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ABSTRACT Multi-task learning has received great interest recently in the area of machine learning. It shows
a considerable capacity to jointly learn multiple latent relationships hidden among tasks, and has been
widely used in data mining and computer vision problems. In this paper, we propose a new multi-task
based collaborative linear regression framework to address the image classification problem, which allows
the class-specific and collaboratively shared latent structure components to be explored simultaneously.
The proposed framework takes multi-target regression of each class as a task to transfer shared structures
among them. To be more efficient and adaptive, the class-wise nonlinear subspace is also learned in this
framework to earn inter-class discrimination and model adaptability. The proposed framework provides
a unified and flexible perceptiveness for jointly learning the nonlinear projected features and regression
parameters. Furthermore, a numerical scheme via iterative alternating optimization is also developed to
solve the novel objective function in the proposed framework and guarantee the convergence. Extensive
experimental results tested on several datasets demonstrated that our proposed framework outperforms
existing competitive methods and achieves consistently high performance.

INDEX TERMS Linear regression, multi-task learning, image classification, nonlinear feature, numerical
optimization.

I. INTRODUCTION
Image classification is a fundamental issue in mid-level
vision tasks, and has attracted tremendous attention in the
area of computer vision and pattern recognition during the
past few decades [1]–[7]. Based on whether the labels for
the training set are unknown or known, the image classifi-
cation task can be divided into two branches, namely unsu-
pervised classification and supervised classification. Without
any label information, unsupervised image classification can
be seen as a clustering problem, which is realized by some
distance metric or knowledge transferring method in feature
space [8]–[10]. For the supervised classification problem,
the classifiers were first trained with the help of a training set.
A well trained classifier can then predict the label for a query

sample [11]–[14]. In this paper, we focus on the supervised
image classification problem.

Linear regression is a classical and popular method for
solving the supervised image classification problem, which
is easy to implement and provides competitive performance
with low computational cost [15]–[18]. In general, it trains
one classifier for each and every class with a linear model
by enforcing the training samples close to their label vectors.
However, the classical linear regression model working on
original training images often cannot obtain a satisfactory
classification result. On the one hand, there exist some
representation gaps between images themselves and their
labels. On the other hand, it is difficult to present a sta-
ble and consistent feature in the original image space.
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Hence, some user-specific local feature extraction methods,
such as Gabor [19], [20], SIFT [21] and HOG [22], are
utilized in the linear regression model to obtain more stable
performance and improve robustness. Although these user-
specific features help to improve classification performance,
there remain some drawbacks such as large computational
cost, low discrimination ability, and low adaptation for dif-
ferent datasets. With the development of subspace learning,
the deficiencies of the user-specific feature extraction meth-
ods have been improved progressively. Subspace learning,
which aims to project high-dimensional data to a much lower
dimensional feature space through dimensionality reduction,
such as principal component analysis (PCA) [23] and linear
discriminative analysis (LDA) [24], [25], has been consid-
ered a significant step in many practical vision applications
since the features for visual tasks are always of very high
dimensionality. That is, if we train the classification model
on them, it not only needs too much computational source but
will also encounter the so-called dimensionality curse, which
will lead to inferior performance with so high dimensionality.
Fortunately, subspace learning-based dimensionality reduc-
tion methods can alleviate the aforementioned problem and
make the features of the data to be processed in the subsequent
operations more compact. Therefore, it has been successfully
applied in many visual tasks and studied extensively in the
literature [11], [26], [27]. Among these studies, the linear
dimensionality reduction method has been widely used due
to its ease in implementation and affordable computational
cost.

In recent years, multi-task learning has drawn increasing
research efforts and shown remarkable performance in many
challenging problems of machine learning and computer
vision [28], [29]. In the framework of multi-task learning,
multiple relevant tasks work synergistically, since the param-
eters for these tasks can be propagated and learned simultane-
ously. It is noted that some shared structural information and
latent relationships hidden in these relevant tasks are mined
sufficiently to be instrumental in improving the performance
of the final results. Moreover, for some weakly supervised
and semi-supervised problems, multi-task learning is also
an effective strategy to tackle the situations where only a
small amount of training samples are available for each
task. For many recent applications of multi-task learning,
they are generally established for high-level visual tasks on
relevant but distinct datasets (e.g. person re-identification
from cross-view cameras [30]), or different features of the
same dataset (e.g. action recognition with multiple modality
attributes [31]).
Though many improvements have been achieved on the

conventional linear regression models, there are some short-
comings existed to be further studied. Firstly, due to the
discrete structure of label vectors, the gap between instances
their labels will degrade the regression parameters learning.
Secondly, to better adapt the relationship of input and output,
the projection is generally learned to project the data samples
to another more suitable subspace. However, the projection

learning is implemented from the holistic view in conven-
tional ones. It means that we learn only one projection for
all the samples in dataset, and the samples from different
classes are projected into the same subspace. By doing so,
the significant discrimination may be lost, which will lead
to inferior classification performance. Thirdly, for multi-task
learning-based classification, the knowledge are transferred
across the relevant datasets or different modalities of same
dataset. However, the potential knowledge hidden in different
classes is ignored and hardly exploited. Furthermore, in some
cases, we cannot obtain the relevant datasets or multiple
modalities of dataset. Nevertheless, it is worth noting that
relevant information still exists among different classes of the
same dataset for a common classification issue, which can be
sufficiently exploited when it is combined with an elaborated
regression model and subspace projection.

