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ABSTRACT This paper presents a half bogie model of magnetic levitation systems, which can capture the
mechanical coupling between two suspension points. Based on the half bogie model, a model-guided state
feedback controller is designed to stabilize the nominalmodel. A new extended state observer usingmeasured
data is proposed to estimate the unknown system state as well as the modeling uncertainties, disturbances,
and coupling. This leads to an active disturbance rejection controller that can cancel the effect of unknown
disturbances. By incorporatingmodel-guided state feedback controller and the data-driven active disturbance
rejection controller with an appropriate tuning of parameters, the closed loop system can track the desired gap
up to any given accuracy. Simulation and experimental results demonstrate the effectiveness of the proposed
method.

INDEX TERMS Magnetic levitation systems, model-guided data-driven control, extended state observer.

I. INTRODUCTION
Magnetic Levitation (Maglev) trains use electromagnetic
forces to stably levitate the trains above the track [1]. Com-
pared with traditional wheel rail trains, Maglev trains have
many advantages such as safety, comfort, low noise, small
turning radius, strong climbing ability [2]. ElectroMagnetic
Suspension (EMS) structure is one of the major suspension
modes and has been applied in some popular Maglev trains,
such as Transrapid, HSST and CMS [3]–[5]. The schematic
diagram is shown in Fig. 1.
As any EMS system is open loop unstable, the control

design, which aims at maintaining the desired gap, plays
an important role. Regulation of EMS Maglev train with
the desired performance, in terms of transient response and
steady-state error, is quite challenging. There are two major
reasons for undesired performance.

a A precise model for EMS systems is very hard to obtain
due to highly nonlinear behaviours coming from the
structure of the system with its magnetic field dis-
tribution, quality of rails, complex motion of trains,
the existence of various uncertainties and disturbances
due toweather conditions, driving conditions and so on.

b The structure of Maglev system and its controllers
would limit the closed loop performance. For exam-
ple, bogies based train structure [6], [7] and decen-
tralized control structure [8], [9] have been widely
used in Maglev trains due to its simplicity in design
and implementation. The diagram of decentralized con-
trol structure is presented in Fig. 2. The decentralized
control structure implies that each suspension point
has its own control loop and typically all suspension
points share the same identical control structure and
parameters.
This requires that the parameters of decentralized con-
trol has to be designed with very robust properties to
ensure that the worst case among all suspension points
can work. That is very challenging.

This paper aims at addressing this challenging problem by
designing a robust controller for a half bogie with a decen-
tralized controller structure as shown in Fig. 2.

A simple way to control such a system with the consid-
eration of decentralized structure is to use two identical PID
controllers, by trial and error method. A typical performance
of such a decentralized PID control is shown in Fig. 3.
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FIGURE 1. Schematic diagram of EMS type Maglev train.

FIGURE 2. Decentralized control system for a half bogie.

FIGURE 3. The performance of decentralized PID controller.

From these results, it can be seen that the decentralized
PID controllers work fine. Each suspension point can be sta-
bly suspended in the setting gap (6mm). Fig. 3 also shows that
with the same initial condition, the same set-point, the same
PID parameters, the transient response and the steady state
response of Suspension Point 1 (SP1) and Suspension Point 2
(SP2) are quite different. The possible reasons are weight
distribution of the half bogie is uneven and the two suspension
points are not exactly parallel to the track.

Moreover, it is observed that the steady-state of SP2 is
around 0.25mm when the gap of SP1 is set to track
a square wave signal with period 1mm to simulate

external disturbances. This indicates that the mechanical cou-
pling does exist.

It is well-known that PID controller design for nonlinear
systems is a model-free method. Trial and error method is
the only choice. Without the model, the tuning of controller
parameters becomes challenging.

Other than model-free PID controllers, extended state
observer (ESO) [10]–[13] and active disturbance rejection
controller (ADRC) can be treated as another model-free con-
trol design. The idea of ESO is to use less model informa-
tion to estimate the state of the system as well as unknown
lumped uncertainties including modelling uncertainties and
disturbances. More precisely, when the model of engineer-
ing system has some structure and the lumped uncertain-
ties are treated as the ‘‘black-box’’, the ESO can estimate
these lumped uncertainties using measurements. In general,
the ESO is a high gain observer, which can estimate relatively
slow time-varying unknown disturbances [14]–[18]. Once
the lumped uncertainties are identified, the ADRC [19]–[23]
can cancel the influence of uncertainties and achieve robust
stability.

Of course, there are other model-free methods that can
be implemented on-line, such as adaptive fuzzy control and
adaptive neural network [24]–[26]. As many weights are
needed to tune on-line, it requires extensive computational
resources and sufficient rich persistent excitation signals to
ensure the convergence. These two conditions are not easy to
be implemented on Maglev system with given performance
requirement and computation powers.

When the system is repetitive over a finite time inter-
val, iterative learning control (ILC) law can be used as a
model-free or data-driven technique to ‘‘learn’’ from the
past experience as in [27]. However, the Maglev system is
not repetitive in finite time, though it might be repetitive in
space. Hence the standard ILC technique cannot be directly
applied.

On the other hand, based on the limited model information,
some model-based controllers have been proposed to design
the decentralized controllers for EMS systems with the aim
to improve the robustness of the closed loop in the presence
of modeling uncertainties and disturbances. For example,
disturbance observers have been used in the combination
of model-based control design, see [28]–[30] and references
there in. When the uncertainties are matched, sliding-mode
control (SMC) can use high-gain controllers to cancel the
effect of the worst case disturbance as indicated in [31]–[34].
The high-gain nature of SMC usually leads to high-frequency
chattering, which is not preferred in Maglev systems. Other
techniques include estimating and rejecting the disturbances
using internal model principal (IMP) when the disturbance
model is known [35].

Usually, neither model-based design nor model-free design
can work well for complicated engineering systems such
as EMS. This work exploits the model of a half bogie from
physical principles of EMS Maglev systems. The control
input consists of two parts. The first one is a standard
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feedback controller, which aims at stabilizing the system
using the information of the model. By estimating uncertain-
ties and disturbances on-line, the second controller tries to
cancel the effect of uncertainties and disturbances, so that the
stability of the closed loop system is ensured. It is worthwhile
to highlight that as only the gap information is measured
from sensor, an observer is design to estimate the state, which
will be used in the first controller, as well as the unknown
modelling uncertainties and disturbances.

