
Received June 14, 2018, accepted July 22, 2018, date of publication August 2, 2018, date of current version August 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2862633

Cache Access Fairness in 3D Mesh-Based NUCA
ZICONG WANG 1, XIAOWEN CHEN1,2, ZHONGHAI LU 2, (Senior Member, IEEE),
AND YANG GUO1
1College of Computer, National University of Defense Technology, Hunan 410073, China
2School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 16440 Stockholm, Sweden

Corresponding author: Xiaowen Chen (xwchen@nudt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61502508 and Grant 61572025.

ABSTRACT Given the increase in cache capacity over the past few decades, cache access efficiency has
come to play a critical role in determining system performance. To ensure efficient utilization of the cache
resources, non-uniform cache architecture (NUCA) has been proposed to allow for a large capacity and a
short access latency. With the support of networks-on-chip (NoC), NUCA is often employed to organize
the last level cache. However, this method also hurts cache access fairness, which denotes the degree of
non-uniformity for cache access latencies. This drop in fairness can result in an increased number of cache
accesses with overhigh latency, which leads to a bottleneck in system performance. This paper investigates
the cache access fairness in the context of NoC-based 3-D chip architecture, and provides new insights
into 3-D architecture design. We propose fair-NUCA (F-NUCA), a co-design scheme intended to optimize
cache access fairness. In F-NUCA, we strive to improve fairness by equalizing cache access latencies.
To achieve this goal, the memory mapping and the channel width are both redistributed non-uniformly,
thereby equalizing the non-contention and contention latencies, respectively. The experimental results reveal
that F-NUCA can effectively improve cache access fairness.When F-NUCA is compared with the traditional
static NUCA in a simulation with PARSEC benchmarks, the average reductions in average latency and
latency standard deviation are 4.64%/9.38% for a 4 × 4 × 2 mesh network, as well as 6.31%/13.51% for a
4× 4× 4 mesh network. In addition, a 4.0%/6.4% improvement in system throughput can be achieved for
the two scales of mesh networks, respectively.

INDEX TERMS 3D chip architecture, cache memory, memory architecture, memory mapping, multipro-
cessor interconnection networks, networks-on-chip, non-uniform cache architecture.

I. INTRODUCTION
As the number of cores integrated on chips continues to
increase, Networks-on-Chip (NoC) is becoming the funda-
mental infrastructure for use in chipmulti-processors (CMPs)
due to its good scalability and flexibility in interconnec-
tion [1]. However, given the concurrent increases in network
scale, the conventional two-dimensional (2D) chip architec-
ture has begun to suffer from performance degradation. This
degradation occurs due to the increase in network diameter,
which in turn has a significant impact on deciding system
performance [2]. As a result, three-dimensional (3D) chip
architecture is envisioned to be a viable solution for the issues
arising from further increases in transistor density and system
performance [3], [4]. Through the use of 3D die-stacking
technology, it is feasible to partition a single large die into sev-
eral smaller segments and then stack these in a 3D fashion [5].
In 3D die-stacking, multiple layers are stacked together using
vertical links such as Through Silicon Vias (TSVs), which are

currently the most popular and practical way to implement
vertical interconnection [6], [7]. In short, the advent of 3D
die-stacking technology has provided a new horizon for NoC
design, and the traditional 2D NoC fabric can be extended to
the third dimension by means of 3D integration.

Cache capacity has also continued to increase over the past
few decades. To efficiently utilize the capacity of the shared
last level cache (LLC) and allow for short access latency, non-
uniform cache architecture (NUCA) has been proposed in
order to allow the cache access time to vary depending on the
distance traversed along the chip [8]. As NUCA can provide
non-uniform cache access latencies, it can thus distribute the
large-capacity shared LLC across different cores to facili-
tate scalability and efficiency. However, two distinct trends
begin to emerge as network size is scaled up. Firstly, net-
work latency gradually comes to dominate the cache access
latency; secondly, the communication distance and latency
gaps between different nodes continue to grow, and larger

42984
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-3106-5451
https://orcid.org/0000-0003-0061-3475


Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

FIGURE 1. The average communication distance of each node for a
3 × 3 × 3 mesh network. The closer a node is to the central region of the
network, the smaller its average communication distance.

gaps of this kind can exacerbate the degree of non-uniformity
for network latencies.

Consider a 3×3×3 mesh network as an example. Figure 1
depicts the average communication distance of each node.
We can observe that the closer each node is to the center of
the network, the smaller its average communication distance.
As can be seen in Figure 1, the average communication
distance for the central node is two hops, but the eight nodes
in the corner have an average communication distance of
three hops. Hence, the central nodes have an advantage over
the peripheral nodes in terms of communication, and this
advantage grows more significant with increasing network
size. The consequences of increasingly unbalanced network
latencies include larger latency gaps between packets, and
there will be more high-latency packets overall.

The issue of unbalanced network latencies can be a direct
cause of high variances across cache access latencies, which
in turn leads to more cache accesses suffering from overhigh
latencies. A cache access experiencing overhigh latency can
block the core’s running progress, become a system bot-
tleneck, and degrade overall system performance. From the
perspective of improving system performance, it is crucial
to provide more uniform cache access latencies, notwith-
standing that NUCA was initially designed to support cache
access latencies that are non-uniform. In this paper, we use
fairness to denote the degree of latency equalization for cache
accesses.

To increase cache access fairness, we must endeavor to
equalize cache access latencies. It is first necessary to analyze
the composition of cache access latencies. In general, cache
access latency has three components: non-contention latency,
contention latency, and cache bank access latency.

Taccess = H · τ1hop + Tc + Tbank (1)

In (1), H denotes the hop count of a packet traveling from
the source node to the destination node. τ1hop indicates the
delay through one hop without contention on the network.
H and τ1hop commonly determine the non-contention latency.
Tc denotes the contention latency, which reflects the time
spent waiting for resources. Tbank refers to the latency of
accessing the cache bank. It should be noted that τ1hop and

Tbank are constant under fixed network parameters and router
architecture. Therefore, our approach strives to narrow the
gap of each bank’s access latencies by regulating H · τ1hop
and Tc, which affect the non-contention and the contention
latency respectively.

In this paper, we point out that the cache access fairness
problem can result in more high-latency cache accesses,
leading to a system bottleneck that can seriously degrade
system performance. Consequently, we propose fair-NUCA
(F-NUCA), a co-design scheme for optimizing cache access
fairness in the context of 3D mesh-based NUCA. The contri-
butions of this paper can be outlined as follows:
• We propose a location-aware memory-to-LLC mapping
scheme for 3D mesh-based NUCA, which can better
adapt to 3D NUCA architecture in terms of cache access
fairness.

• Based on the proposed mapping scheme, we then pro-
pose a non-uniform link distribution design to further
improve cache access fairness by affecting contention
latencies.

II. BACKGROUND AND RELATED WORK
3D chip architecture is considered to be a promising option
for traditional chip architecture. Owing to the numerous ben-
efits resulting from the higher density of 3D-stacked inte-
gration, this architecture has attracted significant attention
in the course of many prior research projects. For example,
Xie et al. [9] explore the design space of 3D architecture.
Black et al. [10] discuss the architecture advantages and chal-
lenges of 3D die-stacking. Loh et al. [11] present different
approaches to the implementation of 3D architecture, and
discuss the impact of 3D integration technology on proces-
sor design. The emergence of 3D chip architecture has also
brought about opportunities and challenges for the develop-
ment of NoC, and many researchers have explored the design
space of 3D NoC by means of architectural and algorithmic
techniques [5], [12]–[18]. Feero and Pande [12] evaluate the
performance of multiple 3D NoC architectures and demon-
strate their superior functionality and overhead relative to
traditional 2D implementations. Pavlidis and Friedman [13]
present various possible topologies for 3D NoC, describ-
ing analytic models for zero-load latency and power con-
sumption. Yin et al. [14] propose a honeycomb topology
as an alternative to 3D NoC design, while Kim et al. [5]
present a detailed exploration of inter-strata communica-
tion architectures in 3D NoC. Moreover, new routing algo-
rithms have also been investigated in the context of 3D NoC
architecture [15]–[18].