Hence, to overcome the above problems, we take each
class as a task and explore appropriate relevant tasks for
different classes in the same dataset. With the relevant tasks,
we want to establish a collaborative classification framework
based on multi-task learning to share the knowledge across
different classes. Firstly, to bridge the gap between structure
of label and instance, we do not force the data to regress to
the label vector, but convert the classification problem into a
multi-target regression problem with the projected data itself.
Hence, it is called a self-regression framework in our method.
Secondly, we learn multiple nonlinear projections for differ-
ent classes, which will not only earn extra discrimination but
also facilitate the adaption of self-regression model.Thirdly,
to mine the shared and special structures in different classes,
we introduce the multi-task learning framework to our
self-regression model. It is noted that regression target is self-
projected instance in our proposed model. That is, the regres-
sion target includes more image structures but not discrete
binary values as label, which could be synthesized with class-
special structures and basic structures. Nevertheless, the basic
structure could be shared and transferred among different
classes. To this end, we take the self-regression of each class
as a task and expect to transfers the shared knowledge among
them. By jointly learning the shared collaborative regression
parameters, class-specific regression parameters, and class-
wise nonlinear subspace projections, our proposed frame-
work can obtain more promising results.

Based on the above considerations, in this paper we
propose a nonlinear projected collaborative self-regression
framework based on multi-task learning to address the image
classification problem. Unlike conventional regression meth-
ods, we do not force the data to regress to the label vector,
but convert the classification problem into a multi-target
regression problem with the projected data itself. Hence,
it is called a self-regression framework in our method.
Furthermore, in the proposed framework, shared collabora-
tive regression parameters, class-specific regression parame-
ters, and class-wise nonlinear subspace projections are jointly
learned iteratively. Such a joint optimization plays an impor-
tant role in learning two kinds of latent regression parameters
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and transferring useful knowledge among different classes.
To further model the intrinsically intertwined relationships
between the input and output, we also induce a nonlinear
operation to the learned subspace projection, which can help
to reveal the potential nonlinear correlation.

The contributions of this work can be summarized as the
following four aspects:
• By converting conventional label regression into multi-
target regression, we develop a multi-task based uni-
fied self-regression framework, which is capable of not
only transferring the latent knowledge among classes
to construct the shared regression parameters, but also
learning the class-specific regression parameters and
discriminative subspace projection to dimensionality
reduction.

• We introduce nonlinear operations to the projected sub-
space, which can better describe the potential inter-
twined relationships between the input and output.

• We develop an iterative numerical scheme based on
alternating optimization, which enables solving the
novel jointly learning objective function in the proposed
framework efficiently.

• We also provide some analysis of the architecture of our
framework from the perspective of neural networks and
demonstrate its novelty.

The rest of the paper is organized as follows. In section II,
we briefly review some related works. Section III presents
the details of our proposed framework and the developed
numerical scheme. Extensive experiments are presented in
section VI. Finally, we conclude the paper in section V.

II. RELATED WORKS
A. SUPERVISED IMAGE CLASSIFICATION
To our best knowledge, we follows the following three main
branches of supervised image classification in recent litera-
tures: a) constructing a sparse representation-based classifi-
cation model; b) learning the deep-level and effective feature
descriptor for training samples, and then training the classi-
fiers with them; c) training the classifier and feature extractor
jointly in a unified framework, which facilitates their mutual
benefit. Next, we will briefly describe some previous related
works in these branches.

Sparse representation-based image classification is a pop-
ular scheme, which is focused on how to establish effective
sparsity model and code the query sample with few relevant
labeled samples. For instance, John Wright et al proposed
a general sparse representation-based classification (SRC)
framework to address image-based object recognition prob-
lem [32]. In their method, without the dictionary learning,
the overcompleted dictionary is comprised of the training
samples themselves. With the l1-norm minimization, the dis-
criminative nature of sparse representation is exploited to
perform classification by representing the test sample as a
combination of those training samples in the same class.
Experiments on face recognition demonstrate that their pro-
posed method shows an advantage on both classification

accuracy and robustness to occlusion. Zhang et al. [33],
presented a collaborative representation based classification
method with l2-norm, which pointed out that the powerful
performance of SRC is due to the collaborative represen-
tation among training samples but not sparsity based on
l1-norm. Considering the co-sparse model, Shekhar et al. [17]
investigated a classification method based on analysis cod-
ing models. In their work, an analysis operator is learned
to extract the sparsity components of training samples as
features. Then, an SVM-based classifier is trained on these
features. Nevertheless, without embedding the discriminative
information into the operator learning, the performance is not
optimal. To reveal the intrinsic mechanism of the SRC-based
classification, Cai et al [34] proposed an approach based
on probabilistic collaborative representation to address the
pattern recognition problem, in which the probability that a
test sample belongs to the subspace of all classes is analyzed
and computed. Moreover, a special collaborative classifier
is developed which can maximize the likelihood that a test
sample belongs to certain class. More extensive SRC-based
methods for pattern recognition can be studied in the
literature [35]–[38].

