IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON SMART CACHING, COMMUNICATIONS, COMPUTING AND
CYBERSECURITY FOR INFORMATION-CENTRIC INTERNET OF THINGS

Received May 30, 2018, accepted July 18, 2018, date of publication August 2, 2018, date of current version September 5, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2862425

ACA-SDS: Adaptive Crypto Acceleration for
Secure Data Storage in Big Data

CHUNHUA XIAO“'!, PENGDA LI', LEl ZHANG', WEICHEN LIU2, (Member, IEEE),

AND NEIL BERGMANN 3, (Member, IEEE)

! Department of Computer Science, Chongqing University, Chongqing 400044, China

2School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798
3School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

Corresponding author: Chunhua Xiao (xiaochunhua@cqu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61502061, in part by the Chongging
Application Foundation and Research in Cutting-Edge Technologies under Grant cstc2015jcyjA40016, in part by the Fundamental
Research Funds for the Central Universities under Grant 106112017CDJXY 180004, and in part by the Program of China Scholarship

Council under Grant 201706055029.

ABSTRACT In the era of big data, the demand for secure data storage is rapidly increasing. To accelerate
the complex encryption computation, both specific instructions and hardware accelerators are adopted in
a large number of scenarios. However, the hardware accelerators are not so effective especially for small
volume data due to the induced invocation costs, while the AES-NI (Intel®advanced encryption standard
new instructions) is not so energy efficiency for big data. To satisfy the diversity performance/energy
requirements for intensive data encryptions, a collaborative solution is proposed in this paper. We pro-
posed a feasible hardware-software co-design methodology based on the stack file system eCryptfs, with
quick assist technology, which is named adaptive crypto acceleration for secure data storage (ACA-SDS).
ACA-SDS is able to choose the optimal encryption solution dynamically according to file operation modes
and request characters. Adjustable parameters, such as o, 8, and M are provided in our scheme to provide
a better adaptability and tradeoff choices for encryption computation. Our evaluation shows that ACA-SDS
can get 15%—-25% performance improvement for big-data blocks compared with only software or hardware
accelerations. Furthermore, our methodology provides a wide range of practical design concepts for the

further research in this field.

INDEX TERMS Hardware-software co-design, eCryptfs, encryption, data-intensive, QAT.

I. INTRODUCTION
The widespread growth of data usage and cloud comput-
ing technology has resulted in surging security demand for
data transmission and storage. The demand for intensive-
data encryption is also increasing year by year, and more
encryption technology are applied in many other fields. Thus,
the security, efficiency, and performance of data-intensive
encryption are key factors in the mass data management.
For data-intensive crypto computation, specific instruction
acceleration (such as AES-NI) and hardware accelerators
(such as intel QAT) are widely adopted to ease the perfor-
mance slowdown induced by complex encryption algorithms.
However, either way has its own benefits and drawbacks.

In terms of computer instruction set encryption, the CPU
dependency might be a bottleneck for performance

improvement. The development of hardware manufactur-
ing has reached the stage when the transistor speed almost
reaches the limit. The maximum speed of its switch is basi-
cally stable at about 4G, which matches the CPU speed of the
current Intel i7 series. If the overclocking strategy is adopted,
it can only be achieved by increasing power consumption
(exponential power increase) or lowering the temperature.
However, both methods are highly expensive. At the same
time, a software encryption acceleration algorithm cannot
reduce the quantity of computation involved and instruction
set encryption consumes a lot of CPU resources. Therefore,
hardware acceleration with specify crypto engines is a pre-
dominant alternative for better computation off-loading.
Hardware acceleration focus on the complex algorithm
computations in a more energy-efficiency manner, while

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

44494

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8012-8749
https://orcid.org/0000-0001-6279-1053

C. Xiao et al.: ACA-SDS in Big Data

IEEE Access

only management resource needed from CPUs. With hard-
ware accelerators, CPUs are able to handle other necessary
tasks/services besides processing management and schedul-
ing. If there are multiple CPUs and multiple accelerators,
it is easy to get a high throughput through parallel crypto
computations. The most representative technique of hard-
ware accelerators is QAT [16], [17]. QAT provides typi-
cal computation accelerations including data compression
and encryptions, which has been applied widely for server-
based encryption, network transmission and data storage,
etc. However, due to the generality of hardware accelerators,
it is hard to take full utilization of them in the working
flow of a specific application scenario without optimization.
Our experiments showed the crypto acceleration is not
efficiency for certain file operations in data storage; sim-
ilarly, it cannot work efficiently for small crypto data
blocks.

Based on the above analysis, encryption operation through
single hardware or software has its characteristic strengths
and weaknesses. Therefore, this paper proposes a software-
hardware co-design method for data-intensive encryption,
named Adaptive Crypto Acceleration for Secure Data Storage
(ACA-SDS). The goal of this system is to achieve a better
crypto performance through better resource utilization.

The contributions of this paper include:

o We did a comprehensive analysis and comparison for the
existing crypto acceleration methodologies from differ-
ent respective. We revealed the cons and pros of two
predominant crypto solutions, which can be referred
for a better strategy decision for security data storage
scenarios.

e We proposed an adaptive Hardware/Software co-
scheduling strategy, which is able to choose the most
reasonable crypto methodology dynamically according
to the operation types, request characters, and CPU load.
Adjustable parameters and threshold are also provided
along with the scheme, so the users can customize
the trade-off between performance and cost. Further,
we discussed scheduling schemes under multiple CPUs.
Our experiment showed that our proposed solution
can get 15%-25% performance improvement for big-
data blocks compared with existing crypto acceleration
methods.

« An efficient management and scheduling scheme is pro-
posed for hardware crypto accelerates. In the actual
system, it will be dynamically adjusted according to the
demand characteristics of the encryption task, current
system operating conditions and external environmental
factors. Encryption operations become more efficient
and robust by setting the appropriate index parameters
in the system.

The rest of this paper is organized as follows. Section II
introduces our research motivation. Section III shows the
design ideas and scheme. Section IV presents the analysis
of the experimental data. The related work is discussed in
Section V. Finally, the paper is concluded in Section VI.

VOLUME 6, 2018

Il. RESEARCH MOTIVATION

In order to protect sensitive data, documents are encrypted
before storing them on devices. As result, many file systems
are proposed to transparently handle encryption and decryp-
tion when accessing data. These file systems are either built
on FUSE [6], such as goCryptfs [7], CryFS [8], or integrated
into the Linux kernel, such as LUKS [10] and eCryptfs [11].
All the file systems provide common strategies to handle
security metadata, such as File Encryption. However, one
fundamental challenge is not addressed by state-of-the-art
cryptographic file systems: how to avoid the performance
degradation caused by encryption operations. The widely-
used ciphers, such as AES-CBC, AES-GCM and 3DES, are
all time-consuming, they require considerable computational
power to manipulate byte streams. Take eCryptfs as the
example, eCryptfs based security data storage showed a poor
performance for write operation, which is 16 times worse
in bandwidth than original file system without any crypto
operations. While the cost of reading operation is not too
large, only a drop of about 20% -30%. Since the Page Cache
stores only the plaintext, subsequent read operations do not
have the overhead after the first read of the data requires
a decryption operation; when x bytes of data are written,
the encryption operation requires ((x — 1) / extent_size 4 1)
* extent_size (the minimum size of the data storage unit) data
bytes, which results in a relatively large overhead [1].

