth |faulty )

total faulty samples
(41)

This benchmark has 20 predefined process faults, of which #
8 to #12 are multiplicative faults. Take # 11 fault for example,
we first perform PCA-based FD methods to detect whether
this fault can affect the overall operating performance. The
results are shown in the first row of Table 4. It is well-known
that traditional PCA-based methods both use JT 2 and JQ to
respectively detect the two subspaces spanned by PCA. The
results given by them are shown for comparison. Further-
more, the performance of JT 2

n
and JQn is recorded. It can

be observed that they perform better than JT 2 and JQ. Next,
we replace JT 2 with other examined statistics. It is shown that
JL can completely detect this fault with FDR = 1. Others,
except for JK, have also mildly improved the detection per-
formance. For the purpose of real-time tracking the state of
the reactor system, CCA-based FDmethods can be developed
using manipulated variables and measurement variables from
the reactor. The detection results are shown in the second
row of Table 4. Similar to the PCA case, using JT 2

n
shows

1 http://depts.washington.edu/control/LARRY/TE/download.html
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FIGURE 15. TE benchmark process test platform.

TABLE 3. Process and manipulated variables of TE process.

TABLE 4. FDR performance of different FD methods for detecting #11 fault.

better monitoring performance in the presence of #11 fault.
It can be further observed that JL and JT are significantly
better compared with JK and JD. Note that JD performs
poorly for this fault.When the performance of quality indices,

namely components G and H in this process, is particu-
larly concerned, PLS-based methods can be performed. Like
PCA-based methods, JT 2 and JQ are both used for monitoring
quality-relevant and -irrelevant subspaces defined by PLS.
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Their detection results are shown in the last row of Table 4.
As well, comparisons with other statistics are made, where
it can be found that, similar to the CCA case, JL and JT
provide the best results and JD is insensitive to this fault.
Based on the above discussions, it could be concluded that
the examined FD statistics are capable of handling mul-
tiplicative faults, of which JL shows better improvements
compared to the other statistics. The performance of Wishart
distribution-based statistics would be enhanced if they could
be used together.

VI. CONCLUSIONS
In this paper, fault detection statistics commonly encountered
in multivariate statistics-based FD field including JT 2 , JQ
as well as their extensions JT 2

n
and JQn and statistical local

method, JL; Wishart distribution-based methods: Jγ , JT and
JD; and the information theory-based methods: JC and JK
were investigated for use in detecting multiplicative faults.
The different statistics were compared and their interrela-
tionships were demonstrated. The detection performance for
multiplicative faults was evaluated using the FDR index. The
results show that:

• JT 2
n
and JQn can improve the performance of JT 2 and JQ

for detecting some multiplicative faults.
• JL converts the detection of multiplicative faults to the
form of detecting additive faults, which can improve the
detectability. It was also found that JL behaves well for
faults that decrease the variance.

• The Wishart distribution-based methods are developed
by applying different metrics, such as trace and determi-
nant, to measure the Wishart matrix. Using these statis-
tics together would improve the detection performance.

• In the case that a large number of online samples is used,
the formulae for JL and JK are equivalent.

These results imply that the correct statistic depends on the
problem formulation, as well as the available information.

Future work seeks to analyse a boarder range of fault
detection statistics, e.g. data description and dissimilarity
analysis-based methods, to handle multiplicative faults and
investigate in depth how they can, not only improve the
detectability, but also provide an acceptable EDD. As well,
it is suggested that additional work will be done in under-
standing and using more advanced, such as machine learning,
which although actively used in FD field, are yet not well
studied.
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