Feature description is a key technique in high-level visual
tasks. It has been successfully used in many image classi-
fication problems and widely studied in recent works. For
local features, SIFT and HOG are two popular descriptors
in representing images due to their powerful ability to cap-
ture the distinguishable local details. Due to the high com-
putational complexity, the local features are rarely used to
train the classifier directly but integrated into a global image
representation. To this end, Lazebnik et al. [39] extended
the conventional Bag of Features (BoF) image representation
by dividing the image into many sub-regions with multiple
scales and integrating their feature descriptors in a so-called
Spatial Pyramid Matching (SPM) way. Wang et al. [40]
proposed a linear locality coding method to take place of
the conventional VQ coding in SPM, which could project
the descriptor into a more effective local-coordinate system
and better preserve its discrimination. To further reduce the
unavoidable information loss in the coding process, in [41],
a distance coding scheme was studied, where the local fea-
tures were first transformed into more discriminative distance
vectors, and then the distance vectors were further encoded
into sparse codes to capture the salient features. Qi et al. [42]
exploited the Pairwise Transform Invariant (PTI) principle
and investigated a novel co-occurrence binary pattern feature.
Moreover, the proposed feature can be flexibly extended
to incorporate multi-scales and showed some advantage in
robustness to geometric and photometric variations.

Though some competitive results have been obtained by
these methods, there is still some room for improvement. It is
noted that feature extraction and classifier training are two
separate phases in the feature description-based classification
method, because it only pays attention to feature discrimi-
nation and effectiveness but ignores the interaction between
feature subspace learning and classifier training.
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Compared to the above two categories, the jointly learning
feature and classifier can optimize each other in the same
framework iteratively. Jiang et al. [43] suggested that label
information can be used to guide dictionary learning, with
which amore discriminative sparsity feature can be extracted.
Based on this consideration, they proposed to learn the dis-
criminative dictionary and train the classifiers in a unified
framework simultaneously. Inspired by the label propaga-
tion based semi-supervised learning, a non-negative sparse
graph structure is learned in [44]. Subsequently, the label
prediction and projection learning are integrated into a lin-
ear regression, where the regression and graph learning are
simultaneously performed to guarantee an overall optimum.
Yuan and Tang [45] assumed that there was a shared space for
the original data space, and that the linear prediction should
be contributed from both the original and shared space. As a
consequence, they proposed a spectral-spatial shared linear
regression and obtained impressive performance on hyper-
spectral image classification. More recently, Zhen et al. [46]
explored the inter-target correlations via a robust low-rank
learning, and established a general framework to jointly
model the nonlinear feature extraction with kernel trick and
regression matrices learning. The achieved high performance
showed the effectiveness of their proposed method for multi-
variate regression problems.

B. MULTI-TASK LEARNING
Recently, multi-task learning (MTL) is attracting incremental
interest in computer vision [47], [48]. The main advantage
of MTL is that some shared information can be propagated
across multiple tasks, which can be utilized to improve
the performance of many machine learning problems.
Meanwhile, a number of existing promising techniques,
such as dictionary learning and sparse coding, can also
be flexibly integrated with MTL [49]. By exploring task-
specific incoherence and low rank structure, Su et al. [30]
proposed an MTL-based method with low-rank attribute
embedding, which has been successfully applied to person re-
identification. Hu et al. [31] found that features from different
channels shared some similar hidden structure and proposed
a heterogeneous feature learning method incorporating MTL
for activity recognition. Jing et al proposed a novel framework
to leverage the different types of visual features and prede-
fined attributes, which can well construct their connections
by transferring the shared knowledge among multiple exter-
nal source [50]. In [51], a novel dictionary learning method
with MTL is proposed to address the person re-identification
problem, in which the joint semantic and latent attributes
are modeled to realize the challenging unsupervised domain
adaptation.

Motivated by the above mentioned methods, we establish a
MTL-based framework inspired by the fact that some shared
structures exist in different classes of the same dataset, which
is generally ignored in previous works.Meanwhile, to charac-
terize the potential relationship between the input and output,
nonlinear subspace projection learning is also introduced into

our proposed framework to obtain further improvement. It is
worth noting that aforementioned conventional MTL-based
label regression framework for cross-dataset or multi-modal
features of the same dataset cannot directly take different
classes as related tasks due to only positive instances exist-
ing in each task. As a consequence, to integrate with MTL,
we convert image classification into a multi-target regression
problem, where the regression parameters for each class are
matrices rather than vectors, as in conventional methods.

III. DETAILS OF OUR PROPOSED FRAMEWORK
In this section, we present details of our proposed method.
A novel objective function is presented to implement
MTL-based collaborative self-regression with nonlinear pro-
jection. Next, a numerical scheme is developed to obtain
a reliable solution with guaranteed convergence. Moreover,
a discussion will be presented to show the architecture of our
framework from the perspective of neural networks.