As we discussed in the section I, both of the crypto accel-
eration methodologies (AES-NI and hardware accelerators)
have serious limitations to ease the performance slowdown
for secure data storage with eCryptfs. To target the problem
of existing crypto solutions, we did lots experiments and
comparisons to analyze the performance (operation delay)
and CPU idle in different situations (different file operations,
different data blocks, and different concurrency).

We tested the crypto delay with standard fio tool for
AES-NI and QAT separately. If the concurrency level of 12 is
selected, the evaluation data for a single processing is 500,
and so file size is 6000M in total. If the concurrency level
is 32, the data size for file evaluation is 16000 totally.

To illustrate the performance clearly, we concluded the
definition of major testing parameters as below:

- slat represents the delay time from the data submission
to the time when data is processed by the kernel,

- clat represents the time for encryption/decryption com-
pletion;

- lat represents total time taken from task submission to
encryption/decryption completion.

In relation, lat = slat + clat.

The testing results are illustrated as table 1, in which
microsecond (us) is adopted for delay description. We varied
the testing data size from 1K to 64K to see the performance
for different data blocks. Both AES-NI and QAT based crypto
acceleration methodologies are tested with 12 concurrency
level and 32 concurrency level separately.

44495

IEEE Access

C. Xiao et al.: ACA-SDS in Big Data

We compared the performance difference with AES-NI
and QAT for read and write operations, the influence of data-
block size and concurrency level, and also the CPU idle.

Discussion 1: The Read. As we can see from the table 1,
for both of the methodologies, the slat time majorly depends
on clat time, and the clat time is increasing along with the
size increasing. However, the AES-NI performs better for
all of the testing with different size of data blocks. The clat
time for QAT increases along with the data block size from
8us to 440us, while the AES-NI only increases from 4us to
160us, which makes clat time of QAT be more than twice
of AES-NI. Through this testing, we can conclude that QAT
is not efficiency for read operation compared with AES-NI.
In another words, if we need to do decryption, it is better to
choose software acceleration with AES-NI.

TABLE 1. Delay time of data operations.

Block Size(K) QAT AES-NI QAT AES-NI QAT AES-NI
Unit(usec) 12(read) 12(read) 12(write) 12(write) 32(write) 32(write)
slat (1K) 0.05 0.1 0.06 0.18 0.13 0.37
clat (1K) 7.95 3.52 35.16 29.04 72.63 79.26
lat (1K) 8 3.62 3522 29.22 72.76 79.63
slat (2K) 0.05 0.14 0.07 0.20 0.13 0.44
clat (2K) 14.09 6.25 41.60 31.94 85.76 87.08
lat 2K) 14.14 6.39 41.67 32.14 85.89 87.52
slat (4K) 0.05 0.15 0.09 0.18 0.18 0.47
clat (4K) 27.36 11.14 28.77 30.63 69.86 83.8
lat (4K) 27.41 11.29 28.86 30.81 70.04 84.27
slat (8K) 0.05 0.14 0.12 0.26 0.29 0.86
clat (8K) 55.92 21.34 61.21 64.85 131.09 161.05
lat (8K) 55.97 21.48 61.33 65.11 131.38 161.91
slat (16K) 0.06 0.07 0.26 0.35 0.55 1.11
clat (16K) 111.53 40.21 114.36 118.23 251.83 320.34
lat (16k) 111.59 40.28 114.62 118.58 252.38 321.45
slat (32K) 0.06 0.13 0.51 0.63 1.02 2.19
clat (32K) 221.72 81.2 229.01 235.15 506.02 636.42
lat (32K) 221.78 81.33 229.52 235.78 507.04 638.61
slat (64K) 0.06 0.05 1.13 1.78 243 3.77
clat (64K) 440.49 159.02 456.91 467.71 979.54 1245.04
lat (64K) 440.55 159.07 458.04 469.49 981.97 1248.81

Discussion 2: The Write. As we can see from the table 1,
the change trend and percentage of clat time is the same
as the read operation in the 12-concurrency level. However,
the QAT performance is better when testing larger size of data
blocks. The clat time of QAT gradually increases with the
data blocks ranging from 36us to 458us, and the AES-NI
increases from 30us to 468us. At 4k, The QAT’s clat time

44496

starts to fall below AES-NI. And this trend has been main-
tained to the last data block of 64K. By this comparison,
we can get the following conclusions that QAT has advan-
tages over the AES-NI with larger block sizes in writing.
Therefore, if we need to do encryption with large blocks, it is
better to choose hardware acceleration with QAT.

Discussion 3: The Concurrency Level & Block Size.
As can be seen from the comparison of write between
12 concurrency level and 32 concurrency level in Table 1.
With larger concurrency and data blocks, QAT has greater
performance advantages compared with 12 concurrency
level. The total slat time is also small, and the lat time of
QAT ranges from 73us to 982us at 32 concurrencies, while
the AES-NI ranges from 80us to 1,249us. With the data
block increases, the QAT s range-difference ratio and relative
time increases than AES-NI. At the same time, the ratio of
AES-NI and QAT based on lat time is about 1.3 times in
32 concurrency level, while the ratio is only about 1.02 times
in 12 concurrency level. So, we know that QAT’s encryption
performance advantage is more obvious under the big block
and high concurrency. Therefore, the hardware and software
calls can be dynamically adjusted according to the actual
block size and number of concurrencies in writing.

Discussion 4: The CPU Idle Resources. As shown
in Figure 1, when the data is encrypted, QAT is still a portion
of idle CPU resources compared to the AES-NI. In the trend
of data blocks from small to large, QAT has 3%-12% of
the remaining CPU resources, while AES-NI’s idle CPU
resources are always zero. This is a flash point for QAT.
For this part of the excess resources available, we can make
more use of it to make the system more efficient. Therefore,
according to the actual CPU idle condition, we can decide
whether to call the AES-NI continues to encrypt or complete
other tasks.

DATA BLOCK SIZF

= CPU idle{QAT) - CPU idle{aes_ni)

FIGURE 1. CPU idle status for 16-process in writing.

As we discussed above, in term of secure data storage with
AES-NI and QAT in eCryptfs, there is a shortage of hardware
in secure reading, and a weakness of software in secure
writing. Besides, the size of data blocs and the concurrency
level play an important role to data encryption.