The fundamental concept behind of NUCA technology
is that a large uniform monolithic cache can be split into
multiple small cache banks that are associated with each core,
thus facilitating faster access to cache data that resides closer
to the processor. Kim et al. [8] initially introduced the con-
cept of NUCA in high-performance cache designs, proposing
two NUCA schemes that differ based on whether or not a
given block in memory is mapped to a unique cache bank.

VOLUME 6, 2018 42985



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

The static NUCA (S-NUCA) maps a block to a unique bank
based on the block’s index in a physical address; therefore,
every cache bank corresponds to a predetermined section
in physical address space. In dynamic NUCA (D-NUCA),
a cache block is associated with a set of cache banks (bank-
set), and the frequently accessed blocks can migrate dynam-
ically towards the requesting cores, which works to reduce
cache access latencies [19]. Due to the flexibility attributed
to block migration, D-NUCA requires a sophisticated search
mechanism to locate cache blocks, meaning that the hardware
costs are considerably increased compared with S-NUCA;
in addition, D-NUCA does not always perform better than
S-NUCA [8], [20]. As a result, S-NUCA is more widely used
compared with D-NUCA in modern CMPs architecture, and
our design is based on and aims to optimize S-NUCA.

Since the introduction of NUCA, more and more modern
processors have gradually adopted NUCA technology when
designing the cache system. It is foreseeable that most future
architectures with large caches will be organized according
to NUCA principles [8], [20]. It is equally predictable that a
similar development trend will be observed in 3D architec-
ture. Li et al. [21] study the challenges for LLC design and
management in 3D NUCA-based CMPs. Madan et al. [22]
postulate 3D NUCA-based CMPs, which are employed using
OS-based page coloring to reduce horizontal communica-
tion cost, and design a heterogeneous reconfigurable cache
hierarchy. Jung et al. [23] explore a design for 3D NUCA
with NoC interconnection and investigate the problem of
partitioning shared LLC in order to concurrently execute
multiple applications. Zhang et al. [24] survey the design of
cache andmemory architectures for 3DCMPs. However, pre-
vious studies have excessively concentrated on minimizing
the cache access latency, which may negatively impact cache
access fairness, particularly in the context of 3D architecture.
In contrast, this paper not only concerns about the cache
access latency, but also pays more attention to the problems
inherent in NUCA, and focuses on offering more uniform
cache access latency.

The contentions and interferences on shared resources lead
to high variances across request latencies, which can hurt
the fairness and worsen the system performance. Therefore,
some researchers explore how to balance the latencies of
requests and improve the fairness [25], [26]. Das et al. [25]
propose novel router prioritization policies to improve the
system fairness by exploiting interfering packets’ available
slack. Sharifi et al. [26] point out that the variances of mem-
ory access latencies degrade the overall system performance,
so it is crucial to balance latencies of memory accesses and
reduce the number of high-latency memory accesses. Some
researchers find the unbalanced buffer utilization may cause
degradation in performance [27], [28]. Gorgues et al. [27]
describe a new flow control and routing algorithm in order to
achieve balanced buffer utilization. Lu and Yao [28] propose
three coherent mechanisms to facilitate and realize unbiased
workload-adaptive resource allocation. To the best of our
knowledge, there is minimal related work studying cache

FIGURE 2. The baseline architecture, which includes four processor layers
and three DRAM layers. The LLC (i.e., shared L2 cache) is distributed on
each node. The physical memory address includes two parts: byte
address and block address. The bank address field is taken from the LSBs
of the block address (assume that the memory address width is 32 bits,
the block size is 16 bytes1, and the bank address field occupies 6 bits).
Hence, the cache system applies block-interleaving addressing to
distribute the memory blocks uniformly on each LLC bank. The number
label on each node denotes the node (core/bank) ID.

access fairness in the context of 3D NUCA-based CMPs;
accordingly, this paper can provide a new horizon in the
design of 3D architectures.

III. PRELIMINARY: BASELINE 3D NUCA
Our baseline architecture is as shown in Figure 2. Such archi-
tecture is referred to as a 3D NoC-based many-core system,
which is widely used in 3D many-core system studies and
has been illustrated in [29]–[32]. The architecture includes
both processor layers and DRAM layers. Processor layers
integrate processing elements as computation resources and
caches as on-chip storage resources. Our system is made
up of 64 (4 × 4 × 4) nodes, which are distributed in
four processor layers and interconnected via a 3D mesh
network. Each node includes a core, a private level one
(L1) instruction/data cache, a shared level two (L2) cache
bank, and a network interface that connects the core and the
caches to the router. The routing algorithm employed is XYZ
deterministic dimension-order routing (XYZ-DOR). All the
shared L2 cache banks collectively constitute the distributed
LLC, which is organized according to S-NUCA principles.

1In reality, the block size in the experimental configuration is 64 bytes
as shown in Table 1. Here we assume it is 16 bytes to enable a clear
demonstration of the mapping scheme.

42986 VOLUME 6, 2018



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

In S-NUCA, each memory block is statically mapped to
a unique bank based on the bank ID field in the block
address; therefore, the blocks in memory are mapped to each
L2 cache bank sequentially. In other words, the distributed
L2 cache banks adopt block-interleaving addressing. This
block-interleaving used for the cache system can destroy the
data locality whenmapping from thememory to the LLC, and
the accesses to LLC are distributed on each L2 cache bank.
In this paper, a balanced workload for general-purpose appli-
cations will be considered, because the balanced application
mapping mechanism is often employed to avoid network
hotspots [33], [34], and the balanced workload can be a good
generalization to different kinds of applications. For these
balanced workloads, the traffic pattern can to some extent
be uniformly distributed on each bank due to the uniform
memory-to-LLC mapping scheme. As a result, the calcula-
tion in the next section is on the basis of uniform traffic
pattern.

IV. FAIR CACHE ACCESS DESIGN
A. LOCATION-AWARE MEMORY MAPPING
In the traditional 3D NUCA, the memory blocks are uni-
formly distributed on each bank; in other words, the memory
mapping scheme is location-agnostic. In order to equalize the
access latency of each LLC bank, we hope to change the
bank access probability according to the bank’s location in
network by affecting the memory-to-LLC mapping scheme.
This necessitates amending the traditional uniform mapping
scheme to make it non-uniform. In the following discussion,
the location-aware distribution of memory-to-LLC mapping
will be calculated.