A. NOVEL OBJECTIVE FUNCTION
For clarity, we first list some notations used in our paper.
The training data set is denoted as {Xi}Ci , where Xi ∈ R

d×Ni

represents a training subset of ith class with Ni instances,
and d denotes the instance dimensionality. For each training
instance xk ∈ Rd , let yk ∈ RC be its label vector, where C
denotes the total number of classes in the training set. Fur-
thermore, if xk is chosen from the cth class(c = 1, 2, 3 . . . C),
only the cth entry of yk is one and all others are zero. For
example if xk is chosen from the second class, its label yk
is denoted as yk = [0, 1, 0, . . . ]T . Let W ∈ RC×d be the
regression parameters as W =

[
wT1 ,w

T
2 , . . . w

T
c
]T , where

each wc denotes the regression vector for the cth class and
can be seen as the classifier for the cth class in the regression-
based classification problem. With these notations, the gen-
eral training model for W with linear regression can be for-
mulated as follows:

min
W
‖Y −WX‖2F + λφ (W ) (1)

where Y = [y1, y2, . . . yk , . . . ] denotes the label matrix for
all instances (X = [x1, x2, . . . xk , . . .] ) in training data set,
φ (W ) presents certain constraint on the parameters, ‖·‖F
denotes the Frobinus norm and λ is the positive scalar to
balance the two terms.

By enforcing the training data close to their labels, Eq.(1)
aims to learn the regression parameters from a set of instances
statistically. Then, the label vector yt of a test instance xt can
be predicted with the parameters as ŷt = Ŵ xt , and the label
ĉt can be derived with ĉt = argmin

c

(
ŷ(c)

)
.

However, it is very difficult to learn the effective regres-
sion parameters in the original data space and there is enor-
mous computational cost due to the high dimensionality of
instances. Hence, subspace learning is usually incorporated
into the regression model in the following form:

min
W ,P
‖Y −WPX‖2F + γ ϕ (P)+ λφ (W ) (2)
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whereP ∈ Rp×d denotes the subspace projectionmatrix, and
satisfies p� d to implement the dimensionality reduction by
projecting the original data to a low dimensional space. ϕ(P)
denotes the constraint on P to control its projection structure,
γ and λ are two positive scalars to balance the three terms.
By optimizing W and P alternatively in the same objective
function, they benefit each other to obtain an overall optimal
solution, which will help to gain better classification accuracy
with suitable learned projection subspace. For more clarity,
Eq.(2) is equivalent to the following form:

min
{wc}Cc=1,P

C∑
i=1

Ni∑
k=1

(
yk (i)− wTi Pxk

)
+ γ ϕ (P)+ λφ (W ) (3)

where yk (i) is a scalar and denotes the i th entry of the k th
instance. From the equivalent Eq.(3), we can see that, in fact,
with the training instances from all the classes, Eq.(2) trained
each regression vector by constraining its relevant positive
instances to 1 and negative ones to 0.

In light of the superiority of model in Eq.(2), our goal is
to introduce nonlinear projection and extend it with a multi-
task learning framework. Nevertheless, the form in Eq.(2)
cannot be extended and incorporated into our proposedMTL-
based framework directly. This is because, in our proposed
framework, we aim to explore the shared structure among the
different classes in the same dataset. It follows that the data
from each class (Xi) are taken as a task. In this way, there
exist no negative instances in each task and the labels for
the instances of each task are all 1. That is, the mentioned
label prediction formulation ĉt = argmin

i

(
ŷt (i)

)
is no longer

effective due to the fact that the classifier wi can not regress
a smaller value for instances from other classes, because it is
trained without negative instances in each task.

Hence, to realize our idea, we convert the con-
ventional label-based regression into multi-target self-
regression (MTSR), which can be extended and incorporated
into our proposed MTL-based framework. To the best of
our knowledge, this is the first attempt to explore the shared
structure of different classes in the same dataset with MTL.
The MTSR with MTL is formulated as follows:

min
{Wi,Pi}Ci=1,WS

C∑
i=1

(
‖A (Xi)− (WS +Wi)PiXi‖2F

+ϕ (Pi)+ λ ‖Wi‖
2
F
)
+ λS ‖WS‖

2
F (4)

where A (Xi) ∈ RdA×Ni (dA < d) is a designed self-projected
operator, which is used to transform the data matrix Xi to
a low-dimensional self-regression multi-target matrix with
respect to its columns. WS ∈ RdA×p and Wi ∈ RdA×p denote
the regression parameters to explore the shared regression
component among the tasks and the class-specific regression
component, respectively. Pi represents the subspace projec-
tion for the ith class. With the objective function in Eq.(4),
regression parameters and class-specific subspace projections
are learned simultaneously in a unified framework. Also, for
a classification problem including C classes, the first term

in the proposed objective function is a similar task for each
class. By summarizing them, a MTL framework based on
shared parameters is established by transferring the learned
knowledge withWS among the different classes. Unlike con-
ventional label-based regression, in our proposed framework,
the shared and class-specific regression parameters for each
class are no longer vectors but matrices, which are used
to enforce the instances close to their self-regression multi-
target components.