Based on these interesting findings, we propose Adaptive
Crypto Acceleration for Secure Data Storage (ACA-SDS),

VOLUME 6, 2018

C. Xiao et al.: ACA-SDS in Big Data

IEEE Access

eCryptfs Daemon

Key Module API

Application
Y ‘ TMP | OpenSsL
(Syscall) | \ User Space
| \ — Kernel
L] \ “\
VES /,)(Keystore .
eCryptfs Layer ~ .
e . ~—» Kernel Crypto API

-

Ext3 | Reiserfs | --- e
’ AES-128 | DES3
__,_.,--"/(Driver call)
Satisfying certain conditions Underlying Call
1) Read and Write operations Page Cache
ii) Process && Blocks P —
iii) Spare CPU e
. ‘__,_-_-""'7-__' — — | e
=2 77
Quick Assist ‘ AES_NI Driver Bd B g
Technolo*ov Driver : GQ«\?/%)QO(\ _—— \
v o | | .
i i A
Quick Assist ‘ AES_NI }‘ Disk

Encryption && Decryption

FIGURE 2. Adaptive Encryption Scheduling System (ACA-SDS).

which can make best use of the advantages and bypass
the disadvantages of both AES-NI and hardware
accelerators (QAT).

Ill. DESIGN IDEAS AND SCHEME

A. ARCHITECTURE OVERVIEW OF ACA-SDS

Section II compares and analyzes the encryption of
AES-NI and QAT, which shows that each encryption method
has its characteristic advantages and disadvantages. Based on
this analysis, we propose a software-hardware collaborative
design scheme based on the eCryptfs stack encryption file
system. The architecture overview of ACA-SDS is shown
as figure 2.

In the upper part of ACA-SDS, eCryptfs is a stack-
encrypted file system used in the Linux file system. It belongs
to the middle tier of the file model and lies between the
virtual file system (VFS) and the universal file system (UFS).
During the actual data file encryption and decryption oper-
ation access process, the VFS layer interface is invoked on
the application layer to perform data access operations, and
the UFS interface is uniformly invoked to store and retrieve
the data at the system layer. The eCryptfs is only needed to
implement data encryption and decryption operations. And
it uses symmetric key encryption algorithm to encrypt the
data. The commonly used encryption algorithms are DES,
AES128, etc. The file encryption key (FEK) is randomly
generated and applied to the encryption of the current file
data. Subsequently, the Key Encryption Key (KEK) is used

VOLUME 6, 2018

to process and generate FEK ciphertext and to place it in the
encrypted file header for storage and dispatch.

In the lower part of ACA-SDS, for lower-tier driver calls,
the API (Application Programming Interface) file chooses
whether to call hardware encryption (QAT) or instruction
set encryption (AES-NI) based on whether the encryption
environment meets certain criteria for read and write oper-
ations, processes and blocks, and CPU idle. After encrypted
by AES-NI or QAT, the ciphertext is written into Cache. Then
the dirty page in Cache is written to disk. For decryption,
the ciphertext is read into Cache from disk. After decrypting
the data, the plaintext is returned to the user.

The proposed method is implemented in the kernel.
QAT has a separate driver, which is called by eCryptfs
in file read and write operations. The driver implements
encryption and decryption functions. Data is stored in
the kernel’s page cache for temporary scheduling deci-
sions and written back to disk only when the contents are
encrypted.

B. SCHEDULING DESIGN

1) READ/WRITE OPERATION SCHEDULING

Decryption of read data and encryption of write data are the
basic functions of eCryptfs. Those operations have different
operational complexity for the eCryptfs file system. From the
preceding information, the performance of the write opera-
tion is relatively poor, as it takes time about 16 times longer
than an unencrypted write operation. The read operation

44497

IEEE Access

C. Xiao et al.: ACA-SDS in Big Data

overhead is not as large, the performance is decreased
by 20% -30% only. Therefore, QAT is highly suitable
for write encryption in actual operation, to take advantage
of its speed and efficiency. Detailed data delay time for
read/write operation are shown in Table 1, QAT is hardware-
based encryption, while AES-NI is based on instruction set
encryption.

From the data analysis, the following Hardware-Software
co-design program for data read/write operation can be made.
When the data is read and decryption operations, the CPU
calls the AES-NI; when the data is written and encryption
operations, the CPU calls the QAT.

E=!S (Read) o
H (Write)

As in Formula (1), E represents the performance of the
system, S represents the software AES-NI operation, and
H represents the hardware QAT operation. Based on this,
we use a combination of hardware and software encryption
strategy. When the read operation request is issued, the sys-
tem calls the instruction set to work; and when the write
operation request is issued, the system calls the hardware
QAT to work.

2) SCHEDULING BASED ON BLOCK SIZE &
CONCURRENCY LEVEL
The number of the concurrency in the task process may affect
the encryption performance of AES-NI and QAT. Further-
more, there is also the possibility that block size affects the
performance of the AES-NI and QAT for data encryption and
decryption operation. Based on the size of the data block
and concurrency level, a suitable combination of hardware
and software programs can be selected. After changing the
concurrency level and data blocks in the test, the hardware
and software calls should also be changed to achieve the best
performance.

As seen in the Figure 3., in the 32 processes, the bandwidth
of QAT and AES-NI gradually expands along with the data
block increasing for encryption. And the advantage of QAT’s

2500

) 2000
@ 1897.4 1912.5
1834.5
£ 2000 1711.5
© 1214.1 [1292.6 [15129 8 1501.7 [1562.7
2 1500 .
m
>
£
5 1000 710.8684.4
2
T 500 4197375 6
©
o
0
1k 2k 3k 4k 5k 6k 7k
Data block size
QAT Bandwidth AES_NI Bandwidth

FIGURE 3. 32 concurrency level in writing.

44498

encryption bandwidth value is more and more obvious com-
pared to AES-NI with the big blocks.

Based on this analysis, a software and hardware combina-
tion scheme can be made as follows.

__) H (process > a AND blocks > p)

| S (others) @

In Formula (2), E represents the performance of the system,
H represents the hardware QAT operation, and S represents
the software AES-NI operation. While « and g are the
adaptive scheduling values. The AES-NI is called when the
number of tasks is less than « or the size of data block is
less than 8. QAT is called when the number of tasks and the
page data block is large. Thus, we can conclude that QAT is
applied for more heavy tasks in the work environment. Such
an arrangement enables the system to make better use of the
resources and maximize its own work efficiency.

This section that the data read and write operations analysis
shows that AES-NI has a greater advantage in reading and
decrypting, while QAT is superior in writing and encrypting
(in the actual situation, writing and encrypting are more
important because it takes more time). So, we design related
strategies to take full advantage of the unique advantages of
the QAT and AES-NI.

C. HARDWARE-SOFTWARE DYNAMIC SCHEDULING
SCHEME

According to the analysis in Section B, we can come up with
two optimization schemes. In addition to the above optimiza-
tion scheme, QAT also has CPU idle resources compared to
AES-NI, because there is a hardware interrupt when the CPU
calls the QAT. For existing idle CPU resources, we can shift
its free CPU resources to relative performance.