This technique is a kind of model-guided data-driven con-
troller as both the knowledge of the model and measured data
are used. It is shown in the main result (Theorem 1) that by
tuning the parameters of the proposed model-guided data-
driven controller properly, the stability of the closed loop
can be guaranteed with the desired tracking performance.
In other words, for any given domain of attraction and the
ultimate bound, it is possible to find the suitable parame-
ters to ensure that any trajectory starting within the given
the domain of attraction will converge to the given ultimate
bound.

The proposed model-guided data-driven method is dif-
ferent from the well-known model-free technique which is
a combination of ESO and ADRC [19], [22]. In the pro-
posed control methods, two controllers are used. The first
controller is designed based on the nominal model. The
role is to ensure the boundedness of the trajectories under
mild assumption. The second control is designed with the
help of ESO. The role of it is to cancel the influence of
lumped uncertainties once the ESO estimate them. It is also
noted that since only part of the state is measurable, the role
of ESO is to estimate the unknown state as well as the
unknown uncertainties. It is noted that since the state is
uniformly bounded due to the existence of the first controller,
the design of ESO and the second control becomes relatively
easier.

The reminder of the paper is organized as follows. Mod-
elling of the half bogie with the consideration of mechanic
coupling is presented in Section 2. Section 3 presents a
general problem formulation, the model-guided data-driven
control design and stability analysis. Simulations and exper-
imental results shown in Section 4, followed by conclusion
in Section 5.

The following notations are used in this paper. The set
of real numbers is denoted as R. For any x ∈ Rn,
|x| =

√
xtx. For any 1 > 0, the set 1x is defined

as 1x = {x ∈ Rn ||x| ≤ 1| .}. The set L∞ denotes the
set of all bounded signals such that for any u(·) ∈ L∞,
esssupt≥0 |u(t)| < ∞ with its norm is defined as ‖u‖∞ :=
esssupt≥0 |u(t)|. The set C[0,∞) denotes the set of all con-
tinuous signals defined on the interval [0,∞).

A continuous function γ : R≥0 → R≥0 belongs to class-
K if it is strictly increasing and γ (0) = 0. It is of class- K∞
if it belongs to class-K and is unbounded. A function β :
R≥0×R≥0→ R≥0 is of class-KL if β(·, t) belongs to class-
K for each t ≥ 0 and β(s; ·) is decreasing to zero for each
s > 0 [36].

II. MODELS FOR A HALF BOGIE
In order to understand the characteristics of the Maglev
system, a first-principle based model is needed. Compared
with traditional current feedback, flux feedback [37]–[39]
for EMS has some advantages. For example, the model of
suspension will be less nonlinear, making it relatively easier
to design a model-guided controller.

In order to generate sufficient large magnetic force as
soon as possible to balance the gravity, a cascade controller,
which consists of the fast inner flux loop and the slow outer
gap loop, has been widely used [40], [41]. The outer loop
regulates the gap. The inner loop drives the magnetic flux
density response quickly to desired reference from the gap
loop to generate enough magnetic force. The inner loop is
an electrical system. It uses the PWM signal as a control
input to generate current in EMS to form the magnetic field.
It can be modeled as a simple first order system. A standard
proportional control can work [33],[36]. The outer loop is a
mechanical system, which is quite hard to model due to the
existence of disturbances. In this paper, the design of the outer
loop is mainly considered.

A schematic diagram of a half bogie is represented
in Fig. 4. Here m is the mass of the half bogie, l is the
length of the half bogie, c is the gap between the center of
the half bogie and the track, θ is the pitching angle of the half
bogie, δ1 and δ2 are the gap of SP1 and SP2 measured by
the gap sensors. F1 and F2 are the equivalent electromagnetic
force of SP1 and SP2, H1 and H2 are the equivalent force
exerted by the cabin on SP1 and SP2 through the secondary
system.

FIGURE 4. The schematic diagram of a half bogie.

In order to design a model-guided controller, a half bogie
model is needed. The following standard assumptions are
used to simplify the modeling procedure.

1) Leakage flux can be ignored.
2) The magnetic saturation can be ignored.
3) Magneto-resistance in core and track can be ignored.
4) The motion of rolling and yawing between electromag-

nets and the track is negligible.
5) The elastic vibration or dynamic deformation of the

track is negligible.
6) The half bogie structure is simplified as a uniform

mass rod, the gravity center and geometric center
coincide.

7) The electromagnetic force of each suspension point is
equivalent to a concentrating force.
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With these assumptions, themechanical and kinetic equations
of the half bogie can be described as:

mc̈ = mg+ H1 + H2 − F1 − F2 (1)

J θ̈ = F2 ·
l
4
· cos(θ)− F1 ·

l
4
· cos(θ )

+H1 ·
l
2
· cos(θ)− H2 ·

l
2
· cos(θ ), (2)

where J is the rotary inertia of half bogie along z-axis.
The geometric relationships provide the following

relations:

c =
1
2
δ1 +

1
2
δ2 (3)

d1 =
3
4
δ1 +

1
4
δ2 (4)

d2 =
1
4
δ1 +

3
4
δ2. (5)

As the gap is very small relative to the length of the half
bogie, pitch angle is very small. That is,

θ ≈ sin[θ ] =
δ1 − δ2(t)

l
(6)

cos(θ ) ≈ 1. (7)

The electromagnetic force of each suspension point can be
described as:

F1 =
2A
µ0

B21 (8)

F2 =
2A
µ0

B22, (9)

where µ0 is permeability of vacuum, A is the effective area
of per electromagnet, B1 and B2 are magnetic flux density
of SP1 and SP2 respectively. Magnetic flux density can be
calculated by the relationship [38]:

B1 =
µ0Ni1
2d1

(10)

B2 =
µ0Ni2
2d2

, (11)

where N is the number of coil of per electromagnet, i1 and i2
are current in electromagnets of SP1 and SP2 respectively..
H1 and H2 of the secondary system can be described

as [28], [39]

H1 = M1g− ks(δ1 − δc1 −1ce1)− cs(δ̇1 − δ̇c1) (12)

H2 = M2g− ks(δ2 − δc2 −1ce2)− cs(δ̇2 − δ̇c2), (13)

where M1g and M2g are the gravity applied by the cabin
to the SP1 and SP2 through the secondary system. Here
δc1 and δc2 are the position of the cabin relative to SP1 and
SP2 respectively. Variables ks and cs are the elastic coefficient
and damping coefficient of the secondary system respec-
tively. Notions of 1ce1 and 1ce1 are the initial deformation
of the secondary system above SP1 and SP2.