Furthermore, inspired by the success of nonlinear oper-
ations in the neural network, we also introduce a nonlin-
ear operation into our proposed framework to describe the
potential nonlinear relationship between the self-regression
multi-target component and the original data. We reformulate
the objective function in Eq.(4) to the following nonlinear
projection form:

min
{Wi,Pi}Ci=1,WS

C∑
i=1

(
‖A (Xi)− (WS +Wi)2 (PiXi)‖2F

+ϕ (Pi)+ λ ‖Wi‖
2
F
)
+ λS ‖WS‖

2
F (5)

where 2(·) denotes the nonlinear function. In our method,
motivated by [52], two kinds of element-wise nonlinear func-
tion are employed as follows:

21 (t) =
t

1+ e−t
, or 22 (t) = sign (t) Shrinkτ (t) (6)

where t is the scalar variable, sign (t) denotes the sign func-
tion and Shrinkτ (t) = max (|t| − τ, 0).With the achievement
of nonlinear projection in neural network, we hope to the
introduced nonlinear operation can earn extra improvement
by considering the potential nonlinear relation between input
and output. Moreover, in our proposed method, samples are
enforced to regress to its self-projection counterpart but not
the conventional label vector. Hence, the nonlinear feature
should be capable of preserving more structure of original
sample. The above nonlinear functions can be seen as the
extended version of sigmoid function and ReLU function,
which has been applied in the neural network successfully.
In fact, the functions in Eq.(6) implement the nonlinear
shrinkage operation on original feature, which is believed to
preserve more significant structures existed in the original
ones.

To enhance the discrimination of our proposed framework,
the subspace projection is also learned individually. Hence,
the regularization term ϕ (Pi) plays a key role in learning the
suitable discriminative subspace projection. As a direct con-
sequence, in our framework, the form of ϕ (Pi) is considered
as follows:

ϕ (Pi) = γ ‖Pi‖2F + θ‖PiX̄i‖
2
F (7)

where X̄i denotes an instance matrix, which includes all
the instances of the training set except the instances in the
ith class. γ and θ are two positive scalars to balance the two
terms. The first term in Eq.(7) is used to control the power of
Pi, while the second one is used to alleviate the correlation
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between Pi and instances of other classes, which can make Pi
more discriminative.

B. DEVELOPED NUMERICAL SCHEME
In this section, we will develop an iterative numerical scheme
for solving the novel objective function in the proposed
framework, which can monotonically decrease the objective
function with a guaranteed convergence. It is noted that the
minimization problem in Eq.(5) is difficult to solve for all
variables simultaneously due to the non-convexity of the
objective function. Hence, we utilize the alternative optimiza-
tion for efficiently updating them by solving the objective
function with respect to one variable while keeping others
fixed. The details are shown as follows. For separating the
nonlinear operation, we reformulate the objective function as
the following constraint equation:

min
{Wi,Pi,8i},WS

C∑
i=1

(
‖A (Xi)− (WS +Wi)8i‖

2
F

+ ϕ (Pi)+ λ ‖Wi‖
2
F
)
+ λS ‖WS‖

2
F

s.t. 8i = 2(PiXi) , i = 1, 2, . . . ,C (8)

Then, by fixing {Wi,Pi,8i}
C
i=1, weminimize the following

function JWS with respect toWS .

min
WS

C∑
i=1

‖A (Xi)− (WS +Wi)8i‖
2
F + λS‖WS‖

2
F (9)

From Eq.(9), it can be seen that JWS is a convex and dif-
ferentiable function. By forcing its derivative to be zero, the
closed-form solution can be obtained as

∂JWS
∂WS

= 0⇒

W ∗S =

(
C∑
i=1

(A (Xi)−Wi8i)8
T
i

)(
C∑
i=1

8i8
T
i + λS I

)−1
(10)

where (·)T and (·)−1 denote the transpose and inverse matrix
operations. I represents the identity matrix.

Fixing {Pi,8i}
C
i=1 and WS , the class-specific regression

parametersWi can be optimized by the minimization function
JWi in each task as follows:

min
Wi
‖A (Xi)− (WS +Wi)8i‖

2
F + λi‖Wi‖

2
F (11)

Similarly, forcing its derivative to be zero, we can obtain the
closed-form solution for eachWi as

∂JWi
∂Wi
= 0⇒

W ∗i =

(
C∑
i=1

(A (Xi)−WS8i)8
T
i

)(
8i8

T
i +λiI

)−1
(12)

When the regression matrices WS and {Wi}
C
i=1 are fixed,

Eq.(8) can be rewritten as the following individual optimiza-
tion for each pair of Pi and 8i.

min
Pi,8i

‖A (Xi)− (WS +Wi)8i‖
2
F + ϕ (Pi)

s.t. 8i = 2(PiXi) (13)

To further decouple Pi and 8i, we introduce an extra aux-
iliary variable Qi, and convert it into the following equivalent
problem:

min
Pi,8i

‖A (Xi)− (WS +Wi)8i‖
2
F + ϕ (Pi)

s.t. 8i = 2(Qi) , Qi = PiXi (14)

Next, the unconstrained augmented Lagrangian function of
Eq.(14) can be given as

min
Pi,8i,Qi,U1,U2

‖A (Xi)− (WS +Wi)8i‖
2
F + ϕ (Pi)

+
ρ

2
‖8i −2(Qi) ‖2F +

ρ

2
‖Qi − PiXi‖2F

+〈U1,8i −2(Qi)〉 + 〈U2,Qi − PiXi〉 (15)

where 〈·, ·〉 denotes the inner product matrix operation and
ρ is a positive scalar to penalize the approximation between
the two variables. U1 and U2 are two Lagrangian multiplier
matrices. With some algebra, the minimization problem in
Eq.(15) can be solved with the iterative steps as follows.

First, by keeping others fixed, we update 8i within the
tth iteration as follows:

8
(t+1)
i = argmin

8i

‖A (Xi)− (WS +Wi)8i‖
2
F

+
ρ

2
‖8i −2

(
Q(t)i

)
+

1
ρ
U (t)
1 ‖

2
F (16)

With the above quadratic form, the closed-form solution of
the updated 8i can be computed by forcing its derivative to
be zero.

Second, by substituting Eq.(7), Pi can be updated as

P(t+1)i = argmin
Pi

ρ

2
‖Q(t)i − PiXi +

1
ρ
U (t)
2 ‖

2
F

+ γ ‖Pi‖2F + θ‖PiX̄i‖
2
F (17)

Similarly, with the differentiable function in Eq.(17),
the solution can be easily obtained.

Finally, the termQi is solved when Pi and8i are fixed. The
minimization defined in Eq.(15) can be rewritten as

Q(t+1)i = argmin
Qi

ρ

2
‖8i −2(Qi)+

1
ρ
U (t)
1 ‖

2
F

+
ρ

2
‖Qi − PiXi +

1
ρ
U (t)
2 ‖

2
F (18)

Due to the separable form of nonlinear function defined in
Eq.(6), the updated Qi can be computed in an element-wise
manner.

The overall scheme for our proposed framework is pre-
sented in Alogrithm 1.
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Algorithm 1 Iterative Scheme for Solving the Proposed
Framework
Input: Training data set {Xi}Ci=1,self-projected operator
A regularization parameters γ , θ , λ, λS ρ initial random
W (0)
S ,{W (0)

i ,P(0)i ,8
(0)
i }

C
i=1 U

(0)
1 = U (0)

2 = 0, iteration
number T , initial k = 0.
Repeat
1. Calculate matrixW (k+1)

S with Eq.(10);
2. Calculate matrixW (k+1)

i for each task with Eq.(12);
3. for t = 0 to T − 1 do, (i = 1, 2, . . . ,C)

Update 8(t+1)i in subproblem in Eq.(16);
Update P(t+1)i in subproblem in Eq.(17);
Update Q(t+1)i in subproblem in Eq.(18);
Update Lagrangian multipliers:
U (t+1)
1 = U (t)

1 + ρ
(
8
(t+1)
i −2

(
Q(t+1)i

))
U (t+1)
2 = U (t)

2 + ρ
(
Q(t+1)i − P(t+1)i Xi

)
end for

4. For each i, 8(k+1)i ← 8T , P(k+1)i ← PT ,
Q(k+1)i ← QT

5. k ← k + 1;
Until convergence
Output:W ∗S ,{W

∗
i ,P

∗
i }
C
i=1

C. CLASSIFICATION PRINCIPLE AND ANALYSIS OF THE
PROPOSED FRAMEWORK
The details of our framework have been described in previous
subsections. In this subsection, we will show the classifica-
tion principle with respect to our method, and analyze the
proposed framework from the perspective of network archi-
tecture. In our method, the combined regression parameters
with WS and Wi are trained to enforce an instance within the
ith class close to its multi-target counterpart by self-projected
operator. It follows that, with the learned parameters W ∗S
and {W ∗i ,P

∗
i }
C
i=1, a query sample xt can be classified into a

category by the self-regression loss term in our framework as
follows:

l̂t = argmin
i
‖A (xt)− (WS +Wi)2 (Pixt)‖2F (19)

where l̂t denotes the estimated label indicator.
Taking the loss term in Eq.(19) as the classification prin-

ciple, the classification results are greatly influenced by the
residual error between multi-target counterpartA (xt) and the
regression component. It is worth noting that the residual
error may increase when the regression model is only with
the class-specific regression parametersW ∗i due to the limited
training instances and structure information embedded in
them. That is, the shared component generated by W ∗S will
help the class-specific component to force a smaller error,
because some latent shared structures exist in the different
classes. By W ∗S , these shared structures can be transferred
among the classes to facilitate the classification performance.

Considering the success of neural networks in many visual
applications, next we will present some analysis of the

architecture of our framework from the network perspective.
The basic unit of each task to construct the network (frame-
work) in our method is presented in Figure 1. The global
architecture of the proposed MTL-based framework is pre-
sented in Figure 2.