3

E_ H (Spare CPU < M)
- S + H (others)

As in Formula (3), E represents the efficiency of the sys-
tem, H represents the hardware QAT operation, and S repre-
sents the software AES-NI operation. While M represents the
system adaptive scheduling values When the system calls the
QAT to encrypt data, the current CPU utilization of the system
can be monitored. If the percentage of idle CPU resource
is less than M (adaptive scheduling value), the system runs
other waiting sequence commands. If the idle CPU is greater
than the M value, the system can use the remaining CPU
resources to invoke the software for encryption and decryp-
tion. This method of combining software and hardware can
maximize the CPU utilization and improve performance for
data encryption.

The above combination of hardware and software scheme
can be represented in the following flow chart for data-
intensive encryption shown in the Figure 4. below, where M,
« and B are the adaptive scheduling values.

VOLUME 6, 2018

C. Xiao et al.: ACA-SDS in Big Data

IEEE Access

Request on data encryption
and decryption

Note: M, a and B are all
adaptive scheduling values

Reading
request
operation?

Call instruction set
to decryption

he task concurrency is
larger than o and the data

Call QAT to

Call instruction set
to encryption

encryption

heck if the current
idle CPU is larger
than M?

Call the idle CPU resources to encryption
using the instruction set

FIGURE 4. Flow chart of Hardware-Software Co-design.

At the same time, the related pseudo-code for data encryp-
tion and decryption completed by the hardware/software
co-designed is shown as algorithml1.

This section proposes an adaptive software/hardware co-
scheduling scheme. Based on this, through the observation
and comprehensive consideration of the CPU idle resource
in the hardware, a coordinated scheduling of spare CPU
resources is proposed, and the related structure/flow chart are
drawn.

D. ALLOCATION AND MANAGEMENT OF MULTI-CPU

1) THE QAT PERFORMANCE WITH NUMBER OF CPUS

For the hardware acceleration engine QAT, when the sys-
tem calls the QAT to perform eCryptfs file encryption and
decryption operations, it usually generates a hardware inter-
rupt and allows the CPU more time to deal with other tasks.
Only when QAT’s encryption and decryption tasks for the
requested data are completed, the system will wait for the
return of information, after which the CPU can continue to
call QAT. Therefore, the bandwidth performance of QAT
encryption and decryption depends on the capabilities of the
QAT hardware itself.

From the above, QAT’s accelerate bandwidth must exist a
limit value. When the QAT bandwidth reaches or closes the
limit, despite the increase in the number of CPUs, the QAT
hardware acceleration bandwidth is saturated and cannot
further expand bandwidth. Therefore, the optimal number
of CPUs to call the QAT hardware acceleration engine can

VOLUME 6, 2018

been already
encrypted?

The data has been
already encrypted or
decryption?

Release the memory
resources and return

be chosen at the design stage, and the hardware-software
combination design can be optimized by determining the
CPU threshold for QAT.

P = Max(bw/n))

In Formula (4), bw represents the data bandwidth, n repre-
sents the number of CPUs, and P represents the bandwidth for
a single CPU. This formula measures the average distribution
performance of the CPU and is one of the most important per-
formance evaluation indicators. In addition, CPU utilization
is another related parameter that can used to evaluate whether
the QAT is in a saturated state. Both reference indicators can
be combined to test experimental data.

In measuring the number of CPUs for QAT, the test con-
ditions set are as follows: single data thread size is 500M,
32K data block size, 32 concurrency levels and sequential
write operations.

In fact, a QAT has twelve acceleration modules. As can be
seen from Figure 5., the number of CPUs required to manage
the QAT hardware acceleration with maximum efficiency
is 4 or 5. When the number of CPUs exceeds 35, the value
of the QAT encryption bandwidth is maintained at an inter-
val value and the system needs more CPU management
resources. Further comparison and analysis show that the
P bandwidth value for 4 CPUs is 464.5 MB/(S*single), and
the P value for 5 CPUs is 416.4 MB/(S*single). Therefore,
in the case of multi-CPU encrypted data, setting the number
of CPUs that call QAT to 4 is most appropriate. This can

44499

IEEE Access

C. Xiao et al.: ACA-SDS in Big Data

Algorithm 1 Encryption Scheduling Algorithm

Input: Req: The request for data encryption and decryp-
tion
Key: symmetric key
Output: IS _encryption(P, key): plaintext
encrypted by instruction set operations
IS_decryption(C, key): ciphertext pages
are decrypted by instruction set operations
HW_encryption(P, key): plaintext pages
are encryptedby Hardware Acceleration operations
HW_decryption(C, key): ciphertext pages
are decrypted by Hardware Acceleration operations
Note: M, « and B are all adaptive scheduling values.
Accept Req from the Application or Disk
If Rec is Read
then do IS_decryption(C, key)
else if (process > o && blocks >)
then do HW_encryption(P, key)
WhileSpare CPU > M & & Res exists
do IS_encryption(P, key)
End While
else
then do IS_encryption(P, key)
End if
End

pages are

%
-
B

W

12
2 2000 ._/\\.
: ™ 10 %
3 ~NH 8
gmm / s ¢
E [E
g 1000 g
2 s &
s

500

- 2

(=]
=]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NUMBERS OF CPU

e QAT Bandwidth === CPU idel

FIGURE 5. Bandwidth and CPU idle during QAT call.

get QAT encryption performance with minimal CPU resource
utilization.

2) MULTI-CPU ALLOCATION STRATEGY

For multi-CPU-based server data encryption storage, if the
server has n CPUs (n > 4), you can use the software-
hardware combination scheme to encrypt the data. When the
server receives a large number of data encryption requests,
it can use four CPUs to manage QAT for encryption, and the
rest (n — 4) use the instruction set for encryption. In this way,
data encryption performance can be effectively improved
compared to using hardware or software alone to complete
encryption.

44500

From the theoretical derivation and the analysis of specific
data in this section, we propose the scheduling allocation of
the hardware and software in reading-writing operations and
data factors of the concurrent number and block size. Based
on the above two points, we further propose the effective use
of idle CPU resources in the hardware engine encryption pro-
cess. Finally, from the analysis of the hardware and software
implementation methods, we propose a feasible scheme that
obtains the maximum hardware acceleration efficiency with
minimal resource management and coordinates scheduling
hardware-software resources in the case of multiple CPUs.

IV. EXPERIMENT AND ANALYSIS

A. EXPERIMENTAL ENVIRONMENT

1) SOFTWARE ENVIRONMENT

The software used in this experiment is the eCryptfs file
system and the fio test tool. The system uses symmetric key
encryption. Table 2 shows the specifications and versions of
the software in the experimental setup.

TABLE 2. Software information.