The load of actual system is usually varied, but a nominal
value M exists as

M1 = M2 =
M
2
. (14)

Moreover, it is denoted

N1 = g(1+
M
m
)+ kxks(δc1 +1ce1)+ kxcs(δ̇c1)

+ kzks(δc2 +1ce2)+ kzcs(δ̇c2) (15)

N2 = g(1+
M
m
)+ kzks(δc1 +1ce1)+ kzcs(δ̇c1)

+ kxks(δc2 +1ce2)+ kxcs(δ̇c2), (16)

where

kx =
1
m
+

l2

4J
, (17)

kz =
1
m
−

l2

4J
. (18)

With the consideration of all relationships mentioned and
disturbances (w1 and w2), the following state-space represen-
tation of the half bogie model is obtained:

ṡ =


0
N1
0
N2

+


0 1 0 0
−kxks −kxcs −kzks −kzcs
0 0 0 1
−kzks −kzcs −kxks −kxcs

 s

+



0 0

−
2A
mµ0
−

Al2

4Jµ0
−

2A
mµ0
+

Al2

4Jµ0
0 0

−
2A
mµ0
+

Al2

4Jµ0
−

2A
mµ0
−

Al2

4Jµ0

u+w (19)

y =
[
1 0 0 0
0 0 1 0

]
s, (20)

where

s= [ x1 x2 z1 z2 ]T = [ δ1 δ̇1 δ2 δ̇2 ]T (21)

u = [ u1 u2 ]T = [B21 B22 ]
T (22)

y = [ y1 y2 ]T = [ x1 z1 ]T (23)

w = [ 0 w1 0 w2 ]T (24)

A half model is thus obtained, it can be seen that the states
of each suspension point are affected by the other suspen-
sion point, there is a coupling effect between suspending
points.
Remark 1: Although this model is able to capture the

mechanical coupling in a half bogie, it is still too simple
to fully describe the behaviors of the half bogie due to
the fact that some assumption cannot hold. Moreover, dis-
turbances always exist. Even though better models includ-
ing the other direction motion (heave, slip, roll, pitch, and
yaw) [42], [43] are available, these models are still, might
be better, approximations of the Maglev system, which con-
sists of the dynamics of the track, the secondary system
and so on [39], [44]. Each component is highly nonlinear.
Thus it is very challenging to build a relatively accurate
model so that mature model-based control algorithms are
applicable. ◦
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Considering the complexity of the system including model
uncertainty, external disturbance and so on, a general model
can be written as

ẋ1 = x2
ẋ2 = G1(x1, x2)+ bu1 + f1(t, x1, x2, z1, z2,w1, u1, u2)
y1 = x1
ż1 = z2
ż2 = G2(z1, z2)+ bu2 + f2(t, x1, x2, z1, z2,w2, u1, u2)
y2 = z1

(25)

where G1(·, ·) and G1(·, ·) are the known part of the system
model. In Maglev system, G1(·, ·) = G2(·, ·) = G0 =

g
2 (1+

M
m ), while f1 : [t0,∞)×R×R×R×R×R×R×R→ R
and f2 : [t0,∞)×R×R×R×R×R×R×R→ R are
unknown but continuous function. Here b is a known non-
zero constant, it can be chosen as b = − 2A

mµ0
−

Al2
4Jµ0

. The
initial state is denoted as

x1(t0)
x2(t0)
z1(t0)
z2(t0))

 = s0 ∈ R4, ∀t ≥ t0 ≥ 0. (26)

For any given u ∈ L∞, the solutions of (25) are denoted as
s(t; t0, s0, u(·)).
This paper uses a new design strategy. That is, a stabilizing

controller is used to stabilize the known part of the system
from modeling. The robustness of this stabilizing controller
(model-guided) will ensure the boundedness of the trajecto-
ries. Once the trajectories are bounded, it is possible to design
an ESO to estimate the unknown part including various mod-
eling uncertainties, disturbances as well as coupling among
two points. Then an extra ADRC will only cancel the effect
of unknown part.

III. MODEL-GUIDED DATA-DRIVEN DECENTRALIZED
CONTROL DESIGN
For the system (25), two extended states x3 and z3 which
represent unmodeled uncertainties and external disturbances
including the coupling can be defined as

x3 = f1(t, x1, x2, z1, z2,w1, u1, u2), (27)

z3 = f2(t, x1, x2, z1, z2,w2, u1, u2), (28)

In the presence of an extended state, the system (25) can be
presented as 61 and 62 which are de-coupled and identical.

61 :


ẋ1 = x2
ẋ2 = x3 + bu1 + G0

y1 = x1

(29)

62 :


ż1 = z2
ż2 = z3 + bu2 + G0

y2 = z1.

(30)

For simplicity, it is denoted that

ẋ3 =
∂f1
∂t
+
∂f1
∂x1

ẋ1 +
∂f1
∂x2

ẋ2 +
∂f1
∂z1

ż1 +
∂f1
∂z2

ż2

+
∂f1
∂w1

ẇ1 +
∂f1
∂u1

u̇1 +
∂f1
∂u2

u̇2 − bu̇1

= fo,1(t, x1, x2, z1, z2,w1, u1, u2). (31)

ż3 =
∂f2
∂t
+
∂f2
∂x1

ẋ1 +
∂f2
∂x2

ẋ2 +
∂f2
∂z1

ż1 +
∂f2
∂z2

ż2

+
∂f2
∂w2

ẇ2 +
∂f2
∂u1

u̇1 +
∂f2
∂u2

u̇2 − bu̇2

= fo,2(t, x1, x2, z1, z2,w2, u1, u2). (32)

The control objective is to design a control input u such
that the output y is able to track the desired set-point (r1, r2)
in the presence of modeling uncertainties, disturbances and
coupling.