FIGURE 1. The unit structure of our proposed framework for each
instance in i th task.

FIGURE 2. Global architecture of our proposed framework from the
perspective of network.

From Figure 2, we can observe that, in fact, our proposed
framework can be seen as a network architecture with MTL,
which includes input layer, hidden layer and output layer.
The introduced nonlinear projection is used as a neural cell
of the network to model the potential intrinsic relationships
between inputs and outputs. Furthermore, on the one hand,
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the parameter WS is learned across all the tasks to transfer
the shared knowledge among them. On the other hand, Wi
is learned in each task to construct the class-specific compo-
nents. Next, the combination of the shared and class-specific
components will allow better adaption in the loss function,
which is believed to help to improve the performance and
obtain more promising classification results.

IV. EXPERIMENTAL RESULTS
In this section, we will conduct extensive experiments on
four public datasets and one handcrafted dataset constructed
ourselves. The proposed framework will be compared to a
number of existing representative algorithms to evaluate the
performance. Furthermore, the convergence of the developed
numerical scheme will be verified on two test datasets and,
finally, the advantages of our framework are presented and
analyzed.

A. DATASETS DESCRIPTION AND SETTING
1) FACE DATASET
Extended YaleB face dataset includes 2414 frontal images
of 38 persons, each person having approximately 64 images
taken under different lighting conditions. Some sample
images are shown in Figure 3(a). The images used in our
experiment are cropped to 32×32, and the dimensionalities of
nonlinear projection and self-projected operator are reduced
to 300 and 500, respectively. 32 images of each person are
randomly selected as the training instance while the rest are
used as test instances.

FIGURE 3. Some instances from Extended YaleB, COIL20 and USPS.
(a) 20 selected face images from Extended YaleB and 5 images for each
person in a line. (b) 36 selected images from COIL20 and 6 images for
each object in a line. (c) 90 selected images from USPS and 10 images for
each digital.

2) OBJECT DATASET
The COIL20 contains 1440 images from 20 objects, and each
object has 72 images obtained from continuous angles at
an interval of five degrees. Some sample images are shown
in Figure 3(b). In our experiment, all of the images in dataset
are cropped and resized to 32×32. The dimensionalities of
nonlinear projection and the self-projected operator are also
reduced to be 300 and 500, respectively. 36 images of each
object are used for training and the rest are used for testing.

3) HANDWRITTEN DATASET
The USPS dataset has a total of 9298 handwritten digit
images, and the size of each is 16×16. Some sample images

are shown in Figure 3(c). Due to the simple structure of
data USPS, 30 images of each class are used as the training
instances and the remaining ones are used for testing. Due
to the not very high dimensionality of the original images,
we take the images themselves as the self-regression counter-
part, which means that an identity self-projected operator is
used for USPS. The dimensionality of subspace projection is
reduced to 100.

4) SCENE DATASET
The fifteen scene dataset was built gradually by [11], [39],
and [53], and has 15 scene categories, including bedroom,
coast, forest, highway, industrial, inside city, kitchen, living
room, mountain, office, open country, store, street, suburb,
and tall building. Some sample images are shown in Figure4.
For each category, there are 210 to 410 images.Following the
protocol in [39], the three levels of SPM with SIFT feature
for each image is adopted as the input in our experiment.
The dimensionalities of nonlinear projection and the self-
projected operator are also reduced to be 300 and 500 respec-
tively. 100 images per category are used for constructing the
training set and the rest are used for constructing the test
set. Compactly, we take scene-15 as fifteen scene categories
dataset in experiments.

FIGURE 4. Some instances from Scene-15. we presets only 6 scene
categories and 8 selected sample images for each category.

5) WSU HIGH-ORDER SPECTRA (WSU-HOS) DATASET
We collect a new hand-crafted dataset to evaluate the com-
pared algorithms.We name it the ‘‘WSUHigh-order Spectra’’
dataset and it can be used for evaluating performance for
modulation recognition problems. Some sample images are
shown in Figure 5. This dataset contains 600 high-order spec-
tra images of communication signals with 6 different kinds of
modulation in Gaussian and Rayleigh channels respectively.
Within each channel, there are 100 images per class, which
are generated by the method in [54] and [55]. For each class,
the communication signals aremodulated in the sameway but
with differing channel noise power, widely known as additive
white Gaussian noise (AWGN). More specifically, in each
class, there are 20 images of communication signals for signal
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TABLE 1. The comparison classification results(%) on different datasets.

to noise ratios of 0dB, 5dB, 10dB, 15dB and 20dB respec-
tively. The size of the images in WSU-HOS is 16×16. The
self-regression counterpart are also the instances themselves
due to their not very high dimensionalities. The dimension-
ality of nonlinear projection is reduced to 50. For Gaussian
channel, 5 images of each class are used for training and
the rest are used for testing. We refer to it as WSU-HOS-G.
For Rayleigh channel, 10 images of each class are used for
training and the remaining are used for testing. We refer to it
as WSU-HOS-R.

FIGURE 5. Some instances from WSU-HOS. (a) 180 selected images within
Gaussian channel and 30 images of each modulation in every two lines.
(b) 180 selected images within Rayleigh channel and 30 images of each
modulation in every two lines.