1) SCHEME
Assume that the proportion ofmapping blocks for the ith bank
is pi. From the perspective of cache access, pi can also be
regarded as the probability of a bank being accessed. The
larger the pi, the more blocks are mapped to the ith bank
and the greater the probability of the bank being accessed.
To fairly treat the access pattern of each core, consider a large
contiguous memory area including M cache blocks in a case
where all cores issue one access request for each block in this
area (i.e., M access requests per core). Further, suppose that
the 3D mesh-based CMPs have N nodes. If the ith bank is
accessed by the jth core, then the cache access non-contention
latency between the ith bank and jth core can be calculated
by (2), as follows:

ti,j = hi,jτ1hop (2)

In (2), ti,j denotes the non-contention latency of one cache
access request which is toward to the ith bank and issued by
the jth core, while hi,j represents the hop count between the ith
bank and jth core. Assuming that there are mi blocks mapped
to the ith bank in the aforementioned memory area, each core
will thus issue mi requests for the ith bank. The total cache
access non-contention latencies of the ith bank is the sum

of the total access latencies caused by each core, and can be
calculated by (3):

Ti =
N−1∑
j=0

miti,j =
N−1∑
j=0

mihi,jτ1hop (3)

To normalize Ti, we divide it by the constantM · τ1hop, and
define it as the cache access cost of the ith bank, as per (4):

ci =
Ti

M · τ1hop
=

N−1∑
j=0

mi
M
hi,j (4)

It should be noted that mi/M is the proportion of mapping
blocks for the ith bank, meaning that we can replace it with
pi. Accordingly, the cache access cost of the ith bank can be
represented by (5):

ci =
N−1∑
j=0

mi
M
hi,j =

N−1∑
j=0

pihi,j (5)

We use the vector C to represent the distribution of each
bank’s cache access cost. We can get the average value of C:

µ(C) =
1
N

N−1∑
i=0

N−1∑
j=0

pihi,j (6)

To equalize the cache access cost for each node’s bank, it is
expected that the difference of the elements in C should be as
small as possible. Therefore, we set the standard deviation of
C as the objective function:

σ (C) =

√√√√ 1
N

N−1∑
i=0

(ci − µ(C))2 (7)

Note that the sum of the probability of each bank being
visited should be 1, i.e., satisfy the following constraint:

N−1∑
i=0

pi = 1, pi ≥ 0 (0 ≤ i ≤ N − 1) (8)

With the objective function and constraints summarized
above, the optimization can be abstracted as the following
nonlinear programming problem:

minimize σ (C)

subject to
N−1∑
i=0

pi = 1

pi ≥ 0 (0 ≤ i ≤ N − 1) (9)

We next model this nonlinear programming problem in
MATLAB and calculate the probability distribution P with
the help of MATLAB’s optimization toolbox. Without loss
of generality, we calculate the distribution P for a 4× 4× 4
mesh network (N = 64), and resize the vector P to a 4×4×4
matrix. We use P..i to represent the ith component of P in the
third dimension. Due to the symmetrical nature of a 4×4×4
3D mesh network, the first and fourth layer have the same
probability distribution, as do the second and third layer.

VOLUME 6, 2018 42987



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

In short, P..0 equals to P..3, and P..1 equals to P..2. As shown
in (10), the four components of P can be represented by P0
and P1 which are illustrated in (11) and (12) respectively.

P..0 = P0
P..1 = P1
P..2 = P1
P..3 = P0 (10)

P0 =


0.0128 0.0145 0.0145 0.0128
0.0145 0.0165 0.0165 0.0145
0.0145 0.0165 0.0165 0.0145
0.0128 0.0145 0.0145 0.0128

 (11)

P1 =


0.0145 0.0165 0.0165 0.0145
0.0165 0.0192 0.0192 0.0165
0.0165 0.0192 0.0192 0.0165
0.0145 0.0165 0.0165 0.0145

 (12)

Using the distribution of pi, we can calculate the proportion
of blocks mapped frommemory for each bank. For a 4×4×4
mesh network, the bank address field in the physical memory
address requires 6 (log264) bits in order to map the block
directly to the corresponding bank. In other words, memory-
to-LLC mapping is interleaved with 64 blocks. In order to
map blocks in proportion to the probability distribution P,
it is necessary to expand the width of the bank address field to
rearrange the memory-to-LLC mapping. The longer the bank
address field, the closer to the ideal distribution it is possible
to arrange the practical mapping (at the cost of an increase in
complexity). By trading off between accuracy and complex-
ity, we expand the bank address field to 10 bits, which can
interleave the mapping with 1024 blocks. We then multiply
the probability distribution matrix P by the number of blocks
in a given mapping interval and obtain the distribution of
the number of blocks in said interval. We use matrix B to
denote the distribution of the number of blocks such that B..i
represents the ith component of B in the third dimension.
As shown in (13), B can be calculated from P, and the four
components ofB can be represented byB0 andB1, which are
in turn illustrated in (14) and (15) respectively.

B = P × 210
B..0 = B0

B..1 = B1

B..2 = B1

B..3 = B0

(13)

B0 =


12 15 15 12
15 17 17 15
15 17 17 15
12 15 15 12

 (14)

B1 =


15 17 17 15
17 20 20 17
17 20 20 17
15 17 17 15

 (15)

The block distribution B for a 4 × 4 × 4 mesh network is
visualized in Figure 3. due to the symmetry of a 4×4×4 3D
mesh cube, it is possible to divide the network into eight parts,

FIGURE 3. The block distribution for a 4 × 4 × 4 mesh network.

each of which is a 2 × 2 × 2 mesh subcube including eight
nodes (as shown in Figure 4a). Observing the distribution P
and B, we can determine that each subcube follows the same
block distribution pattern: the closer to the central region of
the network, the more blocks that should be mapped to the
bank. Accordingly, we can perform a similar block remapping
scheme on each part. Considering the distribution of the num-
ber of blocks for S-NUCA, 1024 blocks should be uniformly
distributed on 64 banks by block-interleaving, and each bank
is mapped with 16 blocks. Compared with the distribution in
S-NUCA, we can remap some blocks from peripheral banks
to central banks and keep the majority of blocks unchanged.
This remapping scheme is able to maintain the minimum
extra costs in hardware implementation. The following anal-
ysis will concentrate on one part of the network (the selected
subcube shown in Figure 4a) in order to concisely explain the
block remapping scheme. The remapping scheme performed
on the other seven subcubes is similar.

Figure 4b shows the bank ID of each node in the sub-
cube, while Figure 4c depicts the corresponding number
of mapped blocks for each bank and the block remap-
ping scheme. In Figure 4c, an arrowed line denotes that a
block originally mapped to the source bank in the mapping
scheme of S-NUCA should be remapped to the destination
bank. Because each bank is mapped with 16 blocks, banks
6/18/22/23 should be mapped with more blocks, and banks
2/3/7/19 with fewer blocks. Therefore, we move some blocks
from banks 2/3/7/19 to banks 6/18/22/23. More specifically,
the additional four blocks mapped to bank 22 consist of one
block from banks 2/3/7/19 respectively, while the additional
one blockmapped to banks 6/18/23 comes from bank 3. Thus,
every bank in the subcube is mapped with the exact number
of blocks.