It is noted that two subsystems are very identical, we only
focus on the design of the first subsystem. The similar analy-
sis is applied to the second subsystem.

A. MODEL-GUIDED CONTROL DESIGN
Firstly, considering the system 61 (29), which contains
known parts G1(·, ·) and unknown part f1(·, ·, ·, ·, ·, ·, ·, ·) (or
the extended state x3)

If without considering the unknown uncertainties and dis-
turbances, assuming f1(·, ·, ·, ·, ·, ·, ·, ·) = 0, the system 61
will be

61,m :


ẋ1 = x2
ẋ2 = bu1 + G0

y1 = x1.

(33)

If the state is measurable, the following model guided con-
troller is proposed

u1,m =
1
b
[−G0 − k1(x1 − r1)− k2x2]. (34)

If constants k1 and k2 are selected such that the matrix

A :=
[

0 1
−k1 −k2

]
is a Hurwitz, this controller can regulate

the model (33). However, the state x2 cannot be measured
directly. An observer is needed.
Remark 2: If A is Hurwitz, for any symmetric positive

definite matrix Q ∈ R2×2, there exists a symmetric positive
definite matrix P ∈ R2×2 such that ATP+ PA = −Q. ◦

With u1,m, the nominal system 61,m(33) will be stable.
Due to the existence of uncertainties, disturbances and the
coupling, this control law is not good enough. If the state x3
can be estimated, then the following ADRC control law can
work

u1,d = −
x3
b
. (35)

If an appropriate observer can estimate x2 and x3 by x̂2 and
x̂3 from measured data, this leads to the following Model-
guided Data-driven Decentralized Controller:

u1,md =
1
b
[−G0 − k1(x1 − r1)− k2x̂2 − x̂3] (36)
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For simplicity, the following notations are considered: e1 =
x1 − r1, x =

[
x1 x2 x3

]T , x̂ = [
x̂1 x̂2 x̂3

]T and x̃ =[
x̃1 x̃2 x̃3

]T . x̂1, x̂2 and x̂3 are the estimation of x1, x2 and
x3, x̃1 = y1 − x̂1, x̃2 = x2 − x̂2, and x̃3 = x3 − x̂3.
In order to make sure that the control input u1 is

able to be implemented, the following assumption is
needed:
Assumption 1: For any given positive pair (1s,1u), any

G0 and r1, there exists a positive pair (k∗1 , k
∗

2 ) such that for
any x ∈ 1s and x̂ ∈ 1s, for any |k1| ≤ k∗1 and |k2| ≤ k∗2 ,
u1,md ∈ 1u.
Remark 3: This assumption shows that it is possible to

choose an appropriate bound for k1 and k2 for (36) so that
if the state and estimated state are bounded, the control
input will be bounded by a given value. This assumption
plays an important role in the closed loop stability analy-
sis. It indicates that the feedback gain cannot be arbitrar-
ily designed even though the system (25) is completely
controllable. The most difficult of stability analysis in this
structure is the coupling between the controller and the
observer. As the system is not linear, the standard Separa-
tion Principle for linear systems cannot be applied. Thus
the observer and control law will affect each other, leading
to possibly unstable performance. Hence the focus of this
paper is to show semi-global performance, in which both
the system and the observer work in a given compact set.
Without fixing a compact set, the proposed method cannot
work. ◦

Furthermore, in most applications, the rate of control input
is bounded. Then the following filtered control input can be
applied to the system:

u̇1 = τ1(−u1 + u1,md ), (37)

where τ1 is the frequency of the low-pass filter.
It is also assumed that the low-pass filter is well-designed.
Assumption 2: Let ε0 ≥ 0 be given, there exists τ1,a >

0 such that for any τ1 ≥ τ1,a, esssupt≥0
∣∣u1 − u1,dm∣∣ ≤

ε0. Moreover, for any given τ1,b such that for any τ1 ∈
(0, τ1,b], there exists a positive constant 1du such that
esssupt≥0 |u̇1| ≤ 1du.
Remark 4: This assumption indicates that the cut-off fre-

quency of the filter cannot be too small, leading to a large ε0.
Moreover, the cut-off frequency cannot be too large, leading
to a large 1du. By fixed ε0, and selecting τ1,b > τ1,a,
for any τ1 ∈ [τ1,a, τ1,b], there exists 1du such that
esssupt≥0

∣∣u1 − u1,md ∣∣ ≤ ε0 and esssupt≥0 |u̇1| ≤ 1du.
If
∣∣u̇1,md ∣∣ is small, the filter is not needed. Consequently, it has

ε0 = 0 and u1 = u1,dm. ◦

These two assumptions play an important role in the
design of ESO as well as the stability analysis. These
two assumptions indicate that other than only providing
stability for known part of the system (25), the con-
trol input u1 needs to be bounded with a bounded
derivative.

FIGURE 5. Block diagram of ESO.

B. THE DESIGN OF ESO
Note that in order to estimate the state signals of 61 (29) and
62 (30), the following assumptions are needed.
Assumption 3: The disturbances are bounded and slowly

time-varying, i.e. there exists a positive constant pair
(1w,1dw) such that ‖w‖∞ ≤ 1w and ‖ẇ‖∞ ≤ 1dw.
Assumption 4: For a given 1s, 1u, 1du, 1w, and 1dw,

there exist positive constants L1, L2, L3, L4, L5, L6, L7, L8
and L9, M1, M2, M3, M4, M5, M6, M7, M8 and M9 such that
|f1| ≤ L1,

∣∣∣ ∂f1t ∣∣∣ ≤ L2,
∣∣∣ ∂f1x1 ∣∣∣ ≤ L3,

∣∣∣ ∂f1x2 ∣∣∣ ≤ L4,
∣∣∣ ∂f1z1 ∣∣∣ ≤ L5,∣∣∣ ∂f1z2 ∣∣∣ ≤ L6,

∣∣∣ ∂f1w1

∣∣∣ ≤ L7,
∣∣∣ ∂f1u1 ∣∣∣ ≤ L8 and

∣∣∣ ∂f1u2 ∣∣∣ ≤ L9,

|f2| ≤ M1,
∣∣∣ ∂f2t ∣∣∣ ≤ M2,

∣∣∣ ∂f2x1 ∣∣∣ ≤ M3,
∣∣∣ ∂f2x2 ∣∣∣ ≤ M4,

∣∣∣ ∂f2z1 ∣∣∣ ≤ M5,∣∣∣ ∂f2z2 ∣∣∣ ≤ M6,
∣∣∣ ∂f2w2

∣∣∣ ≤ M7,
∣∣∣ ∂f2u1 ∣∣∣ ≤ M8 and

∣∣∣ ∂f2u2 ∣∣∣ ≤ M9, for
any ‖u‖∞ ≤ 1u, ‖u̇‖∞ ≤ 1du, |s| ≤ 1s, ‖w‖∞ ≤ 1w and
‖ẇ‖∞ ≤ 1dw.