B. EVALUATION RESULTS
In our experiments, the shared regression parameters W (0)

S
and class-specific parameters {W (0)

i }
C
i=1 are initialized by

randomGaussian matrices. The regularization parameters are
tuned experimentally and set empirically for all of the experi-
ments as γ = 10−3, θ = 10−6, ρ = 0.1, λ = λS = 0.02. The
total iteration steps for inner and outer loop in Algorithm 1
are both set to 20. The self-projected operator inAlgorithm 1
is simply implemented by PCA. We compared our proposed
approach with the existing representative methods including
SRC, collaborative representation-based classification (CRC)
in [32], probabilistic collaborative representation classifica-
tion (ProCRC) in [34], nonnegative graph regression(NGR)
in [44], SPM+SVM in [39], linear locality coding (LLC)
in [40], LLC with distance coding (LLCDC) and LLC with
both of distance coding and SIFT (LLCDCSIFT) in [41]. Our
methods with the two kinds of nonlinear functions in Eq.(6)
are named as ours with21 and22 respectively. All the exper-
iments are run 5 times and the average classification results
with standard deviation are reported in Table 1 and Table 2.
Due to the scene diversity of Scene-15, for clarity,
we also present its confusion matrix of classification results
in Figure 6.

TABLE 2. The comparison classification results(%) on Scene-15.

FIGURE 6. The confusion matrix of classification results of Scene-15.

From Table 1, it can be observed that our proposed
approach significantly outperforms the compared methods
and consistently achieves the best classification accuracy on
all of the datasets. In the compared methods, the collaborative
correlation of instances is exploited intuitively. Nevertheless,
the deep-level potential relationships in the more suitable
subspaces are not employed sufficiently. Due to the joint
learning of the regression parameters and nonlinear subspace
projection, our model better explores the inter-class intrinsic
difference statistically and achieves greater discrimination
than the others. For scene classification, we take the local
SIFT with SPM in [34] as the input features of comparison
methods. Comparing the results for scene-15 in Table 2,
we can observe that our approach can still achieve compet-
itive performance on the scene classification task. The classi-
fication accuracy of our approach is only slightly lower than
that of the LLCDCSIFT. Nevertheless, the LLCDCSIFT are
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told specially in [36] that it introduce the extra LLCwith local
SIFT into LLCDC and concatenated them as the final feature.
That is, more features are used to facilitate discrimination.
So, to be comparable, we also concatenated the extra LCC
with local SIFT to our proposed method. Its classification
results are presented as ours-LSFT in Table.2. The superior
classification results on scene-15 also demonstrate that some
latent shared structure information indeed exists among dif-
ferent scene categories. With the MTL framework in our
approach, it is effectively learned from multiple tasks and
transferred among classes to enable the performance on the
scene classification problem.

TABLE 3. The comparison classification results(%) on Extended YaleB
with a few training instances.

TABLE 4. The comparison classification results(%) on COIL20 with a few
training instances.

To further evaluate the performance, we also compare
our method to some state-of-the-art semi-supervised clas-
sification methods with only a few training instances.
The experiments are done on Extended YaleB and
COIL20 respectively. The classification results are shown
in Table 3 and Table 4. The numbers in the parenthesis
denotes the number of training instances. The state-of-the-
art methods include, subspace clustering with latent low-rank
representation (SCLLR) [11], subspace clusteringwith robust
low-rank representation (SCRLRR) [56], semi-supervised
learning based on non-negative low rank and sparse graph
(SLNNLRS) [57], and Robust subspace clustering via non-
negative low rank representation (RSCNNLRR) [58]. From
the results of Table 3 and Table 4, it can be observed that
our algorithm consistently achieves the best performance on
classification tasks with only a few training instances. This
is due to the fact that our MLT-based framework outperforms
the comparison methods in exploring the latent relationships
among instances and is more suitable to solving scenarios
with limited available training data by transferring knowledge
among tasks.

Next, to evaluate the speed, we take the experiments on
Extended YaleB as examples and show the running time
of comparison methods in Table 5. The experiments are

TABLE 5. The running time of comparison methods on Extended YaleB.

performed on Matlab 8.3.0 on a computer with Intel(R)
Core(TM) i5-5200 CPU(2×2.20GHz), 8GB memory and
Windows 10 operating system. By the results, we can see
that the speed of CRC and ProCRC is more quickly than
other methods, because the iteration is not needed in these
two methods. NNGR obtained the worst result due to the
large computation of low rank representation. Though the
quadratic minimization is modeled for each parameter, our
proposed method need some more time than most of compar-
ison methods. It is because that many individual parameters,
such as projection and regression matrix, need learning for
each class respectively, which will cost extra computation.

FIGURE 7. Visualization results on test instances of Extended YaleB. Left
shows the original face images. Middle shows the shared components
extracted by WS . Right shows the class-specific components extracted
by Wi .

C. DISCUSSION ON ADVANTAGE OF MTL
To illustrate the advantage of introducing MTL in our pro-
posed framework intuitively, we show