Name Version
OS Kernel Linux 4.10.10
Operating system Ubuntu 17.0

Hardware drive
Instruction set drive aesni _intel.ko

eCryptfs ecryptfs utils 111
fio fio 2.0.7

QAT _dh895xcc.ko

2) HARDWARE ENVIRONMENT

The main hardware used in this experiment is CPU, RAM,
hard disk and QAT hardware acceleration engine. The QAT
hardware encryption engine has 12 built-in encryption accel-
eration modules. Table 3 lists the relevant hardware versions.

TABLE 3. Hardware information.

Name: Configuration:

CPU Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz, quad core

RAM 128GB

Disc space 1TB

QAT 12 acceleration modules

B. CONFIGURATION AND TESTING FLOW OF ECRYPTFS
In the experiment, eCryptfs uses the AES-128 algorithm as
the encryption algorithm. FEK is an encryption key, which
consists of 16 bytes. When eCryptfs is mounted, all data
placed in the specified folder must be encrypted. The file
name is not encrypted by default. After installing the eCryptfs
file system in the experiment, we configure the related
parameters for mounting. The specific operation is shown
in Figure 6. -eCryptfs mounting information.

This experiment uses fio to test IO bandwidth and iops
values. The iops value is used as a performance indicator for

VOLUME 6, 2018

C. Xiao et al.: ACA-SDS in Big Data

IEEE Access

tion [16]:
int

to mount with the following options:
unlink sigs

FIGURE 6. eCryptfs mounting information.

reading and decrypting, and the bandwidth value is used as
a performance indicator for writing and encryption. In the
experiment, we obtained performance data for certain aspects
of software and hardware by setting related parameters and
testing data. See the column chart for details.

This experiment uses the Linux command ’top’ to get
the current CPU utilization. ’top’ is a common performance
analysis tool for Linux systems. It can display real-time
information about the process being executed in the system,
including process ID, memory usage, and CPU usage, etc.
You can use the top tool to view the following CPU param-
eters. The following information is a CPU-side parameter
index displayed by using the top command.

Command: top

- us represents the CPU occupied by user space;

- sy represents the CPU occupied by kernel space;

- ni represents the CPU occupied by processes which
adjust the prioritization;

- id represents the idle
parameters);

- wa represents the CPU occupied by 10 waiting;

- hi represents the CPU occupied due to hardware
interrupt;

- si represents the CPU occupied due to software inter-
rupt.

CPU (CPU’s important

Note: Amongst the relevant parameters of the ‘top’ com-
mand, this experiment focuses on the percentage of
idle CPU.

In order to obtain valid test data, this experiment sets
corresponding test parameter variables for encrypting and
decrypting data. In the test script, there are seven 10 block
sizes (1K /2K /4K /8K /16K /32K /64K) and eight concur-
rency levels (1 /4 /8 /12 /16 /32 /48 /64). The single thread
data is configured to 500M and the files created under the
test directory are cleared each time to keep the testing data
reliable. At the same time, the CPU utilization is measured
with the ‘top’ command at a set interval of 0.25s during the
test.

VOLUME 6, 2018

. iops value-QAT iops value-aes_ni

CPU idle-QAT CPU idle-aes_ni
3000000 1
2500000 2
% 0.8
3 2000000 0.7 o
= 06 w
w -
3 1500000 : I 05 @
< 04 2
1000000
°21 = 03
= 500000 - 0.2
i I 01
0 Q
1k 2k 4k 8k 16k 32k 64k

DATE BLOCK SIZE

FIGURE 7. 10PS value for 12-process concurrency level read operation.

e Bandwidth Value-QAT 1 Bandwidth Value-aes_ni

CPU idle-QAT CPU idle-aes_ni

CPUIDLE %

BANDWIDTH
=]
3

1k 2k 4k 8k 16k 32k 64k
DATA BLOCK SIZE

FIGURE 8. Bandwidth value for 12-process concurrency level write
operation.

C. DATA ANALYSIS

1) READ AND WRITE OPERATIONS

After a large number of data testing and comparison,
the sequential read and write operations of 12-process
concurrency level were selected. Single process file size
remains SO0M. The value of the iops parameters is a measure
of the read operation, while the bandwidth (bw) represents the
metric for the write operation. See Figure 7. and Figure 8. for
details.

As can be seen in Figure 7. and Figure 8., it can be seen
that the QAT performance in the read operation is obviously
insufficient compared to the AES-NI operation, with its CPU
idle rate being basically zero. However, QAT shows higher
performance during data writing and encryption, as well as
some CPU idle resources. Changes in CPU idleness and
encryption trends show that 4k is a turning point, because
the eCryptfs file system uses 4k page size for encryption and
decryption each time by default.

2) CONCURRENT LEVEL & BLOCK SIZE

Similarly, after mass data analysis, the sequential write oper-
ation of 4-process and 40-process concurrency levels is
selected. The file size of each process is kept as S00M. See
Figure 9. for details.

44501

IEEE Access

C. Xiao et al.: ACA-SDS in Big Data

o 2500 20 ab;
1 &
2 2000 15 2
& 1500 =
= 10 3
£ 1000 &
5

E 500 E
2 0 o Q@
a <
z 1k 2k 4k 8k 16k 32k 64K e
L DATA BLOCK SIZE E

ad

-%

w4 process Bandwidth value-QAT msem 4 process Bandwidth value-aes_ni

w40 process Bandwidth value-QAT s 40 process Bandwidth value-aes_ni
4 process CPU idleness-QAT 4 process CPU idleness-aes_ni

s A0) process CPU idleness-OQAT i 40 process CPU idleness-aes_ni

FIGURE 9. Sequential write with 4-process and 40-process concurrency
level.

2500

2000

1500 — '
1000
500 I
R
1k 2k 4k 8k 16k 32k 64k

Data Block Size

BADEWIDTH VALUE MB\S

mOAT m AES-NI = AESS

FIGURE 10. Comparison of performance with different schemes in 4-CPU
situation.

By analyzing Figure 9., it can be concluded that the per-
formance of instruction set encryption is better when the task
concurrency level (the number of processes) is small and the
data block size written each time is small. The obvious advan-
tages of the QAT performance when the task concurrency
level and the data block size written is larger each time.

In this section, we analyze the iops of reading and
decrypted, bw of writing and encrypted, and the percentage of
idle CPU (comparison between the instruction set and QAT).
Based on the experimental data tested, in terms of writing
and encryption, QAT provides greater performance improve-
ment over the instruction set at large data blocks and high
concurrent numbers, and leaves 8%-15% free CPU resources.
In terms of reading and decryption, QAT has limited or no
improvement in performance compared to the instruction set,
and there are essentially no idle CPU resources.

The experimental results show that the scheme proposed in
this paper is suitable and effective.

D. PERFORMANCE OPTIMIZATION ANALYSIS

As shown in Figure 10, this column comparison shows the
ACA-SDS optimized performance data for 4 CPUs com-
pared to QAT and AES-NI. During the entire request from
a small block to a large block, ACA-SDS always maintains

44502

4000

-l II I I
1k 2k 4k 8k 16k 32k 64k

Data Block Size

BANDWIDTH VALUE MB\S
—_ L¥] L) w w
g g 8 8 8
c o O O o O

wn
8

B OAT B AES-NI mAESS

FIGURE 11. Comparison of performance with different schemes in
Multi-CPU situation (8 CPUs).

the highest bandwidth performance compared to QAT and
AES-NI. Moreover, because of the use of the remaining CPU,
the ACA-SDS also has improved performance in higher block
encryption. In short, this method keeps the encryption of
the entire system always maintaining the highest encryption
performance.

As shown in Figure 11, the following optimization data
can be obtained by multiple CPUs simultaneously schedul-
ing hardware and software. When the data block is small
and the bandwidth value is low, the encryption performance
of ACA-SDS is basically the same as that of AES-NIL
Afterwards, ACA-SDS has a performance improvement of
around 15%-25% with large data blocks and higher band-
width values. ACA-SDS has clear advantages compared with
AES-NI or QAT when encrypting high-intensity data.

V. RELATED WORK
In the field of cryptography, researchers have proposed an
encryption platform architecture that integrates security pol-
icy, traditional key management and public key manage-
ment [8]. Some researchers introduced the eCryptfs stack file
system into enterprise private cloud platforms and developed
viable eCryptfs-based enterprise file encryption solutions for
private clouds [2]; others have proposed an eCryptfs based
multi-user encrypted file system to ensure that only users with
legal keys can access ciphertext data [4], [9], [34], [38], [39].
In terms of file encryption, researchers have proposed a
file-based information storage and translation are coordinated
with packet alignment using the IRP (Input / output request
packet) method, enabling the use of the versatile encryption
and decryption filter driven algorithm [3]. Due to the high
sensitivity of the chaotic system to the initial value, a method
for encrypting the file using the state of the chaotic sys-
tem as the key signal has been proposed [5]. Designing a
multi-path network with the ability to calculate probability
of attack enables the path encryption level to be proactively
adjusted, it adjusts the encryption strength before the attack
sequence completes its last step. By using statistical learning
techniques, researchers have obtained data on the specific
attack signatures for each network path and inferred suitable

VOLUME 6, 2018

C. Xiao et al.: ACA-SDS in Big Data

IEEE Access

information security level for each path through the analysis
of these possibilities [10]. Certain researchers have worked on
searchable encryption techniques for use in cloud computing.
The paper proposes a hybrid model of searchable encryption
and attribute-based encryption, which supports personalized
and secure multi-user access to outsourcing data with high
search performance [11]. In the field of improving encryp-
tion algorithms, researchers have proposed that a symmetric
cipher algorithm based on polarization characteristics has
been proposed to decompose the vector and the inner product,
in which certain amount of computational complexity and
security are guaranteed by a series of key combinations [12].
Some researchers introduce a new type of Identity-Based
Encryption (IBE) scheme which is called Fuzzy Identity-
Based Encryption [28]. And present a new methodology for
realizing Ciphertext-Policy Attribute Encryption (CP-ABE)
under concrete and noninteractive cryptographic assumptions
in the standard model [29]. There are other aspects of encryp-
tion applications [30], [31], [33], [35]-[37].

In terms of hardware acceleration, researchers have
proposed a genomic data processing involving CAST
(Complexity Analysis of Sequence Tracts) algorithm based
on parallel processed and hardware accelerated architecture,
specially designed CAST accelerator architecture and proven
FPGA prototypes, which is used in the complexity analysis
of protein sequences encoded in genomic data [13]. Research
on parallel algorithm-based processors and the development
of a suitable processor in hardware has led to the devel-
opment of a high-performance multi-core processor system
for software implementation and a high-end programmable
gate array system for hardware implementation [14]. The
use of hardware acceleration technology has been proposed
for use in radio resource scheduling in 5G mobile telecom-
munication systems. The acceleration technology multiplies
the efficiency 60 times faster than the extant communica-
tion speed by calculating the throughput of each UE at
the same time [15]. The experimenter also proposed other
methods [21], [22], [24], [26].

In hardware-software co-design, there are collaborative
design applications based on hardware and software plat-
forms, which use a fast hardware-software platform to cal-
culate irreducible tests [18]. Some researchers have proposed
an effective and adjustable approach to hardware and soft-
ware co-design in embedded software protection. By cou-
pling protective compiler technology along with reconfig-
urable hardware support, it is possible to achieve a higher
level of complexity compared with traditional mainstream
hardware or software methods, within the range of safety
performance [18]. Some researchers propose a CPU-based
design scheme based on hardware / software collaboration
along with a systematic method to compile and translate
CPU core data path and control path through the instruc-
tion sequence described by the C language [20]. It plans
to reduce the number of data transmission paths by select-
ing paths to bypass rarely used ones, and to select the
optimal data path cost and control path cost among can-

VOLUME 6, 2018

didate CPU kernels [20]. Someone designed a humanoid
robot platform - the iCub - to support collaborative research
in cognitive development through autonomous exploration
and social interaction [23]. Some researches build a per-
sistent virtual visualization facility linked by ultra-high-
speed optical networks to enable the comprehensive and
synergistic research and development of the necessary hard-
ware, software and interaction techniques [25]. Here are
also some other aspects of the combination of hardware and
software [27], [40], [41].

About research in QAT, a live migration scenario has been
proposed that optimizes VNF with paravirtualization drivers
and QAT technology. A solution called PV-QAT has been
proposed to speed up the migration of common VNFs to pre-
vent the degradation of VNF service caused by unavoidable
service outages and the migration of large amounts of data
over long periods of time [16]. PV-QAT uses paravirtualiza-
tion (PV) drivers to filter out useless memory pages during
migration and fast compression of low-overhead memory
pages by using QAT technology (QAT), allowing PV-QAT
to significantly reduce downtime by 77.5% and 80.5 % of the
total migration time [16].

In terms of review, the papers discuss possible directions
for computer architecture research and one or more examples
of cross-layer research advocated, including architecture as
infrastructure, energy first, impact of new technologies, and
cross-layer opportunities [32].

Comparatively speaking, the research is comparatively rare
on description and implementation of eCryptfs file system
based on the combination of AES-NI and QAT. This high-
lights the practicality and value of this paper. Based on the
research and exploration of the software and hardware co-
design of eCryptfs file system, this paper proposes a working
method that makes eCryptfs data encryption and decryp-
tion tasks more high-performance, more energy-efficient, and
more valuable.

VI. CONCLUSION, LIMITATION, AND PROSPECTS
Based on a large amount of secure data storage, this paper
proposes an ACA-SDS scheme based on read and write
operations, different tasks and block sizes, and idle CPU
resources. After this scheme, the paper further proposes to
achieve the maximization of QAT efficiency gains by using
the minimizing CPU resource management and simultane-
ous co-scheduling of software and hardware under multiple
CPU conditions. Through the analysis of specific experi-
mental data, it demonstrates the rationality of the designed
program, and provides an effective software and hardware
co-design method for enhancing the performance of data-
intensive encryption. Through the simultaneous scheduling
of hardware and software by the 2) Multi-CPU, ACA-SDS
is able to get 15%-25% performance boost in intensive big
data block encryption compared with the pure hardware and
instruction set.

In fact, the default page data block in the eCryptfs file
system is 4K when the data is encrypted by calling QAT and

44503

IEEE Access

C. Xiao et al.: ACA-SDS in Big Data

AES-NI. For further optimization of the encryption perfor-
mance, we can try to modify the source code of the eCryptfs
file system so that the data blocks of encrypted pages are
larger, such as 16K, 32K, 128K, 1M, 4M, 8M, 1G, and so on.
This can increase the size of encrypted data blocks per page
and reduce the number of CPU calls by hardware engines in
data-intensive encryption requests.

REFERENCES

(1]
[2]

[3]

[4]

[5]
[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

L. Hao-Xiang and Q. Jun, “Detailed study of eCryptfs for the enterprise
encryption file system,” Tech. Rep., 2009, p. 21.

X. Mao-zhi and L. Shuang, “High-performance network encryption plat-
form,” Commun. Secur., no. 9, 2004.

W. Quan-min, J. Hua-feng, W. Song, and Z. Li-yan, “File transparent
encryption and decryption based on double-cache mechanism and its
implementation,” Electron. Soft Sci., no. 5, 2011.

Q. Xi-qin and C. Zhong-gui, ‘“‘Research on encryption and decryption file
system under NT architecture,” Human-Nature Sci. Stud., vol. 11, no. 2,
2012.

D. Shao-Jiang and L. Xiao-Feng, “To realize text file encryption and
decryption with chaotic system,” Comput. Sci., vol. 31, no. 8, 2004.

L. Hai-Nan, X. Guo-Chun, and Z. Jian-Tao, “Hierarchical encrypted file
system based on eCryptfs,” Comput. Eng. Des., Dec. 2016.

X.-D. Tang, S.-L. Fu, and L.-Y. He, “Design and implementation of multi-
user encryption file system based on eCryptfs,” J. Comput. Appl., vol. 30,
no. 5, pp. 1236-1238, 2010.

J.-H. Nah et al., “T&I engine: Traversal and intersection engine for hard-
ware accelerated ray tracing,” ACM Trans. Comput. Syst., vol. 30, no. 6,
2011, Art. no. 160.

P. Paillier, ““Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology (Lecture Notes in Computer
Science), vol. 1592, J. Stern, Ed. Berlin, Germany: Springer-Verlag,
May 1999, pp. 223-238.

J. Obert, I. Pivkina, H. Huang, and H. Cao, “‘Proactively applied encryption
in multipath networks,” Comput. Secur., vol. 58, pp. 106-124, May 2016.
T. Bouabana-Tebibel and A. Kaci, “Parallel search over encrypted data
under attribute based encryption on the cloud computing,” Comput. Secur.,
vol. 54, pp. 77-91, Oct. 2015.

X. Xu and J. Feng, “Symmetric cryptographic algorithm based on polar-
ization identity and implementation on file encryption,” in Proc. IEEE 3rd
Int. Congr. Image Signal Process., vol 2, Oct. 2010, pp. 558-561.

A. Papadopoulos, I. Kirmitzoglou, V. J. Promponas, and T. Theocharides,
“FPGA-based hardware acceleration for local complexity analysis of mas-
sive genomic data,” Integr, VLSI J., vol. 46, no. 3, pp. 230-239, 2013.

I. Damaj, M. Imdoukh, and R. Zantout, “‘Parallel hardware for faster mor-
phological analysis,” J. King Saud Univ.-Comput. Inf. Sci., to be published.
Y. Arikawa, T. Sakamoto, and S. Kimura, “Hardware acceleration tech-
nique for radio resource scheduling in 5G mobile systems,” Nippon Tele-
graph Telephone Corp, vol. 15, no. 10, Oct. 2017.

J. Zhang, L. Li, and D. Wang, “Optimizing VNF live migration via para-
virtualization driver and QuickAssist technology,” in Proc. IEEE Int. Conf.
Commun., May 2017, pp. 1-6.

X. Shuai, L. Yao, and Z. Wang, “QAT: Evaluation of a dedicated hardware
accelerator for high performance web service,” in Proc. 20th Int. Conf.
Adv. Commun. Technol. (ICACT), Feb. 2008, p. 1.

V. Rodriguez-Diez, J. F. Martinez-Trinidad, J. A. Carrasco-Ochoa,
M. Lazo-Cortés, C. Feregrino-Uribe, and R. Cumplido, “A fast hardware
software platform for computing irreducible testors,” Expert Syst. Appl.,
vol. 42, no. 24, pp. 9612-9619, 30 Dec. 2015.

J. Zambreno, A. Choudhary, R. Simha, and B. Narahari, “‘Flexible software
protection using hardware/software codesign techniques,” in Proc. Design,
Automat. Test Eur. Conf. Exhib., 2004, p. 10636.

Kunieda and Hiroaki, CPU Core Generation for Hardware-Software Col-
laborative Design. IEEE Press, 1996, pp. 306-309.

R. Cowart, D. Coe, J. Kulick, and A. Milenkovi, “An implementa-
tion and experimental evaluation of hardware accelerated ciphers in all-
programmable SoCs,” in Proc. South-East Conf., 2017, pp. 34-41.

K. Romer and F. Mattern, “The design space of wireless sensor networks,”
IEEE Wireless Commun., vol. 11, no. 6, pp. 54-61, Dec. 2004.

44504

(23]

(24]

(25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

G. Metta et al., “The iCub humanoid robot: An open-systems platform
for research in cognitive development,” Neural Netw., vol. 23, nos. 8-9,
pp. 1125-1134, 2010.

L. A. Rowe and J. Ramesh, “ACM SIGMM retreat report on future
directions in multimedia research,” ACM Trans. Multimedia Comput.,
Commun., Appl., vol. 1, no. 1, pp. 3-13, 2005.

J. Leigh et al., “The global lambda visualization facility: An international
ultra-high-definition wide-area visualization collaboratory,” Future Gener.
Comput. Syst., vol. 22, no. 8, pp. 964-971, 2006.

S. Nooshabadi and J. Garside, ‘“Modernization of teaching in embedded
systems design-an international collaborative project,” IEEE Trans. Educ.,
vol. 49, no. 2, pp. 254-262, May 2006.

J. C. Phillips et al., *“Scalable molecular dynamics with NAMD,” J. Com-
put. Chem., vol. 26, no. 16, pp. 1781-1802, 2005.

A. Sahai and B. Waters, ““Fuzzy identity-based encryption,” in Advances
in Cryptology—EUROCRYPT (Lecture Notes in Computer Science),
vol. 3494, R. Cramer, Ed. Heidelberg, Germany: Springer-Verlag, 2005,
pp. 457-473.

B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Public Key Cryptography—
PKC (Lecture Notes in Computer Science), vol. 6571, D. Catalano,
N. Fazio, R. Gennaro, and A. Nicolosi, Eds. Heidelberg, Germany:
Springer, 2011, pp. 53-70.

H. Cheng and X. Li, “Partial encryption of compressed images and
videos,” IEEE Trans. Signal Process., vol. 48, no. 8, pp. 2439-2451,
Aug. 2000.

A.N. Khan, M. L. M. Kiah, M. Ali, S. Shamshirband, and A. U. R. Khan,
“A cloud-manager-based re-encryption scheme for mobile users in cloud
environment: A hybrid approach,” J. Grid Comput., vol. 13, no. 4, pp. 651—
675, Dec. 2015.

M. D. Hill, ““21st century computer architecture,” ACM SIGPLAN Notices,
vol. 49, no. 8, pp. 1-2, 2014.

J. Shu, Z. Shen, and W. Xue, “Shield: A stackable secure storage system
for file sharing in public storage,” J. Parallel Distrib. Comput., vol. 74,
no. 9, pp. 2872-2883, Sep. 2014.

A.Khoje, K. A. Salih, and R. Moona, “TransCrypt: An enterprise encrypt-
ing file system over NFS,” in Proc. World Congr. Eng., 2009, pp. 1-6.

A. Adya et al., “Farsite: Federated, available, and reliable storage for an
incompletely trusted environment,” in Proc. 5th Symp. Oper. Syst. Design
Implement. (OSDI), 2002, pp. 1-14.

M. Blaze, “A Cryptographic File System for UNIX,” in Proc. 1st ACM
Conf. Comput. Commun. Secur., 1993, pp. 9-16.

G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano, “The design and
implementation of a transparent cryptographic file system for UNIX,” in
Proc. USENIX Annu. Tech. Conf., 2001, pp. 199-212.

T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and chal-
lenges,” in Proc. Int. Conf. Adv. Inf. Netw. Appl., Apr. 2010, pp. 27-33.
M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in Proc. 2nd USENIX
Conf. File Storage Technol. (Fast), 2003, pp. 29-42.

J. Coburn, J. L. Salmon, and I. Freeman, ‘Effectiveness of an immersive
virtual environment for collaboration with gesture support using low-cost
hardware,” J. Mech. Des., vol. 140, no. 4, p. 042001, 2018.

J. Shalf, D. Quinlan, and C. Janssen, ‘“Rethinking hardware-software
codesign for exascale systems,” Computer, vol. 44, no. 11, pp. 22-30,
Nov. 2011.

CHUNHUA XIAO was born in 1987. She received
the Ph.D. degree from the Beijing University of
Technology, China. She did one year academic
research as a joint-training Ph.D. student in the
University of California at Los Angeles, Los
Angeles, from 2011 to 2012. She is currently an
Associate Professor with the School of Computer
Science, Chongqing University, China.

He has authored and co-authored over 30 publi-
cations in peer-reviewed journals and conferences.

Her research interests include MPSoCs, hardware and software codesign,
and embedded systems. She has been an independent PI for a standard
(2016-2018) National Nature Science Foundation of China grant, and also an
independent PI (2016-2017) for a Crossing Research Projects with Huawei
Technologies Co., Ltd. She was honored with the Science and Technology
Progress Award from Beijing municipality in 2012.

VOLUME 6, 2018

C. Xiao et al.: ACA-SDS in Big Data

IEEE Access

VOLUME 6, 2018

PENGDA LI received the B.E. degree from the
School of Information Engineering, Xiangtan Uni-
versity, Hunan, China, in 2017. He is currently pur-
suing the master’s degree under the supervision of
Dr. C. Xiao with the School of Computer Science,
Chongqing University, China. His main research
direction includes Internet of Things, hardware
and software co-design, and embedded systems.

LElI ZHANG received the B.E. degree from the
School of Computer Science and Technology,
Chonggqing University of Posts and Telecommuni-
cations, Chongging, China, in 2016, where she is
currently pursuing the master’s degree under the
supervision of Dr. C. Xiao. Her current research
interests include hardware security, hardware and
software co-design, and energy-efficient comput-
ing and applications.

WEICHEN LIU (S’07-M’11) received the B.Eng.
and M.Eng. degrees from the Harbin Institute of
Technology, China, and the Ph.D. degree from The
Hong Kong University of Science and Technol-
ogy, Hong Kong. He is currently an Assistant Pro-
fessor with the School of Computer Science and
Engineering, Nanyang Technological University,
Singapore. He has authored and co-authored over
70 publications in peer-reviewed journals, confer-
ences and books. His research interests include

embedded and real-time systems, multiprocessor systems, and network-
on-chip. He received the best paper candidate awards from ASP-DAC
2016, CASES 2015, CODES+ISSS 2009, the best poster awards from
RTCSA 2017, AMD-TFE 2010, and the most popular poster award from

ASP-DAC 2017.

NEIL BERGMANN (M’86) received the
bachelor’s degree in engineering, science and arts
from The University of Queensland and the Ph.D.
degree in computer science from the University
of Edinburgh, UK., in 1984. He has been a
Professor of embedded systems with the School of
ITEE, The University of Queensland, since 2001.
His research interests are in computer systems,
especially reconfigurable computing and wireless
sensor networks. He is a fellow of the Institution of
Engineers, Australia.

44505

	INTRODUCTION
	RESEARCH MOTIVATION
	DESIGN IDEAS AND SCHEME
	ARCHITECTURE OVERVIEW OF ACA-SDS
	SCHEDULING DESIGN
	READ/WRITE OPERATION SCHEDULING
	SCHEDULING BASED ON BLOCK SIZE & CONCURRENCY LEVEL

	HARDWARE-SOFTWARE DYNAMIC SCHEDULING SCHEME
	ALLOCATION AND MANAGEMENT OF MULTI-CPU
	THE QAT PERFORMANCE WITH NUMBER OF CPUS
	MULTI-CPU ALLOCATION STRATEGY

	EXPERIMENT AND ANALYSIS
	EXPERIMENTAL ENVIRONMENT
	SOFTWARE ENVIRONMENT
	HARDWARE ENVIRONMENT

	CONFIGURATION AND TESTING FLOW OF ECRYPTFS
	DATA ANALYSIS
	READ AND WRITE OPERATIONS
	CONCURRENT LEVEL & BLOCK SIZE

	PERFORMANCE OPTIMIZATION ANALYSIS

	RELATED WORK
	CONCLUSION, LIMITATION, AND PROSPECTS
	REFERENCES
	Biographies
	CHUNHUA XIAO
	PENGDA LI
	LEI ZHANG
	WEICHEN LIU
	NEIL BERGMANN