Assumption 4 indicates that, there exists a positive con-
stant L > 0 and M > 0 such that nonlinear mapping
fo,1(·, ·, ·, ·, ·, ·, ·, ·) is uniformly bounded by this constant L
and fo,2(·, ·, ·, ·, ·, ·, ·, ·) is uniformly bounded by this con-
stant M provided that Assumptions 1, 2, 3 and 4 hold.

Firstly, 61 (29) is considered, a third-order ESO (6̂1) thus
is designed to estimate the state, uncertainties and distur-
bances. A new ESO is proposed for the system (29).

˙̂x1 = x̂2 + C1x̃1
˙̂x2 = x̂3 + x̃1 + C2x̃2 + bu1 + G0
˙̂x3 = x̃2 + C3x̃3 (38)

where Ci > 0, i = 1, 2, 3 are the design parameters.
The control input is coming from (37). From (29) and (38),
the estimation error dynamics can be written as

˙̃x1 = x̃2 − C1x̃1
˙̃x2 = x̃3 − x̃1 − C2x̃2
˙̃x3 = fo,1(t, x1, x2, z1, z2,w1, ũ1, ũ2)− x̃2 − C3x̃3 (39)

where fo,1(t, x1, x2, z1, z2,w1, ũ1, ũ2) is defined in (31) and∣∣x̂(0)∣∣ ≤ 1s, where 1s is some constant such that this
constant can be satisfied. From (39), we can compute

x̃2 = ˙̃x1 + C1x̃1
x̃3 = ˙̃x2 + x̃1 + C2x̃2 (40)

The block diagram of ESO is shown in Fig. 5.
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Remark 5: Different from the existing ESO in litera-
ture [14]–[17], instead of using only measurable x̃1, the esti-
mation error of x̃2 and x̃3 are calculated to provide feedback
in the design of ESO. ◦

Remark 6: It is noted that in practice, calculating numeri-
cally of these two signals from x̃1 might be problematic due
to existence of measurement noises. Appropriate low-pass
filters are thus needed in implementation at the cost of the
existence of steady-state error. In the analysis, it is assumed
that ˙̃x2 and ˙̃x3 can be calculated with enough accuracy. ◦

C. MODEL-GUIDED DATA-DRIVEN CONTROL DESIGN
With the help of ESO, a data-driven control can be designed
for the system61 (29) to cancel the influence of disturbances.
The closed loop system with the controller coming from (36)
to (37) becomes

ė1 = x2
ẋ2 = G0 + x3 + b

(
u1,md + (u1 − u1,md )

)
= x3 − k1e1 − k2x̂2 − x̂3 + b(u1 − u1,md ). (41)

After the computation, the dynamics of the x2 can be
re-written as

ẋ2 = −k1e1 − k2x2 + k2x̃2 + x̃3 + b(u1 − u1,md ). (42)

Let e =
[
e1
x2

]
. Consequently, it has

ė =
[

0 1
−k1 −k2

]
e

+

[
0

x̃3 + k2x̃2 + b(u1 − u1,md )

]
. (43)

LetAs =
[

0 1
−k1 −k2

]
andBs =

[
0
1

]
.With the consideration

of ESO, the closed loop system (43) can be re-written as

ė = Ase+ Bs
(
x̃3 + k2x̃2 + b(u1 − u1,md )

)
˙̃x1 = x̃2 − C1x̃1
˙̃x2 = x̃3 − x̃1 − C2x̃2
˙̃x3 = fo(t, x1, x2, z1, z2,w1, u1, u2)− x̃2 − C3x̃3 (44)

The stability of the system (44) is presented in the follow-
ing theorem.
Theorem 1: Assume that Assumptions 1, 2, 3 and 4 hold.

It is assumed that the parameters k1 and k2 are selected
satisfying Remark 2. For any given positive parameter set
(1u,1du,1s,1w,1dw, ν) and any positive parameter C1,
there exist βe ∈ KL, positive constants τ1,a, τ1,b, C∗2 > 0 and
C∗3 > 0 such that for anyC2 ≥ C∗2 ,C3 ≥ C∗3 , τ1 ∈ [τ1,a, τ1,b]
the following inequalities holds∣∣∣∣[ e(t)x̃(t)

]∣∣∣∣ ≤ βe (∣∣∣∣[ e(0)x̃(0)

]∣∣∣∣ , t)+ ν (45)

for any

∣∣∣∣[ e(0)x̃(0)

]∣∣∣∣ ≤ 21s.

Proof: Let a Lyapunov candidate be W (e, x̃) = V1(e)+
V (x̃) = eTPe+ 1

2 x̃
2
1 +

1
2 x̃

2
2 +

1
2 x̃

2
3 .

For any ν ≤

∣∣∣∣[ ex̃
]∣∣∣∣ ≤ 21s. For the given ν, there exists

ε0 ≤
νλmin(Q)
8|b||P||Bs|

such that −λmin(Q)4 eT e + 2 |e| |P| |Bs| |b| ε0 ≤
0. Here λmin(Q) is the smallest positive eigenvalue of sym-
metric positive definite matrix Q. Then for this given ε0,
using Remark 4, the bound for τ1,a and τ1,b can be obtained
accordingly.