We will next consider how the remapping scheme should
be implemented. The 1024 blocks within a mapping interval
can be divided sequentially into 16 groups, each of which
includes 64 blocks. Because the bank address has been
expanded to 10 bits, we divide the bank address into two parts,
i.e., bank index and bank tag, which occupy 6 bits and 4 bits
respectively as shown in Figure 4d. The bank index indicates
the original bank ID in the mapping scheme of S-NUCA, and

42988 VOLUME 6, 2018



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

FIGURE 4. The remapping scheme for a 4 × 4 × 4 mesh network. (a) The 4 × 4 × 4 mesh network can be divided into eight parts, each of which is a
2 × 2 × 2 subcube. (b) The bank ID of each node in the subcube. The colored nodes indicate that the banks should be mapped with more blocks. (c) The
number of mapped blocks for each bank and the block remapping scheme. An arrowed line denotes that a block that was originally mapped to the
source bank in the S-NUCA mapping scheme of should be remapped to the destination bank. (d) The bank address field under the remapping scheme.
(e) The detailed remapping scheme design in a mapping interval (i.e., 1024 blocks). The horizontal and vertical axes indicate the bank index and bank
tag respectively, and the part in the dashed box shows the mapping design for the subcube. The number label on each block represents the actual
mapped bank ID.

the bank tag stands for the group number. In order to maintain
accordance with the block remapping scheme, we remap
some blocks from peripheral banks (banks 2/3/7/19) to cen-
tral banks (banks 6/18/22/23). The detailed remapping design
in a mapping interval is illustrated in Figure 4e. In Figure 4e,
the horizontal and vertical axes indicate the bank index and
bank tag respectively, and the part in the dashed box shows
the mapping design for the subcube. To move the additional
four blocks to bank 22, we remap the blocks that originally
belonged to banks 2/3/7/19 to bank 22 in the 16th group (i.e.,
the tag is equal to 15). In addition, we remap the blocks that
originally belonged to bank 3 to banks 6/18/23 respectively
in the 13/14/15th group (i.e., the tag is equal to 12/13/14).

Although the above analysis and results are derived for a
4× 4× 4 mesh network, it is also possible to obtain a similar
conclusion and corresponding probability distribution P and
block distribution B for networks of other sizes. In general,
the trend of distribution is the same, i.e., the central banks
should be mapped with more blocks, which can be remapped
from the peripheral banks. This enables us to design and
implement a similar remapping scheme.

2) IMPACT ON CACHE CONTROLLER
Since we change the uniform mapping scheme, the bank
ID cannot directly be obtained from the bank address field.
Instead, as shown in Figure 5, it is required to add an address
mappingmodule (addr_map) inside each L1 cache controller,
which is responsible for mapping the bank address to the
corresponding bank ID. Every time the L1 cache controller
issues a coherence request (e.g.GetS,GetM, etc.), the module
will calculate the bank ID that the cache block belongs, and

FIGURE 5. The address mapping module in each L1 cache controller.

thus the controller can delivery the correct node address to
the network interface. This module is a simple logic unit and
can be easily implemented by a lookup table.

B. NON-UNIFORM LINK DISTRIBUTION
As stated in the previous subsection, the memory mapping
scheme for 3D mesh-based NUCA is redesigned to equal-
ize the non-contention latencies of cache access. To further
improve the cache access fairness, it is necessary to consider
how the impact of contention latency on cache access fairness
might be reduced. A major source of contention latency is
link competition. However, in a 3D mesh-based network,
the degrees of competition differ for each link due to the
different positions occupied by links. In [35], the traffic
requirements per link for the mesh network are analyzed, and
it is found that traffic load on the link increaseswith proximity
to the central region of the mesh network. An unbalanced
traffic load can aggravate the variance of contention latencies
of cache access. Hence, redesigning the link distribution and

VOLUME 6, 2018 42989



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

increasing the communication capacity of those links with
heavier traffic load can alleviate the degree of variance for
contention latencies. However, it should be noted that the ver-
tical links impose a larger area overhead than the horizontal
links due to the bonding pad requirements [5], [36], meaning
that it is not cost-effective to intensify the communication
capacity of links in the vertical direction. Taking this into con-
sideration, it is preferable to redesign the link distribution in
the horizontal direction. In the following discussion, the non-
uniform link distribution will be presented.

1) SCHEME
We will first need to analyze the traffic loads distributed on
each link. Although the related analysis has been represented
in [35], the results of this work are based on the original
S-NUCA memory mapping for a 2D mesh network. Because
we have changed the memory mapping, it is therefore nec-
essary to recalculate the traffic load based on the proposed
memory mapping scheme for a 3D mesh network described
in Section IV-A.

Suppose the size of the 3D mesh network is M × N × L,
which corresponds to the X-, Y-, and Z-axes respectively
as shown in Figure 2. Here we are concerned with the
links in the horizontal direction, and these horizontal links
can be divided into two groups, i.e., links in the X- and
Y-dimensions. The sizes of the matrices to represent the links
in the X- and Y-dimensions are (M − 1) × N × L and
M × (N − 1) × L, respectively. To simulate the memory
mapping scheme for cache access fairness, assume that each
core sends 1024 messages to all banks, corresponding to the
distribution of the number of blocks B as shown in (13).
We then need to count the number of messages through
each link to represent the traffic load. Algorithm 1 illustrates
the procedure for calculating the traffic load distributed on
each link. It quantitatively analyzes the traffic distributions
(represented by X and Y ) on each link under the specific
memory-to-LLC mapping scheme. In Algorithm 1, line 7 to
18 is the main part for simulating the all to all communica-
tion corresponding to the distribution B, and each iteration
represents that the core (i, j, k) issues bm,n,l messages to the
bank (m, n, l). Line 9 to 12 and line 13 to 16 are responsible
for calculating the traffic load in the X- and Y-dimensions
respectively. Theminmax2 function is used to locate the range
of links.

According to Algorithm 1, we first calculate the traffic load
distribution in the X- and Y-dimensions for a 4× 4× 4 mesh
network, as illustrated in (16) and (17) respectively. Two
points of interest can be observed here. Firstly, the four com-
ponents of X (Y ) are the same; in other words, the traffic load
distribution on each layer of the network follows the same
pattern. This is because the routing algorithm is XYZ-DOR,
meaning that the messages always traverse along the
X- and Y-dimensions first and get through the vertical links

2The minmax(x, y) function that appears in the algorithm returns a vector
of minimum and maximum values between the inputs x and y.

Algorithm 1 Calculate the Traffic Load Distributed on Each
Link
Input:

The size of the mesh network, M × N × L;
The distribution of the number of blocks, B =

[bi,j,k ]M×N×L .
Output:

The traffic load distribution of the links in the
X-dimension, X = [xi,j,k ](M−1)×N×L ;
The traffic load distribution of the links in the
Y-dimension, Y = [yi,j,k ]M×(N−1)×L .

1: for (i, j, k)⇐ (0, 0, 0)→ (M − 2,N − 1,L − 1) do
2: xi,j,k ⇐ 0
3: end for
4: for (i, j, k)⇐ (0, 0, 0)→ (M − 1,N − 2,L − 1) do
5: yi,j,k ⇐ 0
6: end for
7: for (i, j, k)⇐ (0, 0, 0)→ (M − 1,N − 1,L − 1) do
8: for (m, n, l)⇐ (0, 0, 0)→ (M − 1,N − 1,L − 1) do
9: (min,max)⇐ minmax(i,m)
10: for q⇐ min→ max − 1 do
11: xq,j,k ⇐ xq,j,k + bm,n,l
12: end for
13: (min,max)⇐ minmax(j, n)
14: for q⇐ min→ max − 1 do
15: ym,q,k ⇐ ym,q,k + bm,n,l
16: end for
17: end for
18: end for
19: return X,Y

last. Therefore, the vertical traffic does not affect the horizon-
tal traffic pattern. Secondly, links closer to the central region
on each layer are utilized more frequently. This is due to the
additional traffic introduced by the remapping scheme, which
is biased toward the central region of the network. As a result,
in order to alleviate the degree of variance for contention
latencies, we should intensify the communication capacity of
the more highly utilized links and implement the same link
distribution on each layer.

X..i =


1496 2048 1496
1496 2048 1496
1496 2048 1496
1496 2048 1496

 (0 ≤ i ≤ 3) (16)

Y..i =

1376 1616 1616 1376
1888 2208 2208 1888
1376 1616 1616 1376

 (0≤ i≤3) (17)

The traffic load distributions X and Y reflect the degree
of contention of each link under the location-aware memory
mapping calculated in Section IV-A. It is possible to reduce
the contention latencies for these highly utilized links by
increasing the channel width. By referring to the width of
those links with minimum traffic load in the distribution

42990 VOLUME 6, 2018



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

FIGURE 6. The channel width distribution on each layer for a 4 × 4 × 4
mesh network. Here, take the top layer as an example.

X and Y , each link is given an appropriate relative width
in proportion to the traffic load. The minimum traffic load
within the distribution X and Y is `:

` = min{X,Y} (18)

Suppose the basic channel width (i.e., the width of the link
with the minimum traffic load) is ω. The relative width of
each link can thus be derived from the corresponding traffic
load divided by `. Further, we can now obtain the actual
channel width, which is the product of relative width and ω:

Xw =
X
`
· ω = [round(

xi,j,k
`

) · ω](M−1)×N×L

Yw =
Y
`
· ω = [round(

yi,j,k
`

) · ω]M×(N−1)×L (19)

Note that the channel width of each link is a multiple of
the baseline channel width ω. Multiple flits can be sent over
a wide link in parallel. More specifically, assume that the
baseline channel width is 64-bit; as such, the channel width
distribution on each layer can be calculated. Example cal-
culations based on the traffic load distribution X and Y are
presented in Figure 6.

2) IMPACT ON ROUTER
Utilization of the wide links requires minor modifications
to the crossbar and switch allocator (SA) of the routers.
Our design is inspired by the XShare and HeteroNoC tech-
niques, which are proposed in [37] and [38] respectively, but
improved in transmission efficiency and hardware implemen-
tation. Here, we will talk about the impacts on crossbar and
SA of the router.

When communication takes place between two routers
connected by a wide link, two flits can be simultaneously sent
over the wide link. Such a case is depicted in Figure 7, where
we illustrate the difference between the crossbar design of the
baseline and F-NUCA3. Take router 5 as an example in this
case. In Figure 7a, the baseline crossbar can allow that one
flit in input port S goes to output port E as well as one flit
in input port W goes to output port S. One output port can

3We only show the five horizontal ports (North/South/East/West/Local)
in the crossbar in the interests of clear demonstration. In fact, the crossbar
should have seven ports in the symmetric 3D NoC, including the Up/Down
ports.

FIGURE 7. The difference between the crossbar architecture of the
baseline and F-NUCA. (a) Baseline design. (b) Crossbar design in F-NUCA.

only be mapped to one input port, and vice versa. In contrast,
because the channel width is doubled in the east and south in
F-NUCA (as shown in Figure 6), the corresponding width is
also doubled in the crossbar (Ein/Sin/Eout /Sout ). Hence, two
flits from different VCs within a single input port (Sin →
Eout ) or two flits from different input ports (Win+Lin→ Sout )
can be sent together. Different from XShare and HeteroNoC,
it is also supported that two flits from different VCs within a
single input port respectively go to two different output ports
(e.g. Ein → Nout +Wout ), and such a case benefits from the
improved SA design in F-NUCA.

Figure 8a shows the switch allocator of the baseline router.
Suppose that the baseline router has V virtual channels, P
input/output ports. rvi [] represents VC request signals from
ith input port. The allocation includes two stages, i.e., input
and output arbitrations. The input arbitrations are performed
in parallel by P input arbiters to select one input VC of
each arbiter. gvi [] represents VC grant signals from ith input
port to indicate which VC is granted. Next, the decoder
unit translates the granted VC request into the corresponding
output port request, which is propagated to output arbiters.
Then the output arbitrations are performed in parallel by the
P output arbiters to select one input port for each arbiter. gpi []
represents the input port grant signals to ith output port to
indicate which input port is granted. By combining gvi [] and
gpi [] together, the switch allocator accomplishes the matching
of the input ports to output ports.

In F-NUCA, the ports connected by wide links need addi-
tional arbiters to allow more flits to cross the ports. Figure 8b
shows the SA design in F-NUCA. Take a router with one
port (Pth port) connected by the wide link as an example.
Compared with the baseline design, an additional V : 1 is
used in the input arbiters of Pth input port. As for the output
arbiters, the size of each arbiter is increased to (P + 1) : 1,
and an additional (P + 1) : 1 arbiter is also required for the
Pth output port. Actually, the two input/output arbiters of Pth
port can be seen as an N : 2 arbiter (N = Võr P + 1)
in combination. In such an N : 2 arbiter, the second arbiter
receives the mask signals (indicating which request has been
granted) directly from the interior of the first arbiter to avoid

VOLUME 6, 2018 42991



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

FIGURE 8. The SA organization in baseline and F-NUCA. (a) Baseline
design. (b) SA design in F-NUCA.

picking the same flit. Thus the N : 2 arbiter can grant two
requests simultaneously.

Compared with the SA design in XShare or HeteroNoC,
the simultaneous transmission from a single input port does
not require combining the two flits toward the same output
port. In contrast, they can be sent to different output ports
due to the independence in input arbitration. Besides, the
N : 2 arbiter can avoid the conflict of arbitration between
the two sub-arbiters, and thus further improve the efficiency
of allocation.

C. HARDWARE COST
The hardware overhead of F-NUCA is primarily due to the
larger crossbar and the extra arbiters. The synthesis is based
on the open-source NoC router RTL code [39] using Syn-
opsys Design Compiler with SMIC’s 130nm library under
typical-case voltage and temperature conditions (1.2V and
25 ◦C, respectively). Compared with the baseline, F-NUCA
extends the critical path, mainly due to the increased com-
plexity of arbiters. As a result, the synthesis results demon-
strate that the baseline router can be run up to 500MHz and
F-NUCA up to 462MHz, which is operated by the network
of S-NUCA and F-NUCA in the simulation experiments.
The synthesis results demonstrate that the area of the router
connected by one wide link increases by 2.9%, and the the
area of the router connected by two wide links increases
by 5.7%. Hence, the baseline total area of 64 routers (4×4×4
mesh network) is 17.7245mm2 (= 64×0.2769mm2), and the
total area for F-NUCA is 18.1110mm2 (= 32×0.2769mm2

+

16 × 0.2851mm2
+ 16 × 0.2928mm2), which is increased

by 2.1%.

TABLE 1. The baseline simulation configuration.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
In order to conduct an evaluation of F-NUCA’s performance
compared with the traditional S-NUCA, we build the pro-
posed architecture based on gem5 [40], a popular full-system
simulator enabled with Garnet2.0 [41] (to model the inter-
connection network) and Ruby (to model the memory subsys-
tem). The performance simulations include two phases. First,
we switch gem5 to network-only mode in order to perform a
network simulation with synthetic traffic, then evaluate the
network performance across three different network scales
(4× 4× 2/4× 4× 4/6× 6× 4). Second, we switch gem5 to
full-system mode to perform a full simulation with real
benchmarks and observe the system performance when run-
ning different programs across two different network scales
(4×4×2/4×4×4). The simulation configuration is illustrated
in Table 1.

B. SIMULATION WITH SYNTHETIC TRAFFICS
Simulation with synthetic traffics is performed using gem5’s
network-only mode. In this mode, the simulated cores do
not execute real instructions and instead act simply as traf-
fic injectors that inject packets into the network. Therefore,
the system is ISA-agnostic, and the memory subsystem is
non-functional. This mode focuses on evaluating the network
performance of the simulated system. The baseline network
simulation configuration is illustrated by the network-related
portion of Table 1.

We investigate the simulated systems (F-NUCA and
S-NUCA) under different injection rates at a fixed inter-
val (0.005 packets/cycle) to observe the network perfor-
mance, Although a simulation utilizing synthetic traffics
does not include the memory-to-LLC mapping mechanism,
we can build the specific traffic distribution corresponding
to the bank by accessing probability distribution P (as
shown in (10)) rather than the non-uniform mapping scheme.

42992 VOLUME 6, 2018



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

FIGURE 9. Network performance under different injection rates for 4 × 4 × 2, 4 × 4 × 4, and 6 × 6 × 4 mesh networks. (a) AL(4 × 4 × 2). (b) AL(4 × 4 × 4)
(c) AL(6 × 6 × 4) (d) LSD(4 × 4 × 2). (e) LSD(4 × 4 × 4). (f) LSD(6 × 6 × 4).

In addition, because the network latency dominates over
the cache access latency, the degree of equalization in net-
work latency can largely reflect the cache access fairness.
Therefore, we can evaluate the fairness by observing the
network latency. The evaluation is performed across three
different network scales, namely 4 × 4 × 2, 4 × 4 × 4,
and 6× 6× 4.

The experimental results are presented in Figure 9. The
network performance is expressed in terms of two metrics:
average latency (AL) and latency standard deviation (LSD).
LSD measures the amount of variation from the average
latency. A lower standard deviation indicates that the laten-
cies tend to be closer to the mean; therefore, LSD can be
used to evaluate fairness. In Figure 9, F-NUCA exhibits
2.95%/21.55%/25.43% lower average latencies compared
with S-NUCA at the saturation point (0.16/0.16/0.12) for
4×4×2/4×4×4/6×6×4 networks respectively. In addition,
F-NUCA also outperforms S-NUCA in terms of fairness,
as the LSD is reduced by 15.26%/36.56%/56.89% at the
saturation point. From this we can see that the improvement
in LSD is more pronounced than AL. Even though S-NUCA
achieves a little better than F-NUCA inALwhen the injection
rate is very low, F-NUCA also outperforms S-NUCA in LSD,
which indicates that F-NUCA can effectively reduce variation
and improve fairness.

Note that two trends can be observed in Figure 9. First,
the performance improvement becomes more significant as
the injection rate increases. This is because contentions in net-
work are exacerbated under higher injection rate conditions,
which has a detrimental effect on fairness, an issue that can
be better alleviated by our approach. Second, performance
improvements are seen to grow more pronounced as the
network size is scaled up; this is due to the fact that the
fairness problem is more serious for large-scale networks.

FIGURE 10. L2 cache access performance comparison between S-NUCA
and F-NUCA for 4 × 4 × 2 (32) and 4 × 4 × 4 (64) mesh networks. (a) AL.
(b) LSD.

C. SIMULATION WITH BENCHMARKS
We choose ten programs from the available PARSEC 2.1 [42]
benchmarks to perform our experiments. The simulation is
performed under gem5’s full-system mode. In this mode,
the simulator first boots up a Linux kernel, then loads the
program’s execution script after entering the system. For
each PARSEC program, the simulation is divided into three
phases: an initial serial phase, a parallel phase, and a final
serial phase. The parallel phase, also called the region of

VOLUME 6, 2018 42993



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

FIGURE 11. (a) The CDFs of the cache accesses for 4 × 4 × 4 mesh network in S-NUCA. The values on the x-axis are the cache access latencies (in
nanoseconds), and the y-axis denotes fraction of the total number of cache accesses. (b) The CDFs of the cache accesses for 4 × 4 × 4 mesh network in
F-NUCA. (c) The latency distribution of the cache accesses for one of the programs (canneal). (a) CDFs in S-NUCA. (b) CDFs in F-NUCA. (c) PDF for canneal.

FIGURE 12. The IPC performance normalized to S-NUCA for 4 × 4 × 2 and
4 × 4 × 4 mesh networks.

interest (ROI), is the phase that truly reflects the character-
istics of the program; therefore, the simulation results we
collected are based on the ROI part of each program. Table 1
shows the configuration for the full-system simulation. The
evaluation is performed across two different network scales,
namely 4× 4× 2 (32 cores) and 4× 4× 4 (64 cores). Each
core is alpha-ISA, in-order and single-thread architecture.

Figure 10 presents the cache access (L2) performance
for each program’s simulation. We can observe that
F-NUCA outperforms S-NUCA with each program. The
average reductions in AL/LSD across all ten programs are
4.64%/9.38% and 6.31%/13.51% for 4 × 4 × 2 and 4 ×
4 × 4 networks respectively. It can be seen that F-NUCA
achieves notable improvements in cache access performance,
particularly in LSD, which benefits more from the fairness-
oriented design. However, performance improvement in this
simulation is not significant as the experimental results
of simulation with synthetic traffics. This is because that
F-NUCA is mainly optimized for those workloads with
more balanced communications, and the communications
in some PARSEC programs are not balanced [43], such as
blackscholes/streamcluster which show strong communica-
tion between a few cores while revealing weak communi-
cation between the rest. Hence, the improvements for these
programs are less obvious.

To further observe the effect on cache access fairness,
we collect 1M cache access (L2) latencies with each

program for the 4 × 4 × 4 mesh network. Based on the col-
lected latencies, we plot the cumulative distribution function
(CDF), as shown in Figure 11a and Figure 11b, which reveals
the cumulative distribution of cache access latencies for S-
NUCA and F-NUCA respectively. Only the main parts of the
curves are presented here, due to the fact that most cache
access latencies are less than 400ns. The x-axis represents
the cache access latency (in nanoseconds), while the y-axis
denotes the fraction of the total number of cache accesses.
In more detail, one point (x,F(x)) on curve F signifies that
the fraction of the total number of cache accesses with laten-
cies less than x is F(x). From Figure 11a, we can observe
that the latency of 90% of cache accesses for S-NUCA is
less than 170ns for the majority of programs. By contrast,
results for F-NUCA show that the same proportion of cache
accesses (90%) are less than 150ns, as shown in Figure 11b.
In short, F-NUCA successfully produces fewer high-latency
cache accesses than S-NUCA.

Figure 11c plots the probability density function (PDF) of
the cache accesses issued by one of the programs (canneal)
for both S-NUCA and F-NUCA. As can be seen from this
figure, F-NUCA prompts the distribution of high latency
(Region 1) to transfer to the new distribution of low latency
(Region 2). Therefore, F-NUCA makes cache access laten-
cies more concentrated, thus achieving the stated goal of
equalizing cache access latencies.

Figure 12 illustrates the IPC (instructions per cycle) nor-
malized to S-NUCA. Here we can see that F-NUCA out-
performs S-NUCA on the whole, and improves by about
4.0%/6.4% on average for 4 × 4 × 2 and 4 × 4 × 4 net-
works compared with S-NUCA. Similar to the performance
analysis presented in the previous subsection, it can also be
observed that the improvement ismore pronounced for larger-
scale network; again, this is because the exacerbation of
cache access fairness issues are more serious for large-scale
networks, and our fairness-oriented approach can thus play
a more significant role in reducing the impact of overhigh
cache accesses on system performance. Another observation
is that the performance improvements are not balanced for
each program. The reason lies in the communication pattern

42994 VOLUME 6, 2018



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

of each program [43]. Because our design ismainly optimized
for the balanced workload, the programs with strong all to all
communication (canneal/dedup) can be achieved more ben-
efits from the optimization. By contrast, some programs like
blackscholes/streamcluster shows less balanced communica-
tion pattern but strong communication between neighboring
cores are improved less in performance.

VI. CONCLUSION
The aggravation of cache access fairness issues causes an
increased number of cache accesses with overhigh latencies.
These can cause a bottleneck in system performance, espe-
cially for large-scale 3D architecture. In this context, cache
access fairness is expected to be one of the major factors in
optimizing communication overheads and thereby improving
system performance. In this work, we study the factors affect-
ing cache access fairness in the context of 3D NUCA-based
CMPs and attempt to equalize the cache access latencies
on two fronts, i.e., non-contention and contention latencies.
The proposed location-aware memory mapping scheme can
equalize the non-contention latencies, while the redistribu-
tion of channel width alleviates the contention latency vari-
ance. This fairness-oriented co-design is called fair-NUCA
(F-NUCA). We evaluate the hardware cost and perform the
simulation experiments for F-NUCA. Our simulation results
indicate that F-NUCA is more effective than the traditional
architecture. Evaluation using ten diverse programs demon-
strates that F-NUCA can effectively improve cache access
fairness. The reductions in AL/LSD are up to 4.64%/9.38%
and 6.31%/13.51% on 4 × 4 × 2 and 4 × 4 × 4 3D mesh
networks respectively. As for system throughput, F-NUCA
achieves 4.0%/6.4% improvements.

In conclusion, this paper demonstrates the importance of
cache access fairness for system performance and makes a
case for the design of a non-uniform 3D architecture that
combines the designs of memory mapping and NoC. In the
anticipated future, we will study how the cache protocol and
operation (e.g. update, invalidate, etc.) have an impact on the
cache access fairness.

REFERENCES
[1] N. E. Jerger, T. Krishna, and L.-S. Peh,On-Chip Networks (Synthesis Lec-

tures on Computer Architecture), 2nd ed. San Rafael, CA, USA: Morgan
& Claypool, 2017.

[2] K. Manna, S. Swami, S. Chattopadhyay, and I. Sengupta, ‘‘Integrated
through-silicon via placement and application mapping for 3Dmesh-based
NoC design,’’ ACM Trans. Embedded Comput. Syst., vol. 16, Nov. 2016,
Art. no. 24.

[3] S. J. Souri, K. Banerjee, A. Mehrotra, and K. C. Saraswat, ‘‘Multiple Si
layer ICs: Motivation, performance analysis, and design implications,’’ in
Proc. 37th Annu. Design Automat. Conf. (DAC), New York, NY, USA,
2000, pp. 213–220.

[4] S. Das, A. Fan, K.-N. Chen, C. S. Tan, N. Checka, and R. Reif, ‘‘Tech-
nology, performance, and computer-aided design of three-dimensional
integrated circuits,’’ in Proc. Int. Symp. Phys. Design (ISPD), New York,
NY, USA, 2004, pp. 108–115.

[5] J. Kim et al., ‘‘A novel dimensionally-decomposed router for on-chip com-
munication in 3D architectures,’’ in Proc. 34th Annu. Int. Symp. Comput.
Archit. (ISCA), New York, NY, USA, 2007, pp. 138–149.

[6] W. R. Davis et al., ‘‘Demystifying 3D ICs: The pros and cons of going ver-
tical,’’ IEEE Design Test Comput., vol. 22, no. 6, pp. 498–510, Nov. 2005.

[7] Y. J. Hwang, J. H. Lee, and T. H. Han, ‘‘3D network-on-chip system com-
munication using minimum number of TSVs,’’ in Proc. ICTC, Sep. 2011,
pp. 517–522.

[8] C. Kim, D. Burger, and S. W. Keckler, ‘‘An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,’’ SIGARCH Comput.
Archit. News, vol. 30, pp. 211–222, Oct. 2002.

[9] Y. Xie, G. H. Loh, B. Black, and K. Bernstein, ‘‘Design space exploration
for 3D architectures,’’ J. Emerg. Technol. Comput. Syst., vol. 2, no. 2,
pp. 65–103, Apr. 2006.

[10] B. Black et al., ‘‘Die stacking (3D) microarchitecture,’’ in Proc. 39th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2006,
pp. 469–479.

[11] G. H. Loh, Y. Xie, and B. Black, ‘‘Processor design in 3D die-stacking
technologies,’’ IEEE Micro, vol. 27, no. 3, pp. 31–48, May/Jun. 2007.

[12] B. S. Feero and P. P. Pande, ‘‘Networks-on-chip in a three-dimensional
environment: A performance evaluation,’’ IEEE Trans. Comput., vol. 58,
no. 1, pp. 32–45, Jan. 2009.

[13] V. F. Pavlidis and E. G. Friedman, ‘‘3-D topologies for networks-on-chip,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 10,
pp. 1081–1090, Oct. 2007.

[14] A. W. Yin, T. C. Xu, P. Liljeberg, and H. Tenhunen, ‘‘Explorations of
honeycomb topologies for network-on-chip,’’ in Proc. 6th IFIP Int. Conf.
Netw. Parallel Comput., Oct. 2009, pp. 73–79.

[15] S. Akbari, A. Shafiee, M. Fathy, and R. Berangi, ‘‘AFRA: A low
cost high performance reliable routing for 3D mesh NoCs,’’ in Proc.
Design, Automat. Test Eur. (DATE), San Jose, CA, USA, 2012,
pp. 332–337.

[16] A. B. Ahmed and A. B. Abdallah, ‘‘Low-overhead routing algorithm for
3D network-on-chip,’’ in Proc. 3rd Int. Conf. Netw. Comput., Dec. 2012,
pp. 23–32.

[17] A. B. Ahmed and A. B. Abdallah, ‘‘Graceful deadlock-free fault-tolerant
routing algorithm for 3D network-on-chip architectures,’’ J. Parallel Dis-
trib. Comput., vol. 74, no. 4, pp. 2229–2240, 2014.

[18] J. Liu, J. Harkin, Y. Li, and L. P.Maguire, ‘‘Fault-tolerant networks-on-chip
routing with coarse and fine-grained look-ahead,’’ IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 35, no. 2, pp. 260–273, Feb. 2016.

[19] A. Arora, M. Harne, H. Sultan, A. Bagaria, and S. R. Sarangi,
‘‘FP-NUCA: A fast NoC layer for implementing large NUCA caches,’’
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 9, pp. 2465–2478,
Sep. 2015.

[20] B. M. Beckmann and D. A. Wood, ‘‘Managing wire delay in large
chip-multiprocessor caches,’’ in Proc. 37th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Washington, DC, USA, Dec. 2004,
pp. 319–330.

[21] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan, and
M. Kandemir, ‘‘Design and management of 3D chip multiprocessors using
network-in-memory,’’ in Proc. 33rd Annu. Int. Symp. Comput. Archit.
(ISCA), Washington, DC, USA, 2006, pp. 130–141.

[22] N. Madan et al., ‘‘Optimizing communication and capacity in a 3D stacked
reconfigurable cache hierarchy,’’ in Proc. IEEE 15th Int. Symp. High
Perform. Comput. Archit., Feb. 2009, pp. 262–274.

[23] J. Jung, K. Kang, and C.-M. Kyung, ‘‘Design and management of 3D-
stacked NUCA cache for chip multiprocessors,’’ in Proc. 21st Ed. Great
Lakes Symp. Great Lakes Symp. VLSI (GLSVLSI), New York, NY, USA,
2011, pp. 91–96.

[24] Y. Zhang et al., ‘‘A survey of memory architecture for 3D chip multi-
processors,’’ Microprocess. Microsyst., vol. 38, no. 5, pp. 415–430,
2014.

[25] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, ‘‘Aérgia: Exploiting
packet latency slack in on-chip networks,’’ in Proc. 37th Annu. Int. Symp.
Comput. Archit. (ISCA), New York, NY, USA, 2010, pp. 106–116.

[26] A. Sharifi, E. Kultursay, M. Kandemir, and C. R. Das, ‘‘Addressing end-to-
end memory access latency in NoC-based multicores,’’ in Proc. 45th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Dec. 2012, pp. 294–304.

[27] M. Gorgues, D. Xiang, J. Flich, Z. Yu, and J. Duato, ‘‘Achieving balanced
buffer utilization with a proper co-design of flow control and routing algo-
rithm,’’ in Proc. 8th IEEE/ACM Int. Symp. Netw.-Chip (NoCS), Sep. 2014,
pp. 25–32.

[28] Z. Lu and Y. Yao, ‘‘Aggregate flow-based performance fairness in CMPs,’’
ACM Trans. Archit. Code Optim., vol. 13, Dec. 2016, Art. no. 53.

[29] D. H. Kim et al., ‘‘Design and analysis of 3D-MAPS (3Dmassively parallel
processor with stacked memory),’’ IEEE Trans. Comput., vol. 64, no. 1,
pp. 112–125, Jan. 2015.

VOLUME 6, 2018 42995



Z. Wang et al.: Cache Access Fairness in 3-D Mesh-Based NUCA

[30] M. Wordeman, J. Silberman, G. Maier, and M. Scheuermann, ‘‘A 3D
system prototype of an eDRAM cache stacked over processor-like logic
using through-silicon vias,’’ in Proc. IEEE Int. Solid-State Circuits Conf.,
Feb. 2012, pp. 186–187.

[31] D. Fick et al., ‘‘Centip3De: A 3930 DMIPS/W configurable near-threshold
3D stacked system with 64 ARM Cortex-M3 cores,’’ in Proc. IEEE Int.
Solid-State Circuits Conf., Feb. 2012, pp. 190–192.

[32] R. G. Dreslinski et al., ‘‘Centip3De: A 64-core, 3D stacked, near-threshold
system,’’ in Proc. IEEE Hot Chips 24 Symp. (HCS), Aug. 2012, pp. 1–30.

[33] C.-L. Chou and R. Marculescu, ‘‘Contention-aware application mapping
for network-on-chip communication architectures,’’ in Proc. IEEE Int.
Conf. Comput. Design, Oct. 2008, pp. 164–169.

[34] P. K. Sahu and S. Chattopadhyay, ‘‘A survey on application mapping
strategies for network-on-chip design,’’ J. Syst. Archit., vol. 59, no. 1,
pp. 60–76, 2013.

[35] Y. Zhang and A. K. Jones, ‘‘Non-uniform fat-meshes for chip multipro-
cessors,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process., May 2009,
pp. 1–8.

[36] S. Pasricha, ‘‘Exploring serial vertical interconnects for 3D ICs,’’ in Proc.
46th Annu. Design Automat. Conf. (DAC), New York, NY, USA, 2009,
pp. 581–586.

[37] R. Das, S. Eachempati, A. K. Mishra, V. Narayanan, and C. R. Das,
‘‘Design and evaluation of a hierarchical on-chip interconnect for next-
generation CMPs,’’ in Proc. IEEE 15th Int. Symp. High Perform. Comput.
Archit., Feb. 2009, pp. 175–186.

[38] A. K. Mishra, N. Vijaykrishnan, and C. R. Das, ‘‘A case for heterogeneous
on-chip interconnects for CMPs,’’ in Proc. 38th Annu. Int. Symp. Comput.
Archit. (ISCA), New York, NY, USA, 2011, pp. 389–400.

[39] D. U. Becker, ‘‘Efficient microarchitecture for network-on-chip routers,’’
Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA,
Jul. 2012.

[40] N. Binkert et al., ‘‘The gem5 simulator,’’ ACM SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[41] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, ‘‘GARNET: A detailed
on-chip network model inside a full-system simulator,’’ in Proc. IEEE Int.
Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2009, pp. 33–42.

[42] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC benchmark
suite: Characterization and architectural implications,’’ in Proc. Int. Conf.
Parallel Archit. Compil. Techn. (PACT), Oct. 2008, pp. 72–81.

[43] N. Barrow-Williams, C. Fensch, and S. Moore, ‘‘A communication char-
acterisation of Splash-2 and Parsec,’’ in Proc. IEEE Int. Symp. Workload
Characterization (IISWC), Oct. 2009, pp. 86–97.

ZICONG WANG was born in 1989. He received
the B.S. degree in computer science and the M.S.
degree in microelectronics from the National Uni-
versity of Defense Technology, Hunan, China,
in 2008 and 2012, respectively, where he is
currently pursuing the Ph.D. degree in micro-
electronics. His main research interests include
networks-on-chip design and computer architecture.

XIAOWEN CHEN was born in 1982. He received
the B.S. degree in microelectronics and the B.S.
degree in computer science from the University
of Electronic Science and Technology of China
in 2005, and the Ph.D. degree in microelectronics
from the National University of Defense Technol-
ogy (NUDT), Hunan, China, in 2011. He is cur-
rently an Assistant Researcher in microprocessor
design with NUDT. His research interests include
computer architecture, microprocessor and DSP

design, interconnection networks, and memory.

ZHONGHAI LU received the B.S. degree in radio
and electronics from the Beijing Normal Univer-
sity, Beijing, China, in 1989, and the M.S. degree
in system-on-chip design and the Ph.D. degree in
electronic and computer system design from the
KTH Royal Institute of Technology, Stockholm,
Sweden, in 2002 and 2007, respectively. Hewas an
Engineer in the area of electronic and embedded
systems from 1989 to 2000. He is currently an
Associate Professor with the School of Electrical

Engineering and Computer Science, KTH Royal Institute of Technology.
He has authored over 130 peer-reviewed papers. His current research inter-
ests include interconnection networks, computer architecture, and real-time
cyber-physical systems.

YANG GUO received the Ph.D. degree from
the National University of Defense Technology,
Hunan, China, in 1999. He is currently a Professor
with the National University of Defense Technol-
ogy, where he leads the Digital Signal Processor
Group, and also the Director of the integrated cir-
cuits. He has authored or co-authored over 50 pub-
lications in journals and conference proceedings.
His primary research interests include low-power
VLSI circuits, microprocessor design and verifica-

tion, and electronic design automation techniques for VLSI circuits.

42996 VOLUME 6, 2018


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	PRELIMINARY: BASELINE 3D NUCA
	FAIR CACHE ACCESS DESIGN
	LOCATION-AWARE MEMORY MAPPING
	SCHEME
	IMPACT ON CACHE CONTROLLER

	NON-UNIFORM LINK DISTRIBUTION
	SCHEME
	IMPACT ON ROUTER

	HARDWARE COST

	EXPERIMENTAL RESULTS
	EXPERIMENTAL SETUP
	SIMULATION WITH SYNTHETIC TRAFFICS
	SIMULATION WITH BENCHMARKS

	CONCLUSION
	REFERENCES
	Biographies
	ZICONG WANG
	XIAOWEN CHEN
	ZHONGHAI LU
	YANG GUO


