
Received July 19, 2018, accepted August 1, 2018, date of publication August 3, 2018, date of current version August 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2863019

FPGA-Based Hardware Design for Scale-Invariant
Feature Transform
SHIH-AN LI1, WEI-YEN WANG2, (Fellow, IEEE), WEI-ZHENG PAN2,
CHEN-CHIEN JAMES HSU 2, (Senior Member, IEEE),
AND CHENG-KAI LU3, (Senior Member, IEEE)
1Department of Electrical Engineering, Tamkang University, New Taipei City 25137, Taiwan
2Department of Electrical Engineering, National Taiwan Normal University, Taipei 10610, Taiwan
3Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia

Corresponding author: Chen-Chien James Hsu (jhsu@ntnu.edu.tw)

This work was supported in part by the ‘‘Higher Education Sprout Project’’ of the National Taiwan Normal University, through the
Ministry of Education, Taiwan, and in part by the Ministry of Science and Technology, Taiwan, under Grants MOST
107-2634-F-003-001 and MOST 107-2634-F-003-002.

ABSTRACT This paper proposes a novel hardware design method of scale-invariant feature trans-
form (SIFT) algorithm for implementation on field-programmable gate array (FPGA). To reduce the comput-
ing costs, Gaussian kernels are calculated offline for use in Gaussian filters. To eliminate low-contrast points,
the inverse of a Hessian matrix is required for hardware implementation, which results in poor performance
because dividers are needed. To solve this problem, this paper presents a newmathematical derivation model
to implement the low-contrast detection, avoiding the use of any dividers. For the implementation of the
normalization module, a large number of dividers are required by traditional methods, which adversely
affects the computational efficiency. This paper presents a new architecture using only one divider to
implement the normalization function in hardware. Thanks to the parallel processing architecture proposed
to design the image pyramid, SIFT detection, and SIFT descriptor, the computational efficiency of the
SIFT algorithm is significantly improved. As a result of the proposed design method, the requirement of
logic elements in the FPGA hardware is greatly reduced and system frequency is significantly increased.
Experimental results show that the proposed hardware architecture outperforms existing techniques in terms
of resource usage and computational efficiency for real-time image processing.

INDEX TERMS Scale-invariant feature transform, field-programmable gate array, parallel processing
architecture.

I. INTRODUCTION
Feature extraction is a fundamental aspect of many prob-
lems in the field of machine vision, including image
stitching, object recognition, 3D modeling from multiple
images, image tracking, and robotic mapping and navigation.
Although many feature-detection algorithms have been pro-
posed over the past years, the scale-invariant feature trans-
form (SIFT) [1] algorithm, which mainly converts image data
into high-dimensional feature descriptors before matching
two images, is the most stable method of all. Because of its
stability and robustness, SIFT not only deals with change
in brightness but also satisfactorily addresses the problem
of image scaling and rotation. As a result, SIFT is able
to maintain feature invariance under orientation or illumi-
nation changes, out-performing the commonly used Harris
corner detector [2]. Although SIFT is powerful with excellent

results, it suffers from heavy computation and large memory
usage, which impose a serious constraint upon real-world
applications. In order to overcome this drawback, several
approaches, including Speed Up Robust Features (SURF) [3]
and Principal Components Analysis (PCA) SIFT [4], have
been proposed with the aim of reducing calculation time. As a
stable image recognition and descriptor algorithm, SURF is
widely applied to object-recognition problems. The biggest
difference between SURF and SIFT is that the former uses
integral images and 2D discrete wavelet transform; the latter
uses an image pyramid and histogram of oriented gradients.
PCA-SIFT, on the other hand, reduces the dimensionality of
SIFT feature descriptors from 128 to 36 in order to mini-
mize the dimension to speed up feature matching. In 2009,
Juan and Gwun analyzed the performance of SIFT, SURF,
and PCA-SIFT [5]. The result showed that SURF has the

43850
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-3697-8401

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

shortest computation time while SIFT has the best matching
accuracy, considering the factors of changing scale, image
rotation, image blurring, and changing illumination. In partic-
ular, various variants of SIFT algorithms, for example affine
SIFT [6], have been proposed in recent years with improved
stability and robustness for use in feature matching. As a
result, SIFT algorithms are widely used in various appli-
cations. Although deep learning approaches [7] have been
adopted over the past years to extract region features with
success, they inevitably require a lot of training examples for
themodel to learn properly. As complexities and uncertainties
in the environment increase, feature extraction might not be
successful if features in the scene are not well trained. Fur-
thermore, network complexities of deep learning architecture
also result in high costs particularly for hardware implemen-
tation [8], [9]. In view of the above, the SIFT algorithm
would be the best choice of all if the problem of computa-
tion time can be overcome. To address this problem, much
research has been conducted in recent years to implement the
SIFT algorithm on various experimental platforms, including
multi-core processors, graphics processing unit (GPU), and
field-programmable gate array (FPGA), with a goal of speed-
ing up the computational performance to achieve real-time
image recognition. Among them, Bonate et al. presented
a software and hardware co-design approach to implement
SIFT on FPGA [10]. In addition, Yao et al. [11] presented
a method of improving the SIFT algorithm for implemen-
tation on FPGA, where the dimensionality of SIFT feature
descriptors is reduced from 128 to 72. As a result, its compu-
tation through hardware implementation of FPGA is nearly
real-time. In 2014, Wang et al. [12] presented an embedded
SOC architecture for detection and matching by hardware.
The result showed that it can process 60 images per sec-
ond. Jiang et al. [13] also presented a hardware structure to
implement the detection and matching of SIFT by hardware.
The experimental results demonstrated that about 150 images
can be processed per second. All the above discussions
suggested that SIFT can be successfully implemented on
hardware platforms, not only maintaining the success rate
of matching but also achieving the objective of real-time
computation.

As an attempt to further improve the computational effi-
ciency of hardware implementation on FPGA, we present
a novel hardware design method for SIFT to accelerate the
computational efficiency of its major modules, including
image pyramid, SIFT detection, and SIFT descriptor. Because
the hardware design is based on pipeline architecture, the exe-
cution speed is significantly improved. It is worth mentioning
that Gaussian smoothing of an image requires an exponen-
tial function that it is hard to implement and requires a lot
of logic elements in the hardware. With the use of offline
calculation of the Gaussian kernel proposed in this paper,
the number of logic elements required in the hardware can be
greatly reduced to accelerate system frequency. To eliminate
low-contrast points, inverse matrix operations are required
in the hardware by traditional methods, which results in low

performance because dividers are needed for the calculation.
To solve this problem, this paper presents a new mathe-
matical derivation model to implement low-contrast detec-
tion, avoiding the use of any dividers. Similarly, for the
implementation of the normalization module, a large number
of dividers are required by traditional methods. This paper
presents a new architecture using only one divider, instead
of 128, to implement the normalization function in hardware.
As a result, computational efficiency is greatly improved.
Thanks to the parallel processing architecture proposed in this
paper to design the image pyramid, SIFT detection, and SIFT
descriptor, computational efficiency of the entire hardware
system is significantly improved. As a result of the proposed
design method, utilization of logic elements required in the
FPGA hardware is greatly reduced and system frequency is
significantly increased.

The paper is organized as follows. A comprehensive review
of hardware implementation methodologies of SIFT and their
experimental results is presented in Section 2. Preliminaries
of the SIFT algorithm are introduced in Section 3. The pro-
posed hardware design methodology for SIFT is described in
Section 4. Experimental results are presented in Section 5.
Section 6 concludes this paper.

II. RELATED WORK
This section discusses existing techniques that implement
SIFT algorithm and their experimental results.

Vourvoulankis et al. [14] proposed an FPGA-based
pipeline architecture for implementing SIFT. At a resolution
of 640 × 480, up to 70 fps can be processed, allowing the
system to achieve real-time operation. Aniruddha et al. [15]
also obtained a speed of around 55 fps for 640 × 480 images
by implementing a parallel structure of SIFT on a GPU.
Unfortunately, their works can only be used in situations
in which the descriptor does not rotate or the system has a
small change in angle. Yao et al. [11] proposed an optimized
SIFT feature detection architecture for image matching. The
number of descriptor vectors is reduced from 128 to 72,
simplifying the matching operation. According to the experi-
mental results, this approach successfully reduced the detec-
tion time to 31 ms, at the expense of very high resource
utilization. Mizuno et al. [16], [17] proposed a SIFT imple-
mentation based on a FPGA architecture to quickly separate
the regions of interest. This approach significantly reduced
the required on-chip memory resources and supported two
modes of operation. In the high-speed mode, a processing
speed of 56 fps was achieved, while the high-precision mode
could reach 32 fps; both of these results were achieved in
VGA resolution. The main drawbacks of this architecture is
the use of external Static Random-Access Memory (SRAM)
to store input images and a large number of required Digital
signal processing (DSP) blocks. Chang et al. [18] proposed
a SIFT detection method that can reduce the usage of chip
resources, where the SIFT keypoint detection time can be
reduced to 11 ms. Unfortunately, it is applicable only to VGA
resolution. Zhong et al. [19] used a combination of FPGA

VOLUME 6, 2018 43851

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

and a DSP processor to implement SIFT, where the SIFT
detector is implemented on FPGA, while the SIFT descriptor
is implemented by DSP. This system takes 10 ms to detect
features in an image, and each descriptor consumes 80 µs.
This hybrid architecture, however, is limited to low-resolution
input images and the calculation of the descriptor is too slow.
Huang et al. [20] proposed an ASIC-based SIFT architecture,
where parallel operations were used to transfer the input
data to SRAM, which can reduce the number of transistors
and chip area. According to the experimental results, they
succeeded in detecting the feature points in VGA resolution
in 3.4 ms. With the use of the finite-state machine (FSM),
the calculation time for each descriptor is about 0.0331 ms.
Suzuki and Ikenaga [21], [22] proposed a scheme inwhich the
difference of Gaussian (DOG) is replaced by a Harris corner
detector. The detected keypoints were used as a descriptor
for SIFT. However, they failed to implement an image pyra-
mid and therefore the difference in scale-space has not been
considered in SIFT detection, which inevitably decreased the
image matching performance. Kim and Lee [23] proposed a
framework to maintain resource utilization at a lower level.
Theymainly split the input image and used an external SRAM
to store the data to reduce the on-chip memory requirements.
The calculation time of each descriptor is about 60 µs, which
is the main bottleneck of the architecture. Chiu et al. [24]
proposed a parallel layer of SIFT architecture. They used
an integral image to reduce the computational complexity
in Gaussian blurring. The calculation of descriptors, such
as trigonometric functions and segmentation, used a custom
multi-cycle component implemented on ASIC chips. When
the number of feature points is less than 2000, it can handle
30-fps full-HD images. This means that it can compute the
feature descriptor within 16 µs. Wang et al. [12] proposed
an architecture that combines a detector, a descriptor, and
a feature matcher, where SIFT is used for keypoint detec-
tion. The proposed system used an image with a resolu-
tion of 1280 × 720 pixels to achieve feature detection and
matching at 60 fps. However, they sacrificed some of the
robustness of the algorithm in order to speed up the exe-
cution. Jiang et al. [13] proposed an architecture for real-
time SIFT extraction based on parallel and pipeline structure.
They also used two ping-pong RAM buffers to preserve
the location, gradient, and orientation of the features. The
authors claimed that the proposed scheme has almost the
same matching performance as the original algorithm. How-
ever, descriptor calculation is still the bottleneck of the entire
algorithm.

III. PRELIMINARIES OF SIFT ALGORITHM
As a method of detecting and describing local features in
images, the SIFT algorithm was proposed by David G. Lowe
in 2004 [1]. Fig. 1 shows a flow chart of the SIFT algorithm,
where three basic steps, namely Image Pyramid, SIFT Detec-
tion, and SIFTDescriptor, are required to implement the SIFT
algorithm. Detailed descriptions for each function are given
as follows:

FIGURE 1. Flow chart of SIFT algorithm.

FIGURE 2. Architecture of Image Pyramid.

A. IMAGE PYRAMID
The image pyramid uses a cascade Gaussian filtering
approach that creates continuous images at different scales.
As shown in Fig. 2, six Gaussian images and five DOG
(difference of Gaussian) images in every octave are generated
to construct an image pyramid. First of all, each Gaussian
filter uses a different sigma to calculate a Gaussian kernel
in (1). Then a convolution operation is performed for the
initial image and the Gaussian kernel to obtain a Gaussian
image in (2). By subtracting the two continuous Gaussian
images, a DOG image is obtained by (3).

K (x, y, σ) =
1

2πσ 2 e
−
(x2+y2)

2σ2 (1)

G (x, y, σ) = I (x, y) ∗ K (x, y, σ) (2)

D (x, y, σ) = G (x, y, kσ)− G (x, y, σ) (3)

B. SIFT DETECTION
As soon as the image pyramid is built, we proceed to the
step of keypoint detection, including extrema detection, elim-
inating low-contrast, and edge response keypoints. Extrema
detection needs to use 3D DOG space, that is, three contin-
uous DOG images of the same octave. As shown in Fig. 3,
the red point is a target point and the blue points are the

43852 VOLUME 6, 2018

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 3. Extrema detection in SIFT Detection.

nearest neighbors of 3D DOG space. If the value of the red
point is the maximum or minimum in the nearest neighbor
region, it is a candidate point.

By doing so, candidate points can be determined in the
previous step. However, some of them are unstable points.
As a result, low-contrast keypoints and edge response points
have to be eliminated in the next stage. First, the low-contrast
detection uses a Taylor series to expand the 3D DOG space
as shown in (4). Then we calculate the derivative of (4) to
find the extrema value by making the derivative of (4) equal
to zero. By proper derivations, we suppose the location of the
extrema value according to (5). Substituting a of Equation (5)
into x in Equation (4), we obtain (6). If |D (a)| is smaller than
0.03, this candidate point has to be deleted.

D (x) = D+
∂DT

∂x
x +

1
2
xT
∂2D
∂x2

x (4)

a = −
∂2D
∂x2

−1
∂D
∂x

(5)

D (a) = D+
1
2
∂DT

∂x
a (6)

To eliminate the edge response, we first build a Hessian
matrix in (7) and then follow the steps to calculate the trace
(Tr(.)) and determinant (Det(.)) of the Hessian matrix by (8)
and (9), respectively. Let r be the ratio between the biggest
eigenvalue and the smallest one, so that α = rβ. We can use
the solutions of (8) and (9) to derive (10). To detect an edge
point, we only need to check (11), where r is usually 10. We
can distinguish a non-edge point if the inequality in (11) is
satisfied.

H =
[
Dxx Dxy
Dxy Dyy

]
(7)

Tr(H) = Dxx + Dyy = α + β (8)

Det(H) = DxxDyy −
(
Dxy

)2
= αβ (9)

Tr(H)2

Det(H)
=
(α + β)2

αβ
=
(rβ + β)2

rβ2
=
(r + 1)2

r
(10)

Tr (H)2

Det (H)
<
(r + 1)2

r
(11)

Each keypoint has an orientation assignment to allow
for rotation invariant. To calculate the correct orientation,
we use the area adjacent to the gradient value of the direction
of the statistics. The magnitude and direction calculations
for the gradient are derived for every pixel in a neighboring

FIGURE 4. The statistics of the histogram of the feature gradient direction.

FIGURE 5. The graph of the result of feature descriptors.

region around the keypoint in the Gaussian-blurred image G.
We count the magnitude of each direction in the entire Gaus-
sian image and use the maximum magnitude of the direction
as the direction of the keypoint, as shown by the red dot
in Fig. 4. Equation (12) is used to calculate the gradient
magnitude m around the red dot. Equation (13) is used to
calculate the gradient direction θ (x, y). Each sample in the
neighboring window added to a histogram bin is weighted by
its gradient magnitude and by a Gaussian-weighted circular
window with a value of σ that is 1.5 times that of the scale
of the keypoint. The peaks in this histogram correspond to
dominant orientations, as shown in Fig. 4. In order to increase
the success rate of matching, the second largest peak (about
15% of the feature points) has been chosen as the secondary
direction. Thus, matching stability can be notably improved.

m(x, y)

=

√
(G(x+1, y)−G(x−1, y))2+(G(x, y+1)−G(x, y−1))2

(12)

θ (x, y)

= arctan
(
G(x, y+ 1)− G(x, y− 1)
G(x + 1, y)− G(x − 1, y)

)
(13)

C. SIFT DESCRIPTOR
In this paper, a gradient histogram is used to increase the
matching success rate of feature descriptors. Before using the
gradient histogram, we have to use (14) to rotate the main
direction of the feature point mask to 0 degree. The 16 ×
16 mask is divided into 4× 4 regions, and the gradient of the
eight directions in each region is counted, as shown in Fig. 5.
Each region has a gradient value of eight directions, so each
feature descriptor can be described as a 128-dimensions vec-
tor. [

xr
yr

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(14)

IV. PROPOSED METHODOLOGY
This section describes the proposed hardware design of
SIFT. Major functional blocks of the SIFT hardware circuit

VOLUME 6, 2018 43853

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 6. Block diagram of the proposed hardware design of SIFT.

FIGURE 7. Gaussian Filter Module.

include Image Pyramid, SIFT Detection, and SIFT Descrip-
tor, as shown in Fig. 6. The Image Pyramid Block uses
parallel processing to calculate Gaussian filter images and
DOG images. After the DOG images have been processed
using hardware, the feature points are taken and stored in the
first-in-first-out (FIFO). The feature points need to wait for
the SIFT descriptor block to complete. The SIFT Descriptor
then calculates the feature descriptor vector for each pixel.
If the FIFO read value is 1, then the position and the descriptor
vector of the feature point are stored. We use the pipeline
architecture for the overall system to improve computational
efficiency. Detailed descriptions for each hardware functional
modules are given as follows.

A. IMAGE PYRAMID BLOCK
This paper designs a Gaussian filter module based on a
parallel architecture to produce a Gaussian image, as shown
in Fig. 7, where MAC# is a multiply and accumulate module.
The Gaussian pyramid in this paper contains four consecutive

Gaussian images, so four kinds of Gaussian mask parame-
ters are used and stored in Gaussian Mask Selection, where
iGaussian_num is used to select the corresponding Gaussian
mask. To simplify the operations, we offline calculate four
kinds Gaussian mask values and enlarge 1024 times of their
values by shifting 10 bits left. After the operation is complete,
the output value is then shifted right by 10 bits.

B. SIFT DETECTION BLOCK
Fig. 8 shows the pipeline hardware of the SIFT detection
block. There are three main modules in this block, includ-
ing 1) extrema detection, 2) unstable point detection, and
3) the pipeline hold circuit module. The following paragraphs
describe the hardware design and implementation for each
module.

1) EXTREMA DETECTION MODULE
The extrema detection module is used to determine whether
the pixel is a maximum or a minimum of all neighboring

43854 VOLUME 6, 2018

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 8. SIFT Detection Block.

FIGURE 9. Extrema Detection Module.

points. This module performs both maximum detection and
minimum detection with 26 neighboring points in parallel,
as shown in Fig. 9.

2) HESSIAN MATRIX MODULE
Equation (15), as shown at the top of the next page, is a
Hessian matrix and each variable in the matrix is described
in (16) to (21), as shown at the top of the next page, where
Dxy,Dxs, andDys are divided by four by shifting 2 bits right.
Fig. 10 illustrates the hardware realization of the Hessian
matrix module.

3) DIFFERENTIAL MATRIX MODULE
Equation (22) is the partial differential matrix of the DOG
images, and Fig. 11 shows the hardware realization of the
Differential Matrix Module.

Diff _m =

DxDy
Ds

 =

fs(x + 1, y)− fs (x − 1, y)

2
fs(x, y+ 1)− fs (x, y− 1)

2
fs+1(x, y)− fs−1 (x, y)

2

 (22)

4) INVERSE HESSIAN MATRIX MODULE
To obtain the inverse of the Hessian matrix, we use (23) to
calculate the adjoint matrix. The determinant of the matrix is

FIGURE 10. Hessian Matrix Module.

FIGURE 11. Differential Matrix Module.

calculated based on (24), where d1 to d6 can be calculated in
parallel. Since calculating the inverse matrix using the divider
in the hardware design significantly slows down the system

VOLUME 6, 2018 43855

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

H =

Dxx Dxy Dxs
Dxy Dyy Dys
Dxs Dys Dss

 (15)

Dxx = fs(x + 1, y)+ fs (x − 1, y)− 2fs (x, y) (16)

Dyy = fs(x, y+ 1)+ fs (x, y− 1)− 2fs (x, y) (17)

Dss = fs+1(x, y)+ fs−1 (x, y)− 2fs (x, y) (18)

Dxy =
fs(x + 1, y+ 1)− fs (x + 1, y− 1)+ fs (x − 1, y− 1)− fs (x − 1, y+ 1)

4
(19)

Dys =
fs+1(x + 1, y)− fs+1 (x − 1, y)+ fs−1 (x − 1, y)− fs−1 (x + 1, y)

4
(20)

Dxs =
fs+1(x, y+ 1)− fs+1 (x, y− 1)+ fs−1 (x, y− 1)− fs−1 (x, y+ 1)

4
(21)

performance, we calculate and output the adjoint matrix and
the determinant to the next module.

Inv_adj(H)

=

+

∣∣∣∣ h22 h23
h32 h33

∣∣∣∣ −

∣∣∣∣ h12 h13
h32 h33

∣∣∣∣ +

∣∣∣∣ h12 h13
h22 h23

∣∣∣∣
−

∣∣∣∣ h21 h23
h31 h33

∣∣∣∣ +

∣∣∣∣ h11 h13
h31 h33

∣∣∣∣ −

∣∣∣∣ h11 h13
h21 h23

∣∣∣∣
+

∣∣∣∣ h21 h22
h31 h32

∣∣∣∣ −

∣∣∣∣ h11 h12
h31 h32

∣∣∣∣ +

∣∣∣∣ h11 h12
h21 h22

∣∣∣∣

(23)

Inv_ det(H) = (d1 − d4)+ (d2 − d5)+ (d3 − d6)

d1 = h11 · h22 · h33
d2 = h13 · h21 · h32
d3 = h12 · h23 · h31
d4 = −h13 · h22 · h31
d5 = −h11 · h23 · h32
d6 = −h12 · h21 · h33

(24)

5) LOW CONTRAST DETECTION MODULE
Equations (25) and (26) are the original formula to determine
the low contrast keypoints, where the inverse of matrix is
required. Taking square of (25), we obtain (27). To compute
the inverse matrix, it is necessary to use the divider, which
inevitably consumes a lot of hardware resources and reduces
the processing speed. To avoid this problem, we firstly output
adj(A) and det(A) of the Inverse Hessian Matrix and then we
express the inverse matrix in (26) using the adjoint matrix and
determinant to obtain Eq. (28).

|D(x)| =

∣∣∣∣D(0)+ 1
2
∂DT (0)
∂X

x

∣∣∣∣ ≤ 0.03 (25)

x = −
(
∂2D(0)
∂X2

)−1
∂D(0)
∂X

(26)

D(x)2 = D(0)2+D(0)
∂DT (0)
∂X

x+
1
4

(
∂DT (0)
∂X

x
)2

≤ 0.0009

(27)

x = −
adj(∂

2D(0)
∂X2)

det(∂
2D(0)
∂X2)

∂D(0)
∂X

(28)

Substituting Equation (28) into (27), we obtain an approxi-
mate inequality (29). Finally, we can easily implement (29)
by hardware to determine the success or failure of
low-contrast detection. The hardware module is shown
in Fig. 12.

1024× (a− b+ c) ≤ det(
∂2D(0)
∂X2)2 (29)

a = D(0)2 det(
∂2D(0)
∂X2)2 (30)

b = D(0)
∂DT (0)
∂X

adj(
∂2D(0)
∂X2)

∂D(0)
∂X

det(
∂2D(0)
∂X2) (31)

c =
1
4

(
∂DT (0)
∂X

adj(
∂2D(0)
∂X2)

∂D(0)
∂X

)2

(32)

6) EDGE-DETECTION MODULE
The function of this module is to determine whether a feature
point is an edge response keypoint. We use (33) and (34) to
calculate the trace and determinant of the Hessian matrix,
so that (35) can be used to decide whether it is an edge feature
point, where the pixel is not an edge feature point if (35)
is true. Fig. 13 shows the hardware diagram of the Edge
Detection Module, where r is equal to 10.

tr (H) = Dxx + Dyy = λ1 + λ2 (33)

det (H) = DxxDyy −
(
Dxy

)2
= λ1λ2 (34)

tr (H)2 r < (r + 1)2 det (H) (35)

C. SIFT DESCRIPTOR BLOCK
This paragraph introduces the hardware architecture of the
SIFT feature descriptor as shown in Fig. 14, including three
functional modules: (1) Image Gradient, (2) Histogram, and
(3) Normalization.

1) IMAGE GRADIENT MODULE
To calculate the gradient and direction, we need the square
root and tan−1 functions. Therefore, we design a CORDIC

43856 VOLUME 6, 2018

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 12. Low-Contrast Detection Module.

FIGURE 13. Edge Detection Module.

FIGURE 14. SIFT Descriptor Block.

(Coordinate Rotation Digital Computer) circuit to deal with
them, as shown in Fig. 15, where K is a constant value

(K =
n∏
i=0

cos
(
tan−1

(
1
2n

))
≈ 0.607253).

2) HISTOGRAM MODULE
For feature point matching, we use the histogram of ori-
ented gradient (HOG) to calculate the dominant direction and
descriptor. To implement the gradient statistical histogram
module, we divide the 16× 16 mask size into 16 sub-regions
and calculate the gradient histogram in the each sub-region,
as shown in Fig. 16. Sixteen statistic eight-bin modules are
therefore to simultaneously compute the gradient in eight

directions, as shown in Fig 17. Each Statistic_bin module
determines which sub-region the angle belongs to and accu-
mulates the gradient value, as shown in Fig. 18.

3) NORMALIZATION MODULE
The normalization operations are performed in (36)
and (37), where W is the feature point vector, and
W = (w1,w2, . . . ,w128). L is a normalization vector and
L = (l1, l2, . . . , l128).

s = ‖W‖ (36)

L =
W
s

(37)

VOLUME 6, 2018 43857

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 15. CORDIC Module of Image Gradient.

FIGURE 16. Histogram Module.

For the implementation of the hardware normalization,
a large number of multipliers and dividers are required. How-
ever, the use of a large number of dividers undermines system

FIGURE 17. Statistic 8-bin# Module.

performance and demands a large number of logic elements.
Thus, we rewrite (39) as (40), where we can only use one
divider in addition to multipliers and shifters to implement
the normalization hardware. If s is 270, the value of n (n = 8
in this case) can be found according to (38) and m value can
be calculated from (41) afterwards. The architecture of the
normalization hardware module is shown in Fig. 19.

2n ≤ s < 2n+1 (38)

FIGURE 18. Statistic bin # Module.

43858 VOLUME 6, 2018

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 19. Normalization module.

lj =
wj
s

j = 1, 2, . . . , 128 (39)

lj =
wj
2n
× m j = 1, 2, . . . , 128 (40)

m =
2n × 1024

s
(41)

V. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of all modules
in the proposed hardware and compare the computation time
achieved by the proposed FPGA hardware, NIOS II, and
a PC. The computation platform is a personal computer
with an Intel Core i7-3770, a 3.4-GHz CPU, and 8 GB of
RAM. The simulation environment is Nios II and Visual
Studio 2010 Express with OpenCV library under Win 7.
The hardware used is an Altera DE2i-150 board of FPGA
with Cyclone IV GX: EP4CGX150DF31C7, and the system
frequency is 50 MHz.

Table 1 shows the system performances of all modules
in the proposed hardware system, including logic elements
(LE), memory bits, and nine-bit multiplier.

TABLE 1. The hardware resources utilized for each system modules of
proposed method.

A. COMPUTATION TIME OF GAUSSIAN IMAGE
Table 2 shows the computation time of the Gaussian filter
for two different image sizes on different platforms, including
FPGA, NIOS II, and PC. The mask size of the Gaussian filter
is 7× 7, and the Gaussian sigma is 1.6. We also calculate the

TABLE 2. Computation time of gaussian filter.

differences in grey value of 0, 1, and 2 between the original
image and the image processed by the proposed Gaussian
filter, as shown in Table 3. The size of the given images is
800×480. Note that three pixels around the edges are ignored
in Table 3. The results indicate that the proposed method
has achieved almost the same performance level as that by
software. The reason for the image error of the Gaussian filter
is that we only use a finite number of 10 bits for shifting
to solve the floating point problem. Based on Table 3, the
Peak Signal-to-Noise Ratio (PSNR) can be calculated as
43.6694 db. The original image is shown in Fig. 20, while
Fig. 21 shows the Gaussian image using a Gaussian operation
to process the original image by FPGA.

TABLE 3. Results of gaussian filter error.

B. COMPUTATION TIME OF IMAGE PYRAMID
Table 4 shows the computation time of the image pyramid
executed on three platforms. We can see that the Gaussian

VOLUME 6, 2018 43859

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 20. Original image.

FIGURE 21. Gaussian image by FPGA.

TABLE 4. Computation time of image pyramid executed on three
different platforms.

filter (Table 2) and the image pyramid (Table 4) have the same
computation time by hardware, because all Gaussian images
and DOG images can be processed in parallel.

Note that the computation time for the image pyramid is
not affected by the proposed FPGA design, in comparison
to the Gaussian filter, thanks to parallel computation of the
proposed hardware architecture, while the computation time
of the image pyramid by PC is six times longer than that by
the Gaussian filter.

C. COMPUTATION TIME OF SIFT DETECTION
The result of SIFT detection by FPGA hardware is shown
in Fig. 22, in which the red points represent the keypoints.
Table 5 shows the computation time of SIFT detection for
two different image sizes. From Tables 4 and 5, we can find
that the larger the image size, the more processing time the
proposed FPGA hardware can save.

D. COMPUTATION TIME OF SIFT DETECTION
TABLE 6. compares hardware resource usage and maximum
operation frequency between the traditional inverse matrix
method and the proposed method. The traditional method,
which uses an inverse matrix to implement the hardware,
requires nine dividers to perform the operations. In the pro-
posed method, we only use the inequality to determine the

FIGURE 22. Image showing the result of the SIFT feature detection by
FPGA hardware.

TABLE 5. Computation time of SIFT detection.

TABLE 6. Hardware resources used by traditional inverse method and
proposed method and their mximum operation frequency.

low-contrast keypoints. Thus, we can achieve a satisfactory
performance, as shown in Table 6.

Note that the total LE required is much smaller and FMAX
is significantly increased, because no dividers are used.

E. IMAGE GRADIENT ERROR CALCULATION
We enter four quadrants of X and Y values into the CORDIC
module implemented by hardware and obtain an approx-
imation value for

√
X2 + Y 2 and tan−1

(Y
X

)
in Eq. (12)

and (13). Note that the error is satisfactorily small for practi-
cal usage. Table 7 shows the calculation results of CORDIC,
and Table 8 shows the hardware resource usage of CORDIC.

To evaluate the benefits and drawbacks of the proposed
method, we compare twelve state-of-the-art hardware imple-
mentations of SIFT in terms of their performance, namely
detection time, descriptor calculation time and frame
rate, and their hardware resource usage (e.g. gates, reg-
isters, multiplexers and RAM). The results are shown
in Table 9 and Table 10, respectively.

43860 VOLUME 6, 2018

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

TABLE 7. Calculation results of CORDIC hardware.

Most works (e.g. Vourvoulakis et al. [14], Chiu et al. [24],
Wang et al. [12] and Jiang et al. [30]) reported in the liter-
ature use sequential structures to implement the descriptor.

TABLE 8. The hardware resource usage of CORDIC.

We can only compare performance and hardware resource
usage with [14], not only because their work achieved an
exceptional performance reported in the literature, but also
because the hardware platform and image size used are the
same. As shown in Table 9, detection time and descriptor
calculation time required by the proposed method are less
than those by [14] and therefore the frame rate of the pro-
posed architecture can be as high as 150 fps. As far as hard-
ware resource usage is concerned, the proposed architecture
greatly reduces usage of LUTs/ gates, which leaves more

TABLE 9. Performance of the proposed method and twevle sate-of-the-art implementaion.

TABLE 10. Hardware resource usage of the proposed method and twevle sate-of-the-art implementaions.

VOLUME 6, 2018 43861

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

FIGURE 23. Experiment illustrating a successful matching rate = 99.29 %, where 141 out of 142 features are successfully matched.

FIGURE 24. Experiment illustrating a successful matching rate = 99.03 %, where 205 out of 207 features are successfully matched.

FIGURE 25. Experiment illustrating a successful matching rate = 96.15 %, where 50 out of 52 features are successfully matched.

room to make the SIFT hardware more applicable for real-
world applications, as shown in Table 10.

F. MATCHING ACCURACY
As soon as the hardware modules are constructed, experi-
ments can be conducted to validate the matching accuracy
based on the obtained SIFT descriptors by the proposed
hardware design method. Taking image sets in 10 different
scenes, where the images bear different degrees of scaling,
rotation, and view angles in each image set, we obtain a
satisfactory average matching accuracy of about 97.84% for

the image sets. This suffices to show the robustness and
effectiveness of the obtained SIFT descriptors. As illustra-
tive examples, Figs. 23-25 show the matching results of 3
image sets, where matching accuracy is 99.29%, 99.03%, and
96.15%, respectively.

VI. CONCLUSION
The SIFT algorithm uses scale-space images to achieve fea-
ture point detection and description with good results to
changes in scale or rotation. Thus, matching performance of
SIFT is more stable and robust compared with other image

43862 VOLUME 6, 2018

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

recognition algorithms. However, the steps to implement
the SIFT algorithm are complex and the processing time is
much too long. It is therefore a non-trivial task to achieve a
real-time realization for SIFT algorithm using only a single
PC. In this paper, a hardware design method for SIFT on
FPGA is proposed, using a pipeline and parallel process to
speed up the SIFT algorithm. Several new methods have also
been proposed in this paper to raise the system frequency
of the SIFT hardware. For example, we offline calculate the
Gaussian mask values to reduce computing costs. The use of
dividers to calculate the inverse matrix in the low-contrast
detection module is avoided. In the normalization module,
the use of dividers is also avoided to save resources. As a
result, utilization of logic elements required in the FPGA
hardware is greatly reduced and system frequency is sig-
nificantly increased. From the experimental results, the pro-
posed FPGA-based architecture for SIFT compares favorably
with the state-of-the-art implementations to achieve real-time
image processing.

REFERENCES
[1] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’

Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.
[2] C. Harris and M. Stephens, ‘‘A combined corner and edge detector,’’ in

Proc. 4th Alvey Vis. Conf., Manchester, U.K., 1988, pp. 147–151.
[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘SURF: Speeded up robust

features,’’ Comput. Vis. Image Understand., vol. 110, no. 3, pp. 404–417,
Jun. 2008.

[4] Y. Ke and R. Sukthankar, ‘‘PCA-SIFT: A more distinctive representation
for local image descriptors,’’ in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., vol. 2, Jul. 2004, pp. 506–513.

[5] L. Juan and O. Gwun, ‘‘A comparison of SIFT, PCA-SIFT and SURF,’’ Int.
J. Image Process., vol. 3, no. 4, pp. 143–152, 2009.

[6] G. Yu and J.-M. Morel, ‘‘ASIFT: An algorithm for fully affine invariant
comparison,’’ Image Process. Line, vol. 1, pp. 11–38, Feb. 2011.

[7] H. Altwaijry, A. Veit, and S. Belongie, ‘‘Learning to detect and match key-
points with deep architectures,’’ in Proc. Brit. Mach. Vis. Conf., Sep. 2016,
pp. 1–12.

[8] J. Wang, J. Lin, and Z. Wang, ‘‘Efficient hardware architectures for deep
convolutional neural network,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 6, pp. 1941–1953, Jun. 2018.

[9] K. Guo et al., ‘‘Angel-Eye: A complete design flow for mapping CNN onto
embedded FPGA,’’ IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 37, no. 1, pp. 35–47, Jan. 2018.

[10] V. Bonato, E. Marques, and G. A. Constantinides, ‘‘A parallel hardware
architecture for scale and rotation invariant feature detection,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 18, no. 12, pp. 1703–1712, Dec. 2008.

[11] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao, and W. Feng, ‘‘An architecture
of optimised SIFT feature detection for an FPGA implementation of an
image matcher,’’ in Proc. Int. Conf. Field-Program. Technol., Sydney,
NSW, Australia, Dec. 2009, pp. 30–37.

[12] J. Wang, S. Zhong, L. Yan, and Z. Cao, ‘‘An embedded system-on-chip
architecture for real-time visual detection and matching,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 24, no. 3, pp. 525–538, Mar. 2014.

[13] J. Jiang, X. Li, and G. Zhang, ‘‘SIFT hardware implementation for real-
time image feature extraction,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 24, no. 7, pp. 1209–1220, Jul. 2014.

[14] J. Vourvoulankis, J. Kalomiros, and J. Lygouras, ‘‘Fully pipelined
FPGA-based architecture for real-time SIFT extraction,’’ Microprocess.
Microsyst., vol. 40, pp. 53–73, Feb. 2016.

[15] K. A. Acharya, R. V. Babu, and S. S. Vadhiyar, ‘‘A real-time implemen-
tation of SIFT using GPU,’’ J. Real-Time Image Process., vol. 14, no. 2,
pp. 267–277, 2018.

[16] K. Mizuno et al., ‘‘Fast and low-memory-bandwidth architecture of sift
descriptor generation with scalability on speed and accuracy for VGA
video,’’ in Proc. Int. Conf. Field Program. Logic Appl., Milan, Italy,
Aug./Sep. 2010, pp. 608–611.

[17] K. Mizuno et al., ‘‘A low-power real-time SIFT descriptor genera-
tion engine for full-HDTV video recognition,’’ IEICE Trans. Electron.,
vol. E94.C, no. 4, pp. 448–457, 2011.

[18] L. Chang, J. Hernández-Palancar, L. E. Sucar, and M. Arias-Estrada,
‘‘FPGA-based detection of SIFT interest keypoints,’’ Mach. Vis. Appl.,
vol. 24, no. 2, pp. 371–392, 2012.

[19] S. Zhong, J. Wang, L. Yan, L. Kang, and Z. Cao, ‘‘A real-time embedded
architecture for SIFT,’’ J. Syst. Archit., vol. 59, no. 1, pp. 16–29, 2013.

[20] F.-C. Huang, S.-Y. Huang, J.-W. Ker, and Y.-C. Chen, ‘‘High-performance
SIFT hardware accelerator for real-time image feature extraction,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 22, no. 3, pp. 340–351,Mar. 2012.

[21] T. Suzuki and T. Ikenaga, ‘‘SIFT-based low complexity keypoint extraction
and its real-time hardware implementation for full-HD video,’’ in Proc.
Asia–Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., Hollywood,
CA, USA, Dec. 2012, pp. 1–6.

[22] T. Suzuki and T. Ikenaga, ‘‘Low complexity keypoint extraction based
on SIFT descriptor and its hardware implementation for full-HD
60 fps video,’’ IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
vol. E96.A, no. 6, pp. 1376–1383, 2013.

[23] E. S. Kim and H.-J. Lee, ‘‘A novel hardware design for SIFT generation
with reduced memory requirement,’’ J. Semicond. Technol. Sci., vol. 13,
no. 2, pp. 157–169, Apr. 2013.

[24] L.-C. Chiu, T.-S. Chang, J.-Y. Chen, and N. Y.-C. Chang, ‘‘Fast SIFT
design for real-time visual feature extraction,’’ IEEE Trans. Image Pro-
cess., vol. 22, no. 8, pp. 3158–3167, Aug. 2013.

SHIH-AN LI received the B.S. degree in electrical
engineering from the National Taipei University of
Technology, Taipei, Taiwan, in 1997, and the M.S.
and Ph.D. degrees in electrical engineering from
Tamkang University, Taipei, Taiwan, in 2004 and
2008, respectively. In 2010, he joined the
Department of Electrical Engineering and Com-
puter Engineering, Tamkang University, where he
is currently an Assistant Professor. His research
interests include fuzzy system, intelligent control,

SOPC design, FPGA design, and genetic algorithms.

WEI-YEN WANG (F’13) received the Diploma
degree in electrical engineering from the National
Taipei Institute of Technology in 1984, and the
M.S. and Ph.D. degrees in electrical engineering
from the National Taiwan University of Science
and Technology, Taipei, Taiwan, in 1990 and 1994,
respectively.

From 1990 to 2006, he was a Patent Screen-
ing Member with the National Intellectual Prop-
erty Office,Ministry of Economic Affairs, Taiwan.

Since 2003, he has been certified as a the Patent Attorney in Taiwan.
In 1994, he was an Associate Professor with the Department of Electronic
Engineering, St. John’s and St.Mary’s Institute of Technology, Taiwan. From
1998 to 2000, he was with the Department of Business Mathematics, Soo-
chow University, Taiwan. From 2000 to 2004, he was with the Department
of Electronic Engineering, Fu-Jen Catholic University, Taiwan. In 2004,
he was a Full Professor with the Department of Electronic Engineering,
Fu-Jen Catholic University. In 2006, he was a Professor and the Director
of the Computer Center, National Taipei University of Technology, Taiwan.
From 2007 to 2014, he was a Professor with the Department of Applied
Electronics Technology, National Taiwan Normal University, Taiwan. From
2011 to 2013, he was the Director of the Information Technology Center,
National Taiwan Normal University, Taiwan. He is currently a Professor
with the Department of Electrical Engineering, National Taiwan Normal
University, Taiwan. His current research interests and publications are in
the areas of fuzzy logic control, robust adaptive control, neural networks,
computer-aided design, digital control, and CCD camera based sensors.
He has authored or coauthored over 200 refereed conference and journal
papers in the above areas.

Dr. Wang is also an IET Fellow and CACS Fellow. He is a recipient of
the Best Associate Editor Award of the IEEE TRANSACTIONS ON CYBERNETICS.
He is currently an Associate Editor of the IEEE Transactions on CYBERNETICS,
and the International Journal of Fuzzy Systems.

VOLUME 6, 2018 43863

S.-A. Li et al.: FPGA-Based Hardware Design for SIFT

WEI-ZHENG PAN received the B.S. degree from
Tamkang University in 2014 and the M.S. degree
from National Taiwan Normal University, Taipei,
Taiwan, in 2016, all in electrical engineering.
He is currently a Research Assistant with the
Computational Intelligence Lab, National Taiwan
Normal University, Taiwan, where he is involved
in the area of facial expression recognition and
action recognition using artificial intelligence
approaches. He has been studying the problems of

image recognition for over 3 years. His expertise includes image recognition
and SLAM algorithms.

CHEN-CHIEN JAMES HSU (SM’14) was born in
Hsinchu, Taiwan. He received the B.S. degree in
electronic engineering from the National Taiwan
University of Science and Technology, Taipei,
Taiwan, in 1987, the M.S. degree in control engi-
neering from National Chiao-Tung University,
Hsinchu, in 1989, and the Ph.D. degree from the
School of Microelectronic Engineering, Griffith
University, Brisbane, Australia, in 1997.

He was a Systems Engineer with IBM Corpo-
ration, Taipei, for three years, where he was responsible for information
systems planning and application development, before commencing his
Ph.D. studies. He joined the Department of Electronic Engineering, St. Johns
University, Taipei, as anAssistant Professor, in 1997, andwas appointed as an
Associate Professor in 2004. From 2006 to 2009, he was with the Department
of Electrical Engineering, Tamkang University, Taipei. He is currently a
Professor with the Department of Electrical Engineering, National Taiwan
Normal University, Taipei. He has authored or co-authored over 180 refereed
journal and conference papers. His current research interests include digital
control systems, evolutionary computation, vision-basedmeasuring systems,
sensor applications, and mobile robot navigation. He is an IET Fellow.

CHENG-KAI LU received the B.S. and M.S.
degrees in electronics engineering from Fu Jen
Catholic University, Taipei, Taiwan, in 2001 and
2003, respectively, and the Ph.D. degree in
engineering from The University of Edinburgh,
Edinburgh, U.K., in 2012. After graduation, hewas
the Director of the Research and Development
Division, Chyao Shiunn Electronic Industrial Co.,
Shanghai. Apart from academic experience, he has
over eight years industrial work experience. He is

currently a Faculty Member with the Electrical and Electronic Engineering
Department, Universiti Teknologi PETRONAS, Malaysia. He has published
his research works on peer-reviewed papers (book chapters, journal papers,
conferences, reports). He has also has filed a couple of patents. His research
interests focus on medical imaging, embedded systems, artificial intelli-
gence and their applications and clinical decision support systems. He has
served as an Executive Member for the IEEE EMBS Malaysia Chapter from
2017 to 2018.

43864 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES OF SIFT ALGORITHM
	IMAGE PYRAMID
	SIFT DETECTION
	SIFT DESCRIPTOR

	PROPOSED METHODOLOGY
	IMAGE PYRAMID BLOCK
	SIFT DETECTION BLOCK
	EXTREMA DETECTION MODULE
	HESSIAN MATRIX MODULE
	DIFFERENTIAL MATRIX MODULE
	INVERSE HESSIAN MATRIX MODULE
	LOW CONTRAST DETECTION MODULE
	EDGE-DETECTION MODULE

	SIFT DESCRIPTOR BLOCK
	IMAGE GRADIENT MODULE
	HISTOGRAM MODULE
	NORMALIZATION MODULE

	EXPERIMENTAL RESULTS
	COMPUTATION TIME OF GAUSSIAN IMAGE
	COMPUTATION TIME OF IMAGE PYRAMID
	COMPUTATION TIME OF SIFT DETECTION
	COMPUTATION TIME OF SIFT DETECTION
	IMAGE GRADIENT ERROR CALCULATION
	MATCHING ACCURACY

	CONCLUSION
	REFERENCES
	Biographies
	SHIH-AN LI
	WEI-YEN WANG
	WEI-ZHENG PAN
	CHEN-CHIEN JAMES HSU
	CHENG-KAI LU