The derivative of W (·, ·) along the trajectories of (44)
becomes

Ẇ (e, x̃) = eT (ATs P+ PAs)e

+ (eTPBs + BTs Pe)
(
x̃3 + k2x̃2 + b(u1 − u1,md )

)
+ x̃1 · x̃2 − C1 · x̃21 + x̃2 · x̃3 − x̃2 · x̃1 − C2 · x̃22
+ x̃3fo1 − x̃2 · x̃3 − C3 · x̃23

≤ −eTQe+ 2|e||P||Bs| (|x̃3| + k2|x̃2| + b|ε0|)

−C1x̃21 − C2x̃22 −
C3

2
x̃23 −

(
C3

2
x̃23 − L · |x̃3|

)
.

≤ −
λmin(Q)

4
|e|2 − C1x̃21

−

(√
λmin(Q)
2

|e| −
2

√
λmin(Q)

|P||Bs||k2||x̃2|
)2

−

(√
λmin(Q)
2

|e| −
2

√
λmin(Q)

|P||Bs||x̃3|
)2

−

(
C3

2
x̃23 − L · |x̃3|

)
. (46)

For any L there exists C∗2 =
4(|P||Bs||k2|)2
λmin(Q)

and C∗3 =

max
{
4(|P||Bs|)2
λmin(Q)

, 2L
ν

}
such that for anyC2 > C∗2 andC3 > C∗3 ,(

C3
2 x̃

2
3 − L · |x̃3|

)
≥ 0.

Consequently, it leads to

Ẇ (e, x̃)≤−
λmin(Q)

4
|e|2−C1x̃21

−

(√
λmin(Q)
2

|e| −
2

√
λmin(Q)

|P||Bs||k2||x̃2|
)2

−

(√
λmin(Q)
2

|e|−
2

√
λmin(Q)

|P||Bs||x̃3|
)2

(47)

for any ν ≤

∣∣∣∣[ ex̃
]∣∣∣∣ ≤ 21s. This completes the proof. ◦

Remark 7: Theorem 1 shows that by combining medel-
guided state feedback control with data-driven control
designed on the basis of ESO, the closed loop system is well-
behaved, that is, by tuning the parameters, the ultimate bound
ν can be made arbitrarily small. ◦

Similar to 61, the same control method can be designed
for 62 (30), then the control objective can be achieved,
the output y will be able to track the desired set-point (r1, r2)
and the effects of the uncertainties, disturbances and coupling
will be reduced. The block diagram of model-guided data-
driven control for a half bogie of the maglev system is shown
in Fig. 6.
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FIGURE 6. Block diagram of model-guided data-driven control for a half
bogie of the maglev system.

The design principle of this model-guided data-driven
method is different from the traditional model-free ADRC
with ESO. The design procedure of the proposed method is:

(1) Design a stabilizing state-feedback controller for a
nominal model.

(2) Design an ESO using on-line measurements to estimate
the needed state and lumped uncertainties

(3) Design an ADRC to only cancel the influence of
lumpled uncertainties.

This procedure is different from the traditional ADRC with
ESO, which has the following design procedure:

(1) Design an ESO to estimate unknown state and lumped
uncertainties

(2) Design an ADRC to cancel the effect of lumped uncer-
tainties and provide a full-state feedback to stabilize the
system using the estimated states.

In this traditional design, the ideal case is to design ESO
and ADRC separately. In general, this separation design is
hard. It is possible if the gain of ESO is sufficiently large
so that the response of ESO is much faster than that of
ADRC. Moreover, this separation design also requires that
the ESO can work. In the literature of ESO [12], [13], [22],
it is always required that in order to ensure that the
ESO can work, the response of the system with some input
signals needs to be uniformly bounded. In general, designing
an ESO requires that the system is open loop stable.

On the other hand, in the proposed model-guided data-
driven method, the model plays an important role to design
the stabilizing controller and ensure the boundedness of tra-
jectories. The role of ADRC is only to cancel the lumped
uncertainties while ESO is to used to estimate the lumped
uncertainties and the needed state. As the ESO only estimate
unknown part, it is not a surprise that a low gain ESO can
work. It is noted that even though the stabilizing controller
and the ARDC with ESO are designed separately, none of
them needs a high gain to separate the time-scale. Both ESO
and the stabilizing controller can work slowly as observed in
some applications.

This design philosophy is widely used for engineering
practitioners. It is usually hard to directly used data-driven
method without knowing anything about the system.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed model-
guided data-driven control law, it is tested using simulations
and a small scale half bogie experimental platform, as shown
in Fig. 7.

FIGURE 7. Small scale half bogie experiment platform.

The half bogie consists of SP1 and SP2. The control objec-
tive is to levitate SP1 and SP2 to the desired set-point.

This platform can be modeled by (19) with parameters
identified using experimental results and standard system
identification techniques such as least square estimation. The
values of parameters are summarized in Table 1.

TABLE 1. Parameters identified for the small scale half bogie experiment
platform.

With the consideration of physical and hardware limita-
tions, some variables are constrained in some closed set.
That is, δ ∈ [1mm, 10.5mm], δ̇ ∈ [−50m/s, 50m/s], δ̈ ∈
[−50m/s2, 50m/s2] and B ∈ [0T , 0.7T ].

In order to test the effectiveness of the proposed model-
guided data-drivenmethod, both simulations and experiments
are arranged. The role of simulations is to show performance
of the proposed method with respect to different tuning
parameters in order to provide insights for engineers. The
robustness of the proposed model-guided data-driven con-
troller is tested when different loads are added to the system.
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Moreover, two comparisons will be performed. The first
one is the proposedmodel-guided data-drivenmethod is com-
pared with model-guided control design using the nominal
model. The second compares the proposed model-guided
data-driven method with the standard ADRC with ESO.

Consistent with the experimental platform, the simula-
tion model consists of the model (19), chopper and filtering
blocks. Each subsystem is approximated by a lower order
linear system with parameters identified from well-designed
experiments. Measurement noises are considered in simula-
tions as white noises (zero mean and variance is 0.01mm).
Same as the experimental platform, the sampling frequency
of the system and the controller is set to 4000Hz. The initial
gap of the two suspension points is set to 10.5mm and the set
point is selected as r = 6mm. In order to check the robustness
of the proposedmodel-guided data-driven algorithm, after the
suspension points are stabilized at the set point, the SP1 is set
to track a square wave signal with period 1 mm. Appropriate
saturation functions are used in order to take the physical
constraints of the platform into consideration.

A. SIMULATION RESULTS
1) DESIGN PROCEDURE
The design procedure in simulation is consistent with that
stated in Theorem 1, as summarized as follows:
(1) Design the model-guided state feedback controller

based on the nominal model. As the input is already
bounded from the physical constraints. The feed-
back gains k1 and k2 need to satisfy Remark 2 and
Assumptions 1.

(2) Design the ESO frommeasurements with the ADRC to
estimate system state and lumped uncertainties on-line.
Tuning parameters are: (C1,C2,C3, τ1).
Usually, C1, C2 and C3 should be large enough to
ensure that the estimated state converges sufficiently
fast to the a smaller neighborhood of the true state
(or ultimate bound ν in Theorem 1). Due to existence
of measurement noises, larger values of (C1,C2,C3)
would amplify noises. This can degrade the tracking
performance and even lead to unstable performance.
There is a design trade-off.
The parameter τ1 in filtering is designed on the basis
of Theorem 1. The tuning guideline was highlighted in
Remark 4 to satisfy Assumptions 1 and Assumptions 2.

(3) Re-tuning parameters based on the closed loop per-
formance and control effort. This procedure will be
repeated until good performance is obtained.

2) MODEL-GUIDED CONTROL DESIGN
Based on the nominal model, firstly, a state feedback control
is designed. By trial and error method, using the complex
simulation model (including (19) and other blocks appeared
in experimental setup, the parameters in simulations are set as
k1 = 4500, k2 = 500 to achieve a reasonably good tracking
performance.

In order to test the robustness of the controller, SP1 is
required to track a square wave while SP2 will track the
desired set-point. The simulation results are shown in Fig. 8.

FIGURE 8. Tracking performance using model-guided feedback control
(simulation).

It is observed, as the model-guided feedback control law
is based on the nominal model, which is much simper than
the simulated model, the boundedness of the trajectories is
guaranteed. The tracking performance is reasonable, though
oscillations and steady-state errors exist. This results have
demonstrate the limitation of model-guided control design.
Some data-driven techniques are needed to enhance the
robustness with respect to disturbances and uncertainties.

This model-guided control law with the same tuning
parameters are used in our model-guided data-driven control
design with ESO.

3) MODEL-GUIDED DATA-DRIVEN CONTROL WITH ESO
After designing the state feedback control, the ESO is
designed with the proposed model-guided data-driven con-
troller u1. The parameters are selected as (C1,C2,C3, τ1) =
(300, 300, 300, 600) which obviously satisfy conditions
needed in Theorem 1. The simulation results is shown
in Fig. 9.

It can be shown that when the data-driven controller is
combined with the model-guided controller, the performance
of the closed loop system has been improved.

Next, it will discuss the effects of tuning parameters on the
performance of the proposed control algorithm.

a: EFFECT OF (C1,C2,C3)
Let the model-guided feedback gain is fixed as before and
τ = 300 be fixed. In order to test the effects of these three
tuning parameters, three sets of parameters are selected.

a C1 = C2 = C3 = 500
b C1 = C2 = C3 = 300
c C1 = C2 = C3 = 100
The simulation results in terms of tracking are shown

in Fig. 10 for two suspension points. The performance of
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FIGURE 9. Tracking performance using the proposed control (simulation).

FIGURE 10. Tracking performance using the proposed control law with
different (C1,C2,C3) (simulation).

ESO in terms of estimation errors of SP1 and SP2 is shown
in Fig. 11. The control input in terms of PWM signals for
SP1 and SP2 are presented in Fig. 12.

It is observed that large values of (C1,C2,C3) will lead
to faster convergence speed of the estimated state to the
actual state. However, due to the existence of white noises,
larger values of (C1,C2,C3) will introduce large variations
of control input, leading to larger PWM signals and requiring
more energy consumption from actuators.

b: EFFECT OF τ1
The role of the tuning parameter of τ1 is to ensure that the
control input signal cannot change too fast. When τ1 tends
to∞, there is no filtering for the control input signal, leading
to a smaller ultimate bound (ν in Theorem 1). A smaller
τ1 indicates that the high frequency component of the con-
trol input is attenuated, leading to a relatively more smooth

FIGURE 11. Estimation performance using the proposed control law with
different (C1,C2,C3) (simulation).

FIGURE 12. Control effort using the proposed control law with different
(C1,C2,C3) (simulation).

control input. This filter also can reject high-frequency
noises. However, as some information of control input is
attenuated, this might lead to a larger ultimate bound. There
is another design trade-off.

In order to test the effects of τ1, three sets of
τ1 are selected with other tuning parameters are fixed as
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FIGURE 13. Tracking performance using the proposed control law with
different τ1 (simulation).

(C1,C2,C3) = (300, 300, 300) and themodel-guided control
law is also fixed as before.

a τ1 = 1800
b τ1 = 600
c τ1 = 180
The simulation results in terms of tracking are shown

in Fig. 13 for two suspension points. The performance of
ESO in terms of estimation errors of SP1 and SP2 is shown
in Fig. 14 The control input in terms of PWM signals for
SP1 and SP2 are presented in Fig. 15

It can be seen that the selection of τ1 in filter does not affect
the estimation performance ESO, but it affects the tracking
performance and the control input signal. A smaller param-
eter τ1 will lead to larger tracking error. But the variation of
control input signal is smaller.

c: ROBUSTNESS WITH RESPECT TO DIFFERENT LOADS
In order to show the robustness of the proposed method,
different loads are added to the half-bogie. Three sets of the
loads M are selected.

a M = 16kg
b M = 22kg
c M = 31kg
The parameters are selected as (k1, k2,C1,C2,C3, τ1) =

(4500, 500, 300, 300, 300, 600). Simulation results in terms
of tracking are shown in Fig. 16 for two suspension points.
The performance of ESO in terms of estimation errors of
SP1 and SP2 is shown in Fig. 17 The control input in
terms of PWM signals for SP1 and SP2 are presented
in Fig. 18.

This shows that the proposed model-guided data-driven
control algorithm is quite robust to different loads. It can
be seen that the tracking performance, estimation perfor-
mance of ESO and not sensitive to the load change. As the
load increases, it leads to a larger lumped uncertainty.

FIGURE 14. Estimation performance using the proposed control law with
different τ1 (simulation).

FIGURE 15. Control effort using the proposed control law with different
τ1 (simulation).

