
Received June 27, 2018, accepted July 24, 2018, date of publication August 3, 2018, date of current version August 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2863033

Performance Characterization of Low-Latency
Adaptive Streaming From Video Portals
JEROEN VAN DER HOOFT , (Student Member, IEEE), CEDRIC DE BOOM,
STEFANO PETRANGELI, (Student Member, IEEE), TIM WAUTERS, (Member, IEEE),
AND FILIP DE TURCK, (Senior Member, IEEE)
IDLab, Department of Information Technology, Ghent University-imec, 9000 Ghent, Belgium

Corresponding author: Jeroen van der Hooft (jeroen.vanderhooft@ugent.be)

The work of J. van der Hooft was supported by the Grant of the Agency for Innovation by Science and Technology in Flanders (VLAIO).
The work of C. De Boom was supported by the Grant of the Research Foundation-Flanders (FWO). This work was supported in part by the
imec PRO-FLOW under Project 150223 and in part by the ‘‘Optimized source coding for multiple terminals in self-organising networks’’
under Project G025615N.

ABSTRACT News-based websites and portals provide significant amounts of multimedia content to
accompany news stories and articles. In this context, the HTTP adaptive streaming is generally used to
deliver video over the best-effort Internet, allowing smooth video playback and an acceptable Quality Of
Experience (QoE). To stimulate the user engagement with the provided content, such as browsing between
videos, reducing the videos’ startup time has become more and more important: while the current median
load time is in the order of seconds, research has shown that the user waiting times must remain below
two seconds to achieve an acceptable QoE. In this paper, four complementary components are optimized
and integrated into a comprehensive framework for low-latency delivery of news-related video content:
1) server-side encoding with short video segments; 2) HTTP/2 server push at the application layer; 3) server-
side user profiling to identify relevant content for a given user; and 4) client-side storage to hold proactively
delivered content. Using a large data set of a major Belgian news provider, containing millions of text-
and video-based article requests, we show that the proposed framework reduces the videos’ startup time
in different mobile network scenarios by over 50%, thereby improving the user interaction and skimming
available content.

INDEX TERMS HTTP adaptive streaming, HTTP/2 server push, H.264/AVC, Quality of Experience, user
profiling.

I. INTRODUCTION
In recent years, news providers have started to produce sig-
nificant amounts of multimedia content to accompany news
stories and articles. News providers such as the New York
Times1 and the Washington Post2 now provide a large num-
ber of video-based news articles, containing individual top-
ics or full news broadcasts. To encourage consumers to use
the provided services, facile user interaction while browsing
new content and skimming videos is of the utmost impor-
tance. In this context, reducing the videos’ startup time has
become more and more important: while videos generally
take in the order of seconds to load, research has shown that
user waiting times must remain below two seconds to achieve
acceptable Quality of Experience (QoE) [1].

1https://www.nytimes.com/
2https://www.washingtonpost.com/

Nowadays, news content providers generally use HTTP
Adaptive Streaming (HAS) to deliver video content over the
best-effort Internet. In HAS, video is encoded at different
quality levels and temporally divided into multiple segments
with a typical length of 2 to 30 seconds [2]. As illustrated
in Figure 1, an HAS client requests these video segments at
the most appropriate quality level, based on e.g., the available
bandwidth and the amount of buffered content. To this end,
a client-based heuristic is used which attempts to optimize
the QoE perceived by the user, which depends among others
on the average video quality, the frequency of quality changes
and the occurrence of playout freezes [3]. The client stores the
incoming segments in a buffer, before decoding the sequence
in linear order and playing out the video on the user’s device.

This approach generally enables smooth video playout,
and therefore results in a higher QoE than traditional video
streaming techniques. Because of this, major players such as

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

43039

https://orcid.org/0000-0002-9416-9661


J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 1. The concept of HAS. At server-side, the video is temporally segmented and encoded at different
quality levels. The client requests the video segments at the most appropriate quality level, and plays them
out in linear order.

Microsoft, Apple and Adobe adopted the adaptive streaming
paradigm and proposed their own rate adaptation heuristics.
As most HAS solutions use the same architecture, the Motion
Picture Expert Group (MPEG) proposed Dynamic Adaptive
Streaming over HTTP (DASH), a standard which defines the
interfaces and protocol data for HAS [4].

HAS is well-suited for video-on-demand (VoD) scenarios,
and is therefore put to good use by content providers such
as Netflix3 and YouTube.4 The startup time in these types of
scenarios is however in the order of seconds, with variations
depending on the type of network connection. One of the rea-
sons for this is that a significant number of resources need to
be delivered before the video can start to play: the web page,
the video player, the video’s media presentation description
(MPD) file, the video’s (optional) initialization segment and
the different video segments. Especially in mobile networks,
where the available bandwidth is limited and the network
latency is relatively high, this will have a significant impact
on the video’s startup time. A second reason is found in the
segment duration, which is typically in the order of one to ten
seconds: longer segments simply take longer to deliver, and
thus result in higher video startup times.

Research has shown that reducing the startup delay in HAS
is relevant, although it cannot occur at the cost of playout
freezes or a reduced video quality: as users are used to some
delay before the start of the playback, they usually tolerate it
if they intend towatch the video [5]. However, when browsing
through videos, i.e., when users start a larger number of
videos but only watch parts of it, initial delays should be low
for optimal acceptance [6]. To address this specific use case,
a framework is presented for low-latency delivery of news-
related HAS content, in a VoD scenario. This framework
integrates four complementary optimizations in the content
delivery chain:

1) Server-side encoding, to provide shorter video seg-
ments during the video’s startup phase;

3https://netflix.com/
4https://youtube.com/

2) Changing the application layer protocol, using
HTTP/2’s server push to deliver resources back-to-
back;

3a) Server-side user profiling to identify relevant content
for each user;

3b) Client-side storage to hold proactively delivered
content.

Each of these optimizations can be used separately,
although they are very complementary. HTTP/2 server push,
for example, can be used to deliver short video segments
back-to-back, eliminating the need for individual requests for
each of the segments. As such, content delivery and buffer
rampup can happen more quickly, thus reducing the video’s
startup time. Prefetching news content can be done based on
article recency (i.e., prefetch the n newest articles only), but
also based on user profiling (i.e., prefetch based on deter-
mined user preferences), measured on an entirely different
timescale. Having the right content available allows to start
the video locally, thus eliminating the time needed to deliver
the content over the best-effort network.

Preliminary evaluations showed that the proposed frame-
work is able to significantly reduce the video startup time,
albeit at the cost of limited network overhead and addi-
tional complexity at server- and client-side [7]. In this paper,
we elaborate on each of the proposed optimizations in
detail, and present a large-scale and in-depth evaluation (i.e.,
thousands of users, videos and video streaming sessions)
on a dataset of deredactie.be,5 an important Belgian news
provider.

The remainder of this paper is structured as follows.
In Section II, related work on low-latency video content
delivery is discussed. The proposed framework is presented
in Section III, elaborating on the advantages of each of the
optimizations. The experimental setup and results are pre-
sented in Section IV, before coming to final conclusions in
Section V.

5http://deredactie.be/

43040 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

II. RELATED WORK
A large number of techniques have been proposed in litera-
ture to improve the QoE of video streaming services. These
techniques can be divided in multiple ways (e.g., in client-
based, server-based and network-based solutions [2]). While
a lot of research has recently be done on client-side rate adap-
tation (e.g., BOLA and Pensieve [8], [9]), related work below
mainly focuses on relevant research on low-latency end-to-
end delivery on the one hand, and client-side prefetching on
the other.

A. LOW-LATENCY END-TO-END DELIVERY
Since a certain amount of data must be transferred before
decoding and playback can begin, startup delay is always
present in HAS [2]. The minimal achievable initial delay
strongly depends on the available transmission data rate and
the encoder settings. Depending on the use case, the client
can start playout as soon as content is available, or wait until a
minimum amount of content is present. The advantage of the
latter is that the buffer filling is higher when playout starts,
therefore reducing the risk of buffer starvation. However,
since most players start the stream at the lowest quality level,
rebuffering events in the early stages of the video stream are
less likely to occur. The DASH.js reference player uses a
stalling threshold of 0.5 seconds by default, which is gener-
ally low enough to start playout as soon as the first segment
arrives.

Quite often, the initial delay and rebuffering time are
trade-off factors: reducing the startup delay at the expense
of content buffering, may result in playback freezes. Hoss-
feld et al. [5] showed that in a VoD scenario for YouTube,
most users tolerate an initial delay in the order of seconds,
if they inted to watch the video . When browsing through
videos, however, initial delays should be low for optimal
acceptance [6]. Especially in the case of volatile and user-
generated content, the startup delay should be low in order
to maximize user engagement and acceptance. Although the
focus in our evaluations is primarily on the observed video
startup time, final results will also be reported in terms of
buffer starvation.

A straightforward approach to reduce the startup time
in HAS, is limiting the amount of data needed to start
video playout. As such, the adopted encoding scheme can
play an important role in the QoE of video streaming ser-
vices. One possibility is to adopt the principle of scalable
video coding (SVC) in HAS. This reduces the encoding and
storage overhead, since each quality representation is con-
structed as an enhancement of the lowest quality level [10].
Because an SVC-based client has an increased number of
decision points, it can cope better with highly variable band-
width. Although SVC reduces the footprint for storage,
caching and transport compared to a complete simulcast
H.264/AVC system, it does introduce an encoding overhead
of about 10% per layer [11]. Furthermore, since the client
initially has no knowledge of the available bandwidth, most

players start playout at the lowest quality level; in this
case, the adoption of SVC does not impact the startup time.
More recently, a number of stand-alone HAS players have
adopted H.265/HEVC, a video compression standard was
developed to provide twice the compression efficiency of
the previous standard, H.264/AVC [12]. In HEVC, coding
units of up to 64x64 pixels are used instead of 16x16,
and more intra-picture directions, finer fractional motion
vectors and larger transform blocks are used to achieve
this improvement in compression performance. Although its
application is increasing, most browsers offer no support
for HEVC at the time of writing [13]. It is worth noting
that a scalable version of the standard, SHEVC, exists as
well.

In live streaming scenarios, advanced client-side rate adap-
tation heuristics can be used in order to achieve an acceptable
QoE when the buffer size is small. Recently, Shuai et al. [14]
proposed a heuristic which allows the client to stream video
with stable buffer filling. In the model for the QoE, rebuffer-
ing events - including the one at startup - are penalized by
applying a suitable weight factor. In this way, high startup
times and stalling events are actively avoided. In the eval-
uation of the proposed approach, results are however only
shown in terms of the estimated QoE; as such, it is unclear
how the video startup time is affected. Miller et al. [15] pro-
pose LOLYPOP, a rate adaptation heuristic for low-latency
prediction-based adaptation designed to operate with a trans-
port latency of a few seconds. In their evaluation, a video
streaming scenario is considered in which the total delay
(i.e., segment duration plus upper bound on transport latency)
equals merely 5 seconds. To achieve such a low value,
LOLYPOP leverages TPC throughput predictions on multi-
ple time scales, from 1 to 10 seconds, along with estima-
tions of the relative prediction error distributions. Using this
approach, the authors are able to improve the mean video
quality by a factor of 3 compared to FESTIVE, a well-known
rate adaptation heuristic to improve fairness and stability in
HAS [16]. Results for the video startup time are however not
considered in this paper.

Although real-time streaming protocols are not applicable
in the targeted use case, we can use different protocols at the
application layer. In this context, the new HTTP/2 standard
was published as an IETF RFC in February 2015, mainly
focusing on the reduction of latency in web delivery. Since
then, research has shown the application of HTTP/2 can either
reduce or increase the load time [17]–[19]. In the context
of video content delivery, however, significant improvements
can be achieved.Wei and Swaminathan [20] first explore how
HTTP/2’s features can be used to improve HAS. By reducing
the segment duration from 5 to 1 second, they manage to
reduce the camera-to-display delay with about 10 seconds.
An increased number of GET requests is avoided by pushing
k segments after each request, using HTTP/2’s server push.
Cherif et al. propose DASH fast start, in which HTTP/2’s
server push is used to reduce the startup delay in a DASH
streaming session [21]. The authors also propose a new

VOLUME 6, 2018 43041



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

approach for video adaptation, in which WebSocket over
HTTP/2 is used to estimate the available bandwidth. In previ-
ous work, we proposed a full-push feature, in which segments
are pushed from server to client until the client specifies
otherwise, or the connection is terminated. In contrast to
these works, we propose to combine HTTP/2’s server push
with a hybrid segment duration scheme, resulting in smoother
buffering and faster startup.

Optimizations can also be performed on the transport layer.
In recent work, Gatimu et al. [22] showed that the Flexible
Dual TCP-UDPStreaming Protocol (FDSP), which combines
the reliability of TCP with the low-latency characteristics of
UDP, can be used to reduce the video startup time. In the
considered setup, FDSP delivers the more critical parts of
the video data via TCP and the rest via UDP. The authors
show that this approach results in significantly less rebuffer-
ing than TCP-based streaming and a lower packet loss rate
than UDP-based streaming. Although results are promising,
the evaluated approach does not map to traditional HAS,
in which segments are retrieved back-to-back and have to be
fully downloaded before playout can start.

When it comes to encoding, new real-time technologies
such as Web Real-Time Communication (WebRTC) have
recently been introduced [23]. Where HAS is generally used
in VoD scenarios or live streaming scenarios where the delay
can be in the order of tens of seconds, such as sports events,
these technologies focus on collaborative real-time video
streaming communication where the delay should be in the
order of a few hundreds of milliseconds. Furthermore, they
have been developed with a peer-to-peer architecture in mind,
where a small group of clients can directly communicate
with each other. Since each sender needs to encode a sep-
arate stream for each of the receivers, this approach suffers
from scalability issues when many participants are present at
the same time. Although useful in real-time communication,
these technologies do not envision traditional VoD scenarios
and are thus unsuitable to provide the required low-latency
aspects in HAS.

Recently, further improvements to HAS have been made,
such as Server and Network Assisted DASH (SAND) [24].
While the focus of this paper is on over-the-top video deliv-
ery only (i.e., delivery without control over the network),
SAND aims to further improve performance by enabling in-
network decisions. In the suggested approach, a bi-directional
messaging plane is used between the clients and other so-
called DASH-Aware Network Elements (DANEs), in order
to carry both operational and assistance information. This
allows to trigger control mechanisms such as flow pri-
oritization, bandwidth reservation and video quality adap-
tation based on the network’s and client’s current state.
A large number of studies has been conducted, showing that
the SAND principle can significantly improve the QoE in
HAS [25], [26]. This concept however moves away from
over-the-top solutions, and is therefore not considered in this
paper.

B. PREFETCHING OF MULTIMEDIA CONTENT
To improve the QoE in video streaming, content can be
brought closer to the end user. Streaming providers have mas-
sively adopted the use of Content Delivery Networks (CDN),
reducing the load on the origin server and serve the video
with lower latency and increased bandwidth. General caching
strategies can be applied, taking into account characteristics
such as content popularity, user preferences, the client’s loca-
tion etc. In this regard, a number of studies have shown sig-
nificant improvements. As an example, Krishnappa et al. [27]
exploit particular user behavior to improve the caching effi-
ciency of YouTube videos. By rearranging the related video
list to give preference to cached videos, the cache hit rate
is improved by a factor of 5. Caching strategies can also be
improved when future user requests are known in advance.
For example, binge-watching has become a well-known phe-
nomenon for video streaming services, meaning that users
tend to watch multiple episodes of the same TV show con-
secutively. As shown by Claeys et al. [28], this informa-
tion can be used to estimate future video segment requests
and improve caching efficiency. Apart from being cached
in a CDN, content can also be prefetched by the client.
Krishnamoorthi et al. [29], for instance, propose a scheme in
which three policy classes are applied to preload content for
HAS. The authors however assume that the content provider
has already established a list of relevant content which should
be prefetched. In this work, we also focus on how to select this
content at server-side.

For this purpose, we will use techniques that have been
proposed in the context of recommender systems, where users
and their consumed items are projected in a low-dimensional
vector space [30]. Users with similar consumer characteris-
tics will typically have vector representations that lie close
to each other in this space, while dissimilar user vectors are
located far apart. Matrix factorization, for instance, is an
often used technique to arrive at a vector space with such
characteristics. It is typically applied to a user-item rating
matrix, while imposing that the scalar product between a
user and item vector is a good rating predictor. The prob-
lem with this approach, however, is that the user vectors
are considered static, which is not always ideal in dynamic
scenarios in which many items are consumed one after the
other, such as songs, videos and news content. It has recently
been shown in literature, and real-life scenarios at Netflix and
Spotify, that it is often beneficial to explicitly consider the
time aspect by modeling users in a dynamic fashion [31]–
[33]. In these systems, a user is typically represented by
aggregating item vectors across time. For example, in the
work by Hidasi et al. [34] a recurrent neural network is used
to process items one after the other; the output of this neural
network is a set of recommended items after processing a
new item. The downside of this approach is that users are
not modeled explicitly in the same space as the items, and
therefore does not allow for direct user-item comparisons.
In order to achieve this, we can simply sum or average the

43042 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 2. The proposed HAS delivery framework for media-rich content from news providers [7].

consumed item vectors, through which we remain in the same
item space. We will further elaborate upon this in the next
section.

III. PROPOSED FRAMEWORK
The proposed framework integrates four complementary
optimizations in the content delivery chain, as illustrated
in Figure 2. First, we consider the aspect of video encod-
ing, using a shorter video segment duration to reduce the
playout delay. This optimization requires sufficient resources
at server-side, in order to encode provided content both for
multiple quality representations and for different segment
durations. Second, we focus on the applied application layer
protocol, discussing the possibilities of HTTP/2’s server push
feature. This requires an HTTP/2-enabled server, equipped
with a custom request handle to push required resources from
server to client. Since most browsers nowadays have full sup-
port for HTTP/2, no changes to the client are required. Third,
we consider user profiling as a way to predict user interest
and interaction. To this end, the server needs to monitor all
incoming requests and keep track of several content- and user-
based characteristics. Fourth, client-side storage is considered
to store content which is proactively delivered to the user,
once it is deemed of interest by the profiling component. This
requires additional complexity at client-side, and is prone to
bandwidth overhead when the wrong content is prefetched.
Below, we elaborate on each of these optimizations in detail.

A. SERVER-SIDE ENCODING USING HYBRID
SEGMENT DURATION
The first part of the proposed framework consists of server-
side encoding, and more specifically on the segment duration
of the provided content. As found in previous work, reducing
the duration of video segments comes with a number of
advantages [35].Most importantly, the short segments require
a lower download time, resulting in a reduced delivery time
and thus in faster startup. However, since every segment
has to start with an Instantaneous Decoder Refresh (IDR)
frame, a higher bit rate is required to achieve the same visual
quality compared to segments of higher length. This encoding
overhead was analyzed for seven videos at multiple frames
per seconds (FPS) in previous work, showing that a segment

duration of 1 second results in a bitrate overhead between
12.1 and 22.4% compared to a segment duration of 8 seconds,
and in an overhead between 28.7 and 49.9% for a segment
duration of 250 ms [35]. Moreover, since a unique request
is required to retrieve each single video segment, solutions
with low segment duration are susceptible to high round-trip
times (RTT). This problem mainly arises in mobile networks,
where the RTT is in the order of 100 ms, depending on the
network carrier and the type of connection.

While traditional streaming solutions use a fixed segment
duration in the order of 2 to 30 seconds, we propose to use
different segment durations for the startup and steady-state
phase of the video streaming session. This allows us to both
reduce the video startup time by using short video segments
in the startup phase, and overcome the aforementioned issues
by switching to longer segment durations once the video is
steadily playing. Two approaches are possible: (i) initially
start at the lowest segment duration d1, switching to the
highest segment duration dn once a significant amount of
segments has been downloaded, and (ii) initially start at the
lowest segment duration d1, switching to d2, d3, . . . until
a segment duration of dn is reached. The advantage of the
latter is that the buffer is ramped up smoothly, prevent-
ing possible freezes when switching from the lowest to the
highest segment duration when the buffer level is relatively
low. A disadvantage to this approach is that multiple ver-
sions of the content need to be available, each containing
a different segment duration. However, since the segment
duration is changed only during the startup phase, only the
first part of the content needs to be encoded multiple times.
Furthermore, since most players generally start playout at
the lowest video bitrate, it is sufficient to provide multi-
ple segment durations for the lowest quality representation
only.

There are multiple ways to apply the proposed segment
duration scheme. One possible approach is to generate the
MPD, which contains relevant information on the available
content (e.g., the video’s duration and available quality rep-
resentations), in such way that several parts of the video are
distinguished [36]. It is then possible to define different seg-
ment durations for different quality representations and time
intervals, making the approach completely DASH-compliant.
A second approach is to limit the segment duration in the

VOLUME 6, 2018 43043



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 3. Possible segment duration schemes in HAS. While traditional schemes use a fixed segment duration, the proposed hybrid
scheme changes the segment duration over time, smoothly ramping up the video player’s buffer. (a) Long segment duration scheme.
(b) Short segment duration scheme. (c) Hybrid segment duration scheme.

video player itself, for instance by tracking the video playout
progress and available quality representations.

It is worth noting that the proposed scheme can not only be
applied at startup, but each time the buffer filling drops below
a certain threshold: the player can recover more quickly, and
thus reduce the total time of stalling. In this case, however,
the full video needs to be available in different segment
durations. This scheme is not adopted in this paper.

B. APPLICATION LAYER OPTIMIZATIONS USING
HTTP/2’S SERVER PUSH
At the start of an HAS video streaming session, a large
number of files need to be downloaded. In a stand-alone
client, a request is first sent for the video’s MPD file. Based
on the contents of this file, the client proceeds to down-
load the initialization segment (if any) and from then on,
requests video segments one by one. In a web-based context,
the HTML page and its required resources need to be fetched
as well, including the HAS player, JavaScript sources, CSS
files, images, etc. All these resources are requested over
HTTP, which among others, allows to traverse firewall and
NAT devices, and reuse the existing delivery infrastructure.
Retrieving these resources one by one takes time, given RTT
is lost for every request. Especially inmobile networks, where
the latency is in the order of tens to hundreds of milliseconds,
this can have a significant impact on the startup time.

When it comes to browser page loading, the total time can
be reduced by using up to six parallel HTTP/1.1 connections.
This allows to retrieve resources faster, since idle RTTs can
be omitted. It is however infeasible to use this approach in the
case of HAS: during the startup phase, the client’s browser
does not know in advance which resources will be required
next (e.g., the download of the DASH.js player cannot start
before the HTML source code is parsed), and once the video
session has started, segments are retrieved one by one to
guarantee in-order delivery, and thus the (timely) arrival of
the most crucial segments first. An alternative way to deliver
required resources more quickly, would be to forward these
without the client actually requesting them. To this end,
HTTP/2’s server push can be used.

In Figure 4a, the example scenario from Figure 3c is
illustrated for HTTP/1.1. Here, the HTML source code is
downloaded first, and is parsed by the browser. This code

includes the DASH.js script, which is in its turn requested.
Once the player is present, it initiates the download of the
video session’s MPD and parses the document. It finds out
that an initialization segment is required for each of the
quality representations, and issues a request for the one cor-
responding to the lowest quality. From then on, segments
are requested one by one, evaluating the available bandwidth
once each of the segments has been downloaded.

In 2015, the HTTP/2 standard was published as an IETF
RFC. Its main purpose is to reduce the latency in web deliv-
ery, using request/response multiplexing, stream prioritiza-
tion and server push. The latter can be used to push video
segments from server to client, without the client sending a
GET request for the required resources. Pushing the content
back-to-back allows to eliminate idle RTT cycles, reducing
buffering time and improving bandwidth utilization.

In previous work, a stand-alone client was considered
to evaluate the use of HTTP/2’s server push feature [35].
In this context, we propose to push resources related to the
video streaming session only: once the manifest is requested,
video segments are continuously pushed to the client, until an
explicit stop request is sent or the connection with the client is
terminated. In this way, idle RTTs during content download
are eliminated, resulting in reduced delivery times and thus
faster video startup.

In this work, we consider the browser-based DASH.js
reference player, with the hybrid segment duration scheme
presented above. As illustrated in Figure 4b, HTTP/2 server
push is now used to deliver the HTML source code of a
sample web page, the DASH.js reference player embedded
within this page, the MPD, the initialization segment and the
first k video segments, corresponding to the first x seconds
of the the video stream. From then on, one GET request can
be used to retrieve each x seconds of video. Depending on
the selected segment duration, the server can push a different
amount of segments, while the client can specify the desired
quality representation based on its rate adaptation heuristic.
Similarly, this approach results in the removal of idle RTTs,
reducing the video’s startup time and increasing the total
throughput.

Although not applicable in the evaluation setup in
Section IV, it is worth noting that additional sources, such
as images, scripts and CSS, can be retrieved using HTTP/1.1

43044 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 4. Sequence diagrams of the proposed hybrid segment duration schemes. Using HTTP/1.1, each video segment requires
a separate GET request. Using HTTP/2, one request allows to deliver multiple resources, thereby reducing the video’s buffering
and startup time. (a) HAS over HTTP/1.1. (b) HAS over HTTP/2.

(potentially with multiple connections) or by HTTP/2 (poten-
tially with server push), or from the browser’s cache if
present.

C. SERVER-SIDE USER AND CONTENT PROFILING
A third optimization consists of server-side user and content
profiling. Its purpose is to build a profile for all platform
users, determining their preferences towards certain news
content. Generally speaking, the purpose of the profiling
component is to select a subset of relevant, recent video con-
tent for any given user. This content can then be prefetched by
the client, effectively reducing the video startup delay at the
time of request. In the proposed framework, we thus want a
means to determine such a subset. To this end, for each of the
users, we compare the performance of each of the following
recommendation strategies over a recent period (i.e., the last
n number of requests):
• Likely to consume most popular content - Cer-
tain video articles have a higher probability of being
requested than others. Research has shown that this
depends, among others, on the type of subject, the loca-
tion of the event and the objectivity of the title [C]. Popu-
lar articles are generally highlighted on (top of) the home
page, and are more often shared on social networks
such as Facebook and Twitter. If we want to consider
a relevant subset of videos to prefetch, it thus would
make sense to consider the most popular content only.
When this profile is assigned, the number of requests
issued within a certain time interval is considered to rank
the available content. From this list, the n most popular
articles are considered of interest to the user;

• Likely to consume most recent content - News con-
tent is typically short-lived, i.e., its relevance decreases

quickly over time [37]. News articles and videos are only
featured on (top of) the home page for a limited amount
of time only, and are quickly replaced by new data
and news topics. Furthermore, a significant amount of
users prefer to stay up-to-date by visiting news web sites
multiple times a day, making news older than a couple
of hours less relevant. Therefore, when this profile is
assigned, all content is ranked according to the time of
publication. From this list, the n most recent articles are
considered of interest to the user;

• Likely to consume personalized content - Some users
are interested in particular news subjects and articles,
and therefore consume specific videos only. For this
type of users, we will, as traditionally done in recom-
mender systems, represent each user and video article
by a low-dimensional vector. To this end, we assume
that every video has associated textual metadata, and
apply a natural language processing model to represent
each of the articles. This metadata can include, but is
not limited to, the author(s), title, summary and text-
based content of the news article. Based on previous
work, word2vec is selected to accomplish this [7], [38].
Word2vec learns low-dimensional word vectors, also
called word embeddings, by training a two-layer neural
networks to reconstruct linguisitic contexts of words
in a large text corpus. For each word in this corpus,
a word embedding is learned that is located in a low-
dimensional space such that words with a common
context are positioned close to one another [38]. Since
word2vec operates on word level, we will represent each
article by the sum of the word vectors it contains. A user
is represented by a vector as well, which is initially an
all-zeros vector. Each time a new article is requested by a

VOLUME 6, 2018 43045



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

user, the corresponding vector is updated by summation
of the user and article vector in an online fashion. This
approach allows us to create a unique vector for each
user, building a user profile over time. The relevance of
an article Ea to a user Eu can then be determined using the
cosine similarity:

cos (Eu, Ea) =
Eu · Ea
‖Eu‖2‖Ea‖2

. (1)

The higher this similarity, the higher the user’s prefer-
ence towards an article is assumed. When this profile
is assigned, recent content is considered and ranked
according to the cosine similarity between the user and
article vectors. From this list, the n most similar articles
are considered of interest to the user. Note that this
approach is prone to the cold-start problem, since the
user vector is initially set to zero and is slowly built up
for each user.

We propose to assign each user one of the aforementioned
profiles, but do it in suchway that performance does not suffer
from the cold-start problem and that a user’s preferences can
change over time. To this end, each user is initially assigned
the popularity profile, where the most requested articles are
considered. Once a sufficient amount of requests has been
issued by the user, we allow the assigned profile to be changed
throughout time, using online evaluations of the user behavior
and preferences towards certain content. To determine the
most appropriate category for a given user, and therefore the
best approach to rank the available content, a sliding window
is used over the user’s past n requests. Within this window,
the position of each of the user’s requests is evaluated in the
sorted list generated by each of the three profiles. The user
is then be mapped to the profile which results in the lowest
average position of the requests.

Using the average position for the last n requests as
a metric, differences between the three profiles can be
small. This can result in a large number of switches in
the assigned profile, which should preferably be avoided.
For this reason, hysteresis is applied to only change the
assigned profile when the metric of a certain profile
outperforms the currently assigned profile by at least a
fraction α.
The result of the proposed approach is a shortlist contain-

ing the most relevant video articles for each of the users.
As explained below, the content of this shortlist can be used to
proactively deliver the content to the user, anticipating future
article requests.

D. CLIENT-SIDE STORAGE
A final component of the proposed framework consists of
client-side storage, which is used to enable proactive deliv-
ery of relevant video content. If the right content is sent,
using such approach allows to significantly reduce the video
session’s startup time. Depending on the use case scenario,
multiple options for content delivery and client-side storage
are possible. In a stand-alone application, a dedicated cache

on the local device can be used. Based on server recommenda-
tions, the application can retrieve content in the background.
Measure needs to be taken as not to use prefetching too
aggressively, as it introduces a risk of increasing battery
drain and bandwidth use. In web-based applications, control
over client-side storage is less evident. Recent versions of
browsers such as Google Chrome allow to prefetch web pages
which are referred to in the current page. Pages are preren-
dered in a hidden tab, and moved to the foreground upon
request. This can be extended as to provide support for HAS,
retrieving the first x seconds of embedded video content.
Most browsers now also support HTTP/2, storing pushed
resources in the browser’s cache. This allows the server to
push additional resources upon a client’s incoming request,
yet care needs to be taken that prefetching does not interfere
with the transfer of more urgent resources (e.g., the current
video being played out). For this reason, the best approach is
to only deliver additional resources once the requested article
page has been retrieved completely.

Regardless of how the content is delivered, it is important
that the right content is sent. Indeed, proactive delivery of
non-relevant content results in network overhead, since band-
width is wasted on content which may never be consumed.
Therefore, we can apply the profiling detailed in Section III-
C to determine a shortlist of articles, and consider the top
k articles for prefetching. In our evaluations in Section IV,
we investigate the impact of this parameter (which corre-
sponds to the cache size) on the startup time (no requests
need to be sent to the server in case of a cache hit) and
the network overhead. Note that only the first dn seconds
of video, corresponding to the largest segment duration, are
stored: as soon as video playout has started, the remaining
content is fetched from the server as in a traditional streaming
scenario.

IV. EVALUATION
In this section, we evaluate the impact of the proposed frame-
work on the video startup time under realistic network con-
ditions. We first discuss the considered use case of a major
Belgian news provider, and present the experimental setup
used to evaluate results. We then present the most important
results, discussing the advantages and shortcomings of each
of the proposed optimizations.

A. USE CASE: DEREDACTIE.BE
Deredactie.be is one of the major news websites in Belgium,
hosted by the Flemish Radio and Television Broadcasting
Organization (VRT). In recent years, its focus has shifted
largely from simple text-based articles towards multimedia-
rich news reports. Because of this, the website is an excellent
use case for the proposed delivery framework. On the home
page, users are presented an overview of recently published
content, containing a relevant poster, a title and a short intro-
duction on each of the news topics (Figure 5). In the ‘‘video
zone’’, a separate page, all videos published in the last week
are presented in order of publication (i.e., most recent first).

43046 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 5. Considered use case of deredactie.be, homepage (left) and video zone (right).

The website also contains references to other (news) sources,
such as Sporza (sports) and Canvas (culture).

In collaboration with VRT, Van Canneyt et al. were able
to collect a data set containing approximately 300 mil-
lion website requests, issued between April 2015 and Jan-
uary 2016 [37]. For every request to the website, among
others the requested URL, the referrer URL, the server’s and
client’s local time, and the client’s hashed IP and cookie ID
were logged.

From the given dataset, all users and article requests were
extracted. The HTML and XML sources of the requested arti-
cles were retrieved, and relevant information such as the title,
summary and content was extracted. All embedded video was
retrieved as well, resulting in a total of 19,437 videos. All data
was used by the proposed framework, as detailed below.

B. EXPERIMENTAL SETUP
In the remainder of this section, we evaluate the pro-
posed framework under realistic network conditions. To this
end, a network setup is emulated using MiniNet, where a
client is connected to an HTTP/1.1- and HTTP/2-enabled
Jetty server (Figure 6). As for the mobile network sce-
nario, both 3G and 4G network scenarios are considered;
while 4G coverage in Belgium is excellent, clients are still
often forced onto 3G in areas with a lower population den-
sity [39]. To emulate network conditions, traffic control
is used to set the network latency to 120 and 60 ms for
3G and 4G respectively, and to shape the available band-
width of the client according to bandwidth traces provided
by Riiser et al. and van der Hooft et al. [40], [41]. The client
uses the Google Chrome browser in headless mode to start a
video streaming session, using the reference DASH.js player.

FIGURE 6. Experimental setup. MiniNet is used to host a virtual network
within a Docker container. The DASH.js player is used in the Google
chrome browser, starting and playing different video streaming sessions
from the HTTP/2-enabled Jetty server.

The open-source code of the Jetty server is slightly modi-
fied, allowing it to push the required HTML and JavaScript
resources, the MPD, the initialization segment and the first
ten seconds of a given video upon request. To allow seamless
connection over HTTP/2, a Node.js proxy is provided for
each client. This proxy can retrieve content from the local
filesystem as well, and can therefore be used to measure
startup times for prefetched video. The complete setup has
been wrapped in a docker container, increasing portability
and allowing parallel execution of video streaming sessions.
Experiments were carried out on five physical nodes on the
Virtual Wall,6 with twelve docker containers running simul-
taneously on a hexa-core Intel(R) Xeon(R) CPU E5645 @
2.40GHz with 24 GB of RAM. Below, results are shown for
different scenarios, including an additional optimization in
each experiment.

C. SHORT SEGMENT DURATION
Since shorter video segments require less data to be trans-
ferred from server to client, the client should be able to

6http://doc.ilabt.imec.be/ilabt-documentation/

VOLUME 6, 2018 43047



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 7. Encoding bitrate as a function of the segment duration,
relative to the bitrate for a segment duration of 10 seconds. Outliers for a
segment duration of 0.4 seconds go as high as 14.065, but are omitted in
favor of readability.

start playout faster. As mentioned above, this approach intro-
duces an encoding overhead. In previous work, we eval-
uated this overhead for shorter video segments on seven
different videos [41]. Given the extent of the presented
dataset, we decided to evaluate the encoding overhead for all
19,437 video articles published within the time of logging.
By default, deredactie.be provides its video content at a frame
rate of 25 FPS, a spatial resolution of 640 × 360 and a
segment duration of ten seconds. This content was re-encoded
using AVC/H.264 with the same frame rate and resolution,
but with a segment duration ranging from 400 ms to 10 sec-
onds. To allow each segment to be decoded independently,
every segment starts with an IDR frame, and the Group of
Pictures (GOP) length is set to values ranging from 10 to
250 respectively. To realize the same visual quality, the Con-
stant Rate Factor (CRF) rate control in the x264 encoder is
enabled, with a CRF value of 25. This results in average video
bit rates of 423 and 231 kb/s for a segment duration of 400 ms
and 10 seconds respectively.

Figure 7 shows a boxplot of the encoding overhead for
different segment durations, relative to the bit rate of a seg-
ment duration of 10 seconds. The obtained average video bit
rates equal 423, 300, 261, 238 and 231 kb/s for a segment
duration of 0.4, 1, 2, 5 and 10 seconds respectively, or a
relative overhead of 83.3, 30.4, 13.2 and 3.3% compared to
a segment duration of 10 seconds. Values for the overhead
range from 1.035 (low overhead) to 14.065 (significant over-
head) for a segment duration of 0.4 seconds. The former stems
from videos with a lot of movement and scene switches, for
which the insertion of additional IDR frames has almost no
impact on the overall video bit rate (e.g., a report on the
world record pillow fight), while the latter stems from videos
with hardly any movement at all (e.g., still photos during
a news broadcast). This shows that the encoding overhead
can be significant, and should be avoided whenever possi-
ble. Therefore, applying a hybrid approach in which short
segments are used at startup and long segments in steady-
state, is beneficial in terms of consumed bandwidth and video
quality.

FIGURE 8. Startup time as a function of the segment duration. Outliers,
corresponding to at most 7% of the data, have been omitted in favor of
readability. (a) 3G network. (b) 4G network.

In a first video streaming experiment, we evaluate the
startup time for different segment durations d1, where the
required content is requested over HTTP/1.1. The segment
duration ranges from 0.4 to 10 seconds, at a frame rate
of 25 FPS. Figure 8 shows the boxplots for the startup time
of 19,437 video streaming sessions, one for each video in the
dataset. Outliers, corresponding to at most 7% of the data,
have been omitted in favor of readability: some outliers reach
values up to 38.4 seconds because the throughput traces con-
tain different periods of low throughput, where connection is
bad to non-existing.

In a 3G scenario, the observed gains are significant: the
median startup time is reduced from 4.0 to 3.1 seconds for a
segment duration of 10 and 1 seconds respectively. Further-
more, variability is significantly lower, reducing high startup
times which generally impede the QoE the most: the 90%
and 99% quantiles, for instance, are reduced from 8.4 to
5.9 seconds and from 15.7 to 11.3 seconds. Results also show
that the segment duration cannot be reduced indefinitely:
for a segment duration of 0.4 seconds, the median startup
time increases again to 3.3 seconds, and the 90% and 99%
quantiles to 6.1 and 11.4 seconds respectively.

In a 4G scenario, the gains are less outspoken: the median
startup time is reduced from 1.4 to 1.2 seconds for a segment
duration of 10 and 1 seconds respectively, while the 90% and
99% quantiles are reduced from 1.9 to 1.5 seconds and from

43048 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

4.2 to 3.4 seconds. Because the throughput is signi-ficantly
higher, the importance of the video file size is simply reduced.
Relatively speaking, however, the observed gains are still
significant: a reduction of the median startup time of 14.5%
is achieved for 4G, compared to 23.1% for 3G.

D. SHORT SEGMENT DURATION AND SERVER PUSH
As explained in Section III, the application of HTTP/2 server
push allows to avoid idle RTT cycles in the buffer rampup
phase. In Figure 8, the startup time of all video streaming
sessions is compared between HTTP/1.1 and HTTP/2. In a
3G scenario, where the latency is equal to 120 ms, the median
startup time is reduced from 4.0 to 3.3 seconds (−17.5%) and
from 3.1 to 2.5 seconds (−19.3%) for a segment duration
of 10 and 1 seconds respectively. In a 4G scenario, where
the latency is equal to 60 ms, the median startup time is
reduced from 1.4 to 1.0 seconds (−28.6%) and from 1.2 to
0.9 seconds (−25.0%) for a segment duration of 10 and
1 seconds respectively. These gains are a direct consequence
of back-to-back delivery of the required video resources. It is
worth mentioning that the application of HTTP/2 server push
has no impact on variability: the reduction of the startup time
is linearly correlated to the network delay only.

E. USER AND CONTENT PROFILING
The application of user profiling is situated on a different
timescale than the actual video streaming. For this reason,
we first show results for the proposed user profiling strategies,
before applying them in a video streaming scenario. To enable
user profiling, the title, summary and text content from each
article published within the time of logging was extracted,
Dutch stopwords were eliminated and the resulting lower-
case text was used as input to train a word2vec-based model
with 100 dimensions. Note that all articles containing video,
include at least a title and a brief summary; therefore, each
article can be represented by the sum of its word vectors.

To evaluate the accuracy of the resulting models,
we replayed all article requests issued by users who were
active during at least half of the period of logging (i.e.,
five months) and who, on average, requested at least one
video article per day. Eliminating page crawlers, this resulted
in a pool of 5,835 users, who together request a total
of 1,848,319 video articles. Similar to articles, each user is
represented by a 100-dimensional vector, which is updated
each time an article is requested.

Before each request, a sliding window over recently issued
requests is updated. Within this window, each of the three
strategies (i.e., popular, recency and word2vec) is evaluated
based on the rank of the articles in the sorted list, and a deci-
sion is taken to either stay on the current strategy, or switch
to an alternative one if this has shown to result in a better
performance. We performed an analysis of different parame-
ter settings, including the optimal window size and hysteresis
fraction thereof.

A higher window size entails more information, and thus
a better decision regarding which category to assign to the

FIGURE 9. Category preference and switching for four different users
(left) and the accuracy in the sliding window for user 4 (right), for a list
size of 16 articles and a window size of 100 requests. Because results for
the recent and word2vec profile overlap, a large number of switches can
occur. (a) Switching behavior for four example users. (b) Accuracy within
the sliding window for user 4.

user. However, using a window size which is too large, users
which are likely to switch to a different category remain at
the (initially assigned) popular strategy too long, resulting
in lower performance. After careful consideration, a window
size of 100 requests was selected.

When changing the assigned profile based on the number
of list hits within the sliding window, differences in accuracy
can be small. This can result in a large number of switches
in the assigned recommendation strategy. To avoid this from
happening, hysteresis is applied to only change the strategy
when the cache hit ratio of a certain approach outperforms
the currently assigned approach by at least a fraction α of
the window size. As illustrated in Figures 9a and 9b for an
example user, using a value of α = 0.05 is sufficient to reduce
the number of otiose strategy switches.

Figure 10 shows results for the three strategies and for
the combined approach. On the x-axis the considered article
list size (i.e., the number of articles that the recommendation
algorithm is able to select) is presented, on the y-axis the
relative number of requested articles which were present in
this list. As an example, using a list containing the 16 most
recent articles at each point in time, 43.3% of requested arti-
cles were present in the list. Compared to a static popularity

VOLUME 6, 2018 43049



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 10. Relative number of list hits for the three different user
profiles, and the proposed hybrid approach with a window size
of 100 requests and α = 0.05.

FIGURE 11. Relative number of users whose user strategy is changed
over time. Users are categorized based on the dominant user strategy
(either popular, recent or word2vec-based).

strategy, applying the proposed approach results in higher
accuracy, although improvements are limited; as an example,
the accuracy increases from 0.4781 to 0.4794 (+0.3%) and
from 0.6629 to 0.6664 (+0.5%) for a list size of 8 and
16 respectively. For most users in this dataset, simply consid-
ering the most popular articles at each point in time, results
in the best performance. This is because most users tend to
consume content which is readily available and presented on
(top of) the home page. For this reason, it is more difficult to
build accurate user profiles, or predict consumption behavior
based on previous requests.

Figure 11 shows the relative number of users for which the
profile is changed over time (total), and the relative number
of users for which either the popular, recent or word2vec-
based profile is selected most often when switching. As can
be observed, at most 10% of users is ever assigned a different
profile than the most popular one. The recency profile is
preferred by at most 6% of users, and the word2vec-based
profile by 2%. As illustrated in Figure 12, however, changing
the recommendation strategy for these users does result in
significant improvements.

As an example, for a list size of 8, the performance rel-
ative to a static profile based on popularity, is improved by
12.5% and 11.6% for users who are most often assigned

FIGURE 12. Performance for users whose recommendation strategy is
changed over time, relative to a static popularity strategy. Values lower
than 1 can occur, since switching is not always beneficial (although one
strategy outperforms the others in the sliding window, it is not
guaranteed that this will also be the case in the requests to come).

the recency and word2vec-based strategy respectively. These
users have an outspoken preference towards certain topics and
TV programs, which, when taken into account, in some cases
improve performance by a factor of 2 and more. For these
users, the proposed hybrid profiling approach can thus be
adopted to improve accuracy, and therefore improve the list of
content considered for prefetching when client-side storage is
enabled. It is worth noting that for lower list sizes, switching
the assigned profile can in some cases result in lower perfor-
mance: given the low number of considered articles, there is
little certainty about potential list hits.

F. SHORT SEGMENT DURATION, SERVER PUSH AND
PROACTIVE PREFETCHING
In a final set of experiments, we assume that client-side
prefetching and storage is also possible. To this end, the pro-
posed recommendation scheme is adopted to rank the avail-
able content for the 5,835 users in the user pool. It is worth
noting that any recommendation scheme could be used here:
the proposed optimizations are complementary, and can thus
be omitted or replaced by valid alternatives. Then, the full
request log is replayed for each user.

In practice, the client would prefetch relevant content dur-
ing off-times. In the case of a stand-alone application on a
mobile device, prefetching can be done in the background.
In the web browser, this can be done based on server sug-
gestions, either when the current page has finished load-
ing or when the playing video has been retrieved. In our
experimental setup, it is however practically infeasible to
recreate the full user session: only requested article URLs are
available, yet not the information on the played out quality
of video, the length of the session, the available throughput,
etc. For this reason, prefetching is not directly implemented:
we simply assume that the client has, at each point in time,
stored the first dn = 10 seconds of content for each of the
top n video-based articles. When the client issues a request,
the content is retrieved either from local storage (i.e., through
the proxy) if the content is available in this list, or from the
server if not.

43050 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

FIGURE 13. Startup time as a function of the number of prefetched
articles, using a segment duration of 10 seconds over HTTP/1.1 or a
segment duration of 1 second over HTTP/2. Boxplots include the average
startup time for all 5,835 considered users. (a) 3G network.
(b) 4G network.

We assume storage capacity is limited, so that previously
stored content is removed when the list of articles is updated
(e.g., when new articles have been published in the recency
strategy, when a certain article generated more requests in
the last hour in the popularity strategy, or when the user
switches from one strategy to another, possibly resulting in a
significantly different set of articles). For instance, the client
might be able to store the top 8 video-based articles only, but
not more.

The 5,835 users have sent a total of 1.8 million requests
to video-based articles during the time of logging. Because
of the time complexity, it is infeasible to replay all these
requests for each evaluated parameter configuration. For this
reason, the startup times for each of the videos in Figure 8
are used to represent the average startup time of each user.
Of course, startup times are strongly dependent on the avail-
able bandwidth at the time of buffering, and can thus differ
severely between sessions. Since the trace is started at a
random point in time, however, the resulting values should
be a close approximation of the expected startup time under
realistic network conditions.

Figure 13 shows the average startup time as a function of
the number of articles the client is able to prefetch. Naturally,
the more articles the client can prefetch, the lower the average

FIGURE 14. Bandwidth overhead as a function of the number of articles
prefetched by the client. (a) Overhead per video session. (b) Estimation of
the relative overhead.

video startup time will be. As an example, the median startup
time in a 3G network is reduced from 5.0 to 2.7 seconds
(−45.9%) when the 8 most relevant videos for each user
are prefetched with a segment duration of 10 seconds over
HTTP/1.1. When this number is increased to 32, the median
startup time can be reduced even further to 1.1 seconds
(−78.0%). When a lower segment duration of 1 second is
used and HTTP/2’s server push is enabled, the startup time
can be reduced from 3.1 to 1.7 (−43.5%) and 0.8 seconds
(−74.1%) for 8 and 32 prefetched videos respectively. In a
4G scenario, the startup time for a segment duration of 10 sec-
onds over HTTP/1.1 is reduced from 1.6 to 1.0 (−37.7%)
and 0.8 seconds (−64.6%) for 8 and 32 prefetched videos
respectively, and from 1.0 to 0.7 (−31.8%) and 0.5 seconds
(−54.0%) for a segment duration of 1 second over HTTP/2.
Naturally, prefetching the content comes with a draw-

back: articles which are never requested, inevitably result
in bandwidth overhead. Depending on the network carrier
and the type of subscription, this can be detrimental to the
user. In this context, Figure 14a shows the total overhead
per video streaming session as a function of the number of
videos the client is able to prefetch. When the 8 most relevant
videos are prefetched, for instance, the median overhead
amongst all users is 1.8 MB per video session, while the 90%
percentile equals 3.6 MB. As a reference, downloading the

VOLUME 6, 2018 43051



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

home page or a general single text-based article with JS, CSS
and images included, requires 3.2 and 1.9 MB respectively.
These numbers are in the same order of magnitude, and
therefore, we conclude that a value of 8 is an ideal number of
videos to prefetch by the client. Note that the required storage
capacity is limited: the client only needs to be able to store the
MPDs and initialization segments of eight videos, along with
8 dn = 8 · 10 seconds = 80 seconds of content at the lowest
video quality.

Next to the absolute amount of wasted bandwidth, it would
be interesting to determine the bandwidth overhead relative
to the bandwidth consumed without prefetching. However,
since the dataset does not include requests for single video
segments, it is not possible to extract the exact time each
user spends watching the content, nor what the total band-
width consumption was at the time. Furthermore, the total
bandwidth usage depends on all issued requests, including
requests for the home page and text-based article requests.
As a rough estimation, we can however assume that the
user finishes each video, and that the user either streams the
whole session at the average bitrate of the lowest quality
(i.e., 231 kb/s), or at the average bandwidth in the provided
3G traces (i.e., 2358 kb/s). For each user, we keep track of
the requested video, and determine its length based on the
provided MPD files. Multiplying the total video length with
the average bitrate results in the total bandwidth consumption
for video content - discarding other resources such as JS,
CSS and images. As illustrated in Figure 14(b), the rel-
ative overhead differs significantly for the two examples.
When the 8 most relevant videos are prefetched, for instance,
the median overhead is 40.4% in the former case, and 4.0% in
the latter. In the end, the relative overhead strongly depends
on the viewing behavior of the user, the videos considered
and the type of network conditions during the video streaming
session.

G. IMPACT ON BUFFER STARVATION
Reducing the number of bytes to transfer is an efficient way
to reduce the video startup time. However, as mentioned
previously in Section III-A, reducing the segment duration
also results in lower buffer filling at the start of the video
playout. When the available bandwidth is insufficient to pro-
vide the video at the lowest quality, or when the segment
duration is changed too abruptly, this can result in buffer
starvation and therefore, in playout freezes. To evaluate the
impact of the proposed optimizations on buffer starvation,
the 13,636 videos in the dataset with a minimum length of
one minute, have been used to evaluate six different configu-
rations. Similar as in the previous evaluations, each video is
started at a random point in the provided throughput traces
(but at the same time for all configurations) and the first
minute of content is played out completely. Because we are
interested in the impact of the configurations only, the content
is played out at the lowest quality: this way, the applied rate
adaptation heuristics in the DASH.js player do not come into
play. Note that the stalling threshold in the player, defined as

FIGURE 15. Cumulative distribution of the measured startup times and
total freeze times for different configurations for the considered
13,636 videos. (a) Startup time. (b) Freeze time.

the amount of content (in seconds) which should be left in the
buffer in order to continue playout, is set to 0 (i.e., play out as
soon as content is available, as long as content is available).

Figure 15 shows the cumulative distribution of the gains in
measured startup time (top) and the total freeze time observed
during playout of the first one minute of video (bottom), for
six different configurations:
• HTTP/1.1 - long: a segment duration of 10 seconds;
• HTTP/1.1 - short: a segment duration of 1 second during
the first 10 seconds, 10 seconds during the remainder of
the stream;

• HTTP/1.1 - smooth: a segment duration smoothly
changing from 1 to 2, 5 and eventually 10 seconds
(a change occurs after each 10 seconds);

• HTTP/2 - short: idem as for HTTP/1.1, but now with
HTTP/2 server push for shorter segments (k = 10);

• HTTP/2 - smooth: idem as for HTTP/1.1, but now with
HTTP/2 server push for shorter segments (k = 10, 5, 2
respectively);

• Cache - HTTP/1.1: the first 10 seconds are retrieved
from local storage, the remainder of the session from the
server.

Figure 15(a) shows the results which were previously
obtained: the startup time can be reduced significantly when
the segment duration is lowered, when HTTP/2 server push

43052 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

is applied and when caching is used. Note that the ‘‘short’’
and ‘‘smooth’’ approaches result in the same startup time,
since both require the same resources to start video playout
(including a single one-second video segment).

Figure 15(b) shows the total freeze time observed during
playout of the first minute of content. When the default
configuration is used, only 0.6% of video streaming ses-
sions suffers from playout freezes. When switching from the
cache to the local server, a new TCP connection has to be
started, which implies that the available bandwidth cannot
immediately be used yet. For this reason, it can take a while
before the second segment arrives, in cases of low bandwidth
sometimes resulting in a playout freeze. When a segment
duration of 1 second is used for the first 10 seconds of
content, results show that the client is indeed more prone to
buffer starvation: when using the ‘‘short’’ segment scheme,
9.5% of video streaming sessions results in playout freezes.
Adopting the ‘‘smooth’’ scheme, this number is reduced to
6.1%. Applying HTTP/2 server push on top of that, a further
reduction to 2.7% is achieved. It is worth noting that most
rebuffering events do not last longer than 500 ms, which is
significantly smaller than the gains in terms of startup time (a
median reduction of 2.1 seconds, with outliers higher than
15 seconds). Higher values occur only in cases where the
available throughput is significantly lower than the bitrate
for the lowest quality level, in which case no approach can
achieve a desirable result: one can argue that in the given use
case, it can be better to start the stream under 10 secondswhile
temporarily suffering from rebuffering events, than starting
the stream in 10 seconds or more and risking abandonment
by the user.

H. SUMMARY
In the evaluations above, we showed that the proposed opti-
mizations can result in significantly shorter video startup
times, which is beneficial when browsing news content in
a video web portal. In summary, the main reductions are
achieved by:

1) Using a shorter video segment duration: when the avail-
able bandwidth is limited, this can result in reductions
in the order of 10 to 25%. This optimization is straight-
forward to implement, as it requires minor adaptations
to the MPD and limited additional storage at server-
side;

2) Using HTTP/2 on the application layer, making use of
HTTP/2 server push: even when the network delay is
limited to 120ms, this results in an additional reduction
in the order of 15 to 25%. At server-side, this optimiza-
tion requires a separate request handler to push required
resources. Since most browsers nowadays have full
support for HTTP/2, no changes are required at client-
side;

3) Using server-side user profiling and client-side stor-
age to prefetch (the first part of) possibly relevant
videos: storing the 8 most relevant video articles, for

instance, additional reductions in the order of 45%
can be achieved. This however comes at the cost of
increased bandwidth usage by the client. This opti-
mization requires server-side logging and analytics,
content prefetching and client-side storage, making it
less straightforward to deploy.

All aforementioned optimizations are complementary: one
can, for instance, consider a scenario where a segment dura-
tion of 1 second is used, HTTP/2 server push is enabled and
up to 8 articles are prefetched on a per-user bases. Com-
paring results with the reference scenario for deredactie.be,
i.e., a segment duration of 10 seconds over HTTP/1.1 without
prefetching, the median startup time can be reduced from
5.0 to 1.7 seconds (−66.0%) in a 3G network scenario,
and from 1.6 to 0.7 seconds (−56.3%) in a 4G network
scenario.

V. CONCLUSIONS
In this work, a novel framework for low-latency delivery
of news-related video content is presented. Its main compo-
nents include server-side encoding, HTTP/2’s server push,
user profiling and client-side storage for proactive content
delivery. Through a relevant use case of a major Belgian
news provider, we showed that each of the proposed opti-
mizations can significantly reduce the median startup time
of video streaming sessions, by 10 to 25% using a shorter
video segment duration, by 15 to 25% using HTTP/2 server
push and by 45% when the first 10 seconds of the 8 most
relevant videos are stored at client-side. Combining these
optimizations, the median startup time can be reduced by
more than 50% in both 3G and 4G mobile networks. These
reductions allow the news provider to improve the user’s
Quality of Experience, encouraging low-latency user interac-
tion with the provided video content. In future work, we will
characterize the performance of the considered optimizations
in other use case scenarios, such as 360◦ video delivery for
virtual reality.

REFERENCES
[1] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, ‘‘Waiting times in quality

of experience for web based services,’’ in Proc. Int. Workshop Qual.
Multimedia Exper., 2012, pp. 86–96.

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
‘‘A survey on quality of experience of HTTP adaptive streaming,’’ IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, 1st Quart., 2015.

[3] R. Mok, E. Chan, and R. Chang, ‘‘Measuring the quality of experience
of HTTP video streaming,’’ in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manage., May 2011, pp. 485–492.

[4] T. Stockhammer, ‘‘Dynamic adaptive streaming over HTTP standards
and design principles,’’ in Proc. ACM Conf. Multimedia Syst., 2011,
pp. 133–144.

[5] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen,
‘‘Initial delay vs. interruptions: Between the devil and the deep blue sea,’’
in Proc. Int. Workshop Qual. Multimedia Exper., 2012, pp. 1–6.

[6] L. Chen, Y. Zhou, and D. M. Chiu, ‘‘Video browsing—A study of user
behavior in online VoD services,’’ in Proc. Int. Conf. Comput. Commun.
Netw., 2013, pp. 1–7.

[7] J. van der Hooft, C. De Boom, S. Petrangeli, T. Wauters, and F. De Turck,
‘‘An HTTP/2 push-based framework for low-latency adaptive streaming
through user profiling,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp.,
Apr. 2018, pp. 1–5.

VOLUME 6, 2018 43053



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

[8] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, ‘‘BOLA: Near-optimal
bitrate adaptation for online videos,’’ in Proc. IEEE Int. Conf. Comput.
Commun., Apr. 2016, pp. 1–9.

[9] H. Mao, R. Netravali, and M. Alizadeh, ‘‘Neural adaptive video streaming
with pensieve,’’ in Proc. Conf. ACM Special Interest Group Data Com-
mun., 2017, pp. 197–210.

[10] Y. S. de la Fuente et al., ‘‘iDASH: Improved dynamic adaptive streaming
over HTTP using scalable video coding,’’ in Proc. ACM Conf. Multimedia
Syst., 2011, pp. 257–264

[11] H. Schwarz, D. Marpe, and T. Wiegand, ‘‘Overview of the scalable video
coding extension of the H.264/AVC standard,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007.

[12] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ‘‘Overview of the
high efficiency video coding (HEVC) standard,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[13] A. Deveria. (2018). Can I Use HEVC?. [Online]. Available:
https://caniuse.com/#search=HEVC

[14] Y. Shuai and T. Herfet, ‘‘On stabilizing buffer dynamics for adaptive video
streaming with a small buffering delay,’’ in Proc. IEEE Consum. Commun.
Netw. Conf., Jan. 2017, pp. 435–440.

[15] K. Miller, A. Al-Tamimi, and A. Wolisz, ‘‘QoE-based low-delay live
streaming using throughput predictions,’’ ACM Trans. Multimedia Com-
put., Commun., Appl., vol. 13, no. 1, pp. 4:1–4:24, 2016.

[16] J. Jiang, V. Sekar, and H. Zhang, ‘‘Improving fairness, efficiency, and sta-
bility in HTTP-based adaptive video streaming with festive,’’ IEEE/ACM
Trans. Netw., vol. 22, no. 1, pp. 326–340, Feb. 2014.

[17] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan, ‘‘Towards
a SPDY’Ier mobile Web?’’ in Proc. ACM Conf. Emerg. Netw. Exp. Tech-
nol., 2013, pp. 303–314.

[18] Y. Elkhatib, G. Tyson, and M. Welzl, ‘‘Can SPDY really make the Web
Faster?’’ in Proc. IFIP Netw. Conf., 2014, pp. 1–9.

[19] X.Wang, A. Balasubramanian, A. Krishnamurthy, andD.Wetherall, ‘‘How
Speedy is SPDY?’’ in Proc. USENIX Conf. Netw. Syst. Design Implement.,
2014, pp. 387–399.

[20] S.Wei andV. Swaminathan, ‘‘Low latency live video streaming over HTTP
2.0,’’ in Proc. Netw. Oper. Syst. Support Digit. Audio Video Workshop,
2014, pp. 37:37–37:42.

[21] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori, ‘‘DASH fast
start using HTTP/2,’’ in Proc. ACM Workshop Netw. Oper. Syst. Support
Digital Audio Video, 2015, pp. 25–30

[22] K. Gatimu, A. Dhamodaran, T. Johnson, and B. Lee, ‘‘Experimental study
of low-latency HDVoD streaming using flexible dual TCP-UDP streaming
protocol,’’ in Proc. Consum. Commun. Netw. Conf., 2018, pp. 1–6.

[23] W3C/IETF. (2018). Web Real-Time Communication (WebRTC). [Online].
Available: https://www.webrtc.org

[24] Dynamic Adaptive Streaming Over HTTP (DASH)—Part 5: Server
and Network Assisted DASH (SAND), document ISO/ICE 23009-
5:2017, 2017. [Online]. Available: https://www.iso.org/obp/ui#iso:std:iso-
iec:23009:-5:ed-1:v1:en

[25] A. Bentaleb, A. C. Begen, and R. Zimmermann, ‘‘SDNDASH: Improving
QoE of HTTP adaptive streaming using software defined networking,’’ in
Proc. ACM Multimedia Conf., 2016, pp. 1296–1305.

[26] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck,
‘‘Software-defined network-based prioritization to avoid video freezes
in HTTP adaptive streaming,’’ Int. J. Netw. Manage., vol. 26, no. 4,
pp. 248–268, 2016.

[27] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen, ‘‘Cache-centric
video recommendation: An approach to improve the efficiency of YouTube
caches,’’ ACM Trans. Multimedia Comput., Commun. Appl., vol. 11, no. 4,
pp. 48:1–48:20, 2015.

[28] M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. Latré,
and F. De Turck, ‘‘Cooperative announcement-based caching for video-on-
demand streaming,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 2,
pp. 308–321, Jun. 2016.

[29] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shahmehri,
‘‘Bandwidth-aware prefetching for proactive multi-video preloading and
improved HAS performance,’’ in Proc. ACM Multimedia Conf., 2015,
pp. 551–560.

[30] Y. Koren, R. Bell, and C. Volinsky, ‘‘Matrix factorization techniques
for recommender systems,’’ IEEE Comput., vol. 42, no. 8, pp. 30–37,
Aug. 2009.

[31] C. De Boom et al., ‘‘Large-scale user modeling with recurrent neural
networks for music discovery on multiple time scales,’’ Multimedia Tools
Appl., vol. 77, no. 12, pp. 15385–15407, Jun. 2018.

[32] J. Basilico and Y. Raimond, ‘‘Déjà Vu: The importance of time and
causality in recommender systems,’’ in Proc. Conf. Recommender Syst.,
2017, p. 342.

[33] T. Donkers, B. Loepp, and J. Ziegler, ‘‘Sequential user-based recurrent
neural network recommendations,’’ in Proc. Conf. Recommender Syst.,
2017, pp. 152–160.

[34] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, ‘‘Session-based
recommendations with recurrent neural networks,’’ CoRR,
vol. abs/1511.06939, Mar. 2015. [Online]. Available: https://arxiv.
org/abs/1511.06939

[35] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen,
and F. De Turck, ‘‘An HTTP/2 push-based approach for low-latency live
streaming with super-short segments,’’ J. Netw. Syst. Manage., vol. 26,
no. 1, pp. 51–78, 2018.

[36] I. Sodagar, ‘‘The MPEG-DASH standard for multimedia streaming over
the Internet,’’ IEEE Multimedia, vol. 18, no. 4, pp. 62–67, Nov. 2011.

[37] S. Van Canneyt, B. Dhoedt, S. Schockaert, and T. Demeester, ‘‘Knowl-
edge extraction and popularity modeling using social media,’’ Ghent
Univ.-IMEC, Ghent, Belgium, Tech. Rep., 2016. [Online]. Available:
https://biblio.ugent.be/publication/8133560

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ CoRR, vol. abs/1301.3781,
Jan. 2013. [Online]. Available: https://arxiv.org/abs/1301.3781

[39] nPerf. (2018). Cellular Data Networks in Belgium. [Online]. Available:
https://www.nperf.com/en/map/BE/-/-/signal/

[40] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen,
‘‘Video streaming using a location-based bandwidth-lookup service for
bitrate planning,’’ ACM Trans. Multimedia Comput., Commun. Appl.,
vol. 8, no. 3, pp. 24:1–24:19, 2012.

[41] J. van der Hooft et al., ‘‘HTTP/2-based adaptive streaming of HEVC
video over 4G/LTE networks,’’ IEEE Commun. Lett., vol. 20, no. 11,
pp. 2177–2180, Nov. 2016.

JEROEN VAN DER HOOFT received the
M.Sc. degree in computer science engineering
from Ghent University, Belgium, in 2014. In 2014,
he joined the Department of Information Technol-
ogy, Ghent University-imec, where he is currently
pursuing the Ph.D. degree. His main research
interest is the end-to-end quality of experience
optimization in adaptive video streaming.

CEDRIC DE BOOM received the M.Sc. and
Ph.D. degrees in computer science engineer-
ing from Ghent University-imec, Belgium,
in 2014 and 2018, respectively. In 2016, he has
been involved in the topic of music discovery
models at Spotify Inc. His main research interests
lie in information retrieval and machine learning
applications, more specifically in user modeling
and text processing. In 2015, he started focusing
on deep learning applications in recommender
systems and sequence modeling.

STEFANO PETRANGELI received the
M.Sc. degree in systems engineering from the
Sapienza University of Rome in 2011, the Second
Level master’s degree from Telecom Italia Labo-
ratories and the Polytechnic of Turin in 2013, and
the Ph.D. degree in computer science engineering
from Ghent University, Belgium, in 2018. His
main research interest is the end-to-end quality of
experience optimization of internet video stream-
ing delivery, with a particular focus on immersive
media.

43054 VOLUME 6, 2018



J. van der Hooft et al.: Performance Characterization of Low-Latency Adaptive Streaming From Video Portals

TIM WAUTERS received the M.Sc. and Ph.D.
degrees in electrotechnical engineering from
Ghent University, Belgium, in 2001 and 2007,
respectively. He is currently a Post-Doctoral Fel-
low with the Department of Information Technol-
ogy, Ghent University-imec. His work has been
published in over 100 scientific publications in
international journals and in the proceedings of
international conferences. His research interests
include network and service architectures, and

management solutions for multimedia delivery services.

FILIP DE TURCK received the M.Sc. and
Ph.D. degrees in electronic engineering from
Ghent University, Belgium, in 1997 and 2002,
respectively. He is currently a Full Professor with
Ghent University-imec, where he leads the Net-
work and Service Management Research Group
at the Department of Information Technology.
His research interests include telecommunication
network and service management, and design of
efficient virtualized network systems. He serves

as the Chair for the IEEE Technical Committee on Network Operations
and Management. He is the Editor-in-Chief of the IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT.

VOLUME 6, 2018 43055


	INTRODUCTION
	RELATED WORK
	LOW-LATENCY END-TO-END DELIVERY
	PREFETCHING OF MULTIMEDIA CONTENT

	PROPOSED FRAMEWORK
	SERVER-SIDE ENCODING USING HYBRID SEGMENT DURATION
	APPLICATION LAYER OPTIMIZATIONS USING HTTP/2'S SERVER PUSH
	SERVER-SIDE USER AND CONTENT PROFILING
	CLIENT-SIDE STORAGE

	EVALUATION
	USE CASE: DEREDACTIE.BE
	EXPERIMENTAL SETUP
	SHORT SEGMENT DURATION
	SHORT SEGMENT DURATION AND SERVER PUSH
	USER AND CONTENT PROFILING
	SHORT SEGMENT DURATION, SERVER PUSH AND PROACTIVE PREFETCHING
	IMPACT ON BUFFER STARVATION
	SUMMARY

	CONCLUSIONS
	REFERENCES
	Biographies
	JEROEN VAN DER HOOFT
	CEDRIC DE BOOM
	STEFANO PETRANGELI
	TIM WAUTERS
	FILIP DE TURCK