Consequently x̂3 and ẑ3 have to increase, resulting in larger
control input signals PWM1 and PWM2.

4) MODEL-FREE ADRC WITH ESO
As pointed out early, the proposed model-guided data-driven
method is quite different from the traditional ADRC method
with ESO. The parameters of the proposed method are fixed
as in the previous subsection.
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FIGURE 16. Tracking performance using the proposed control law with
different loads (simulation).

FIGURE 17. Estimation performance using the proposed control law with
different loads (simulation).

As the Maglev system is an open loop unstable system,
designing an ESO directly is quite challenging. It is noted
that when all physical constraints are removed in simulations,
the model-free ADRC with ESO cannot work as ESO cannot
ensure the convergence of estimation error when the system
is an open loop unstable.

FIGURE 18. Control effort using the proposed control law with different
loads (simulation).

With the consideration of the physical constraints from the
system and appropriate saturation functions, the boundedness
of trajectories can be ensured. With the fixed initial condi-
tion, by trying different values of (C1,C2,C3), it is observed
that when (C1,C2,C3) are smaller than (100, 210, 220)
and τ1 is smaller than 360, the estimation error of the
ESO is divergent. If ESO is not working, the model-free
ADRC cannot work either. However, the proposed model-
guided data-driven method can less sensitive to the choice
of (C1,C2,C3).
In the case when both methods are working, the same

tuning parameters set is used to do a fair comparison. The
tracking performance of the proposed model-guided data-
driven method and the model-free ADRC with ESO is shown
in Fig. 19. The performance of ESO in terms of estimation
errors of SP1 and SP2 is shown in Fig. 20 The control input
in terms of PWM signals for SP1 and SP2 are presented
in Fig. 21

It can be seen that two methods with the same tuning
parameters have similar tracking performance. The estima-
tion performance of ESO for two state signals (x̂1(ẑ1), x̂2(ẑ2)
is quite similar. Obviously, as two designs estimate differ-
ent lumped uncertainties x̂3(ẑ3). The ESO in the model-free
setting estimates larger lumped uncertainties, which include
the nominal model as can be seen in Fig. 20. Consequently,
the control input of the proposed model-guided data-driven
method is smaller than the model-free method as shown
in Fig. 21. This feature is quite attractive as reducing energy
consumption of actuators is always preferred.

B. EXPERIMENT RESULTS
Similar to simulation results, a few different experiments
were arranged to test the performance of model-guided con-
trol law, the proposed model-guided data-driven method, and
model-free method.
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FIGURE 19. Tracking performance: comparing the proposed control law
with the model-free method (simulation).

FIGURE 20. Estimation performance: comparing the proposed control law
with the model-free method (simulation).

1) MODEL-GUIDED CONTROL DESIGN
Based on the known information of the half bogie model and
a large number of experiments, a reasonable set parameters
has been obtained which can achieve a reasonable tracking

FIGURE 21. Control effort: comparing the proposed control law with the
model-free method (simulation).

FIGURE 22. Tracking performance using model-guided controller
(experiment).

performance. Parameters for experiments are selected as k1 =
3900, k2 = 400, which is slightly conservative than the
simulations to avoid possible unacceptable overshoots in the
tracking.

Experimental results are shown in Fig. 22. From experi-
ment results, it can be seen that the model based controller
can ensure the boundedness of trajectories, But the tracking
performance is not good with obvious steady-state errors.
The coupling effect between two suspension points is also
apparent as the tracking performance of SP1 is quite different
from that of SP2.

When comparing the simulation results and experiment
results, it is not hard to conclude that the simulation model,
which is identified from experiments, is still not sufficiently
accurate.
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FIGURE 23. Tracking performance and control effort using the proposed
controller (experiment).

FIGURE 24. Estimation performance of SP1, the proposed method
(experiment).

2) MODEL-GUIDED DATA-DRIVEN CONTROL WITH ESO
Similar to simulations results, by a large number of exper-
iments, a set of parameters is selected as (k1, k2,C1,C2,

C3, τ1) = (3900, 400, 100, 100, 100, 1000), in which the
feedback gain is obtained from model-guided design. Exper-
imental results in terms of tracking and control effort are
shown in Fig. 23. Fig. 24 and Fig. 25 show the performance
of estimation using ESO for SP1 and SP2 respectively. It is
noted that traditionally, the gap velocity is estimated using
the numerical differentiation of the gap measurements. Com-
pared with the numerical differentiation method, ESO can
better estimate the gap velocity.

The robustness of the proposed model-guided data-driven
method is verified by adding one load with 6kg to SP1.
Experimental results of SP1 is shown in Fig. 26, which indi-
cates the robustness of the proposed method.

FIGURE 25. Estimation performance of SP2, the proposed method
(experiment).

FIGURE 26. Performance of the proposed method with different loads
(experiment).

3) MODEL-FREE ADRC METHOD WITH ESO
In order to compare the proposed model-guided data-driven
method with a model-free method (ADRC with ESO), the
same parameters are selected. Experimental results are shown
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FIGURE 27. Tracking performance: comparing the proposed method with
model-free method (experiment).

FIGURE 28. Estimation performance: comparing the proposed method
with model-free method (experiment).

in Fig. 27, Fig. 28 and Fig. 29. The experimental results are
quite similar to simulation results. This again shows that the
proposed model-guided data-driven method is quite robust
and is able to achieve the good tracking performance with less
control effort, when compared with the model-free method.

FIGURE 29. Control effort: comparing the proposed method with
model-free method (experiment).

V. CONCLUSION
In order to improve the control performance of Maglev sys-
tems, a new model-guided data-driven decentralized control
has been designed and implemented using both some knowl-
edge of model and measured data. Based on the half bogie
model, a state feedback controller was designed to stabilize
the system. A new ESO was proposed to estimate unknown
system state and un-modelled uncertainties, disturbances and
coupling from on-line measurements. Based on this ESO,
the effect of un-modeled uncertainties were compensated
by the ADRC. By tuning the parameters of state feedback
controller and ESO appropriately, the closed loop system
can track the desired gap arbitrarily close in the presence
of uncertainties, disturbances, and coupling. Simulation and
experimental results have validated the effectiveness of the
proposed method.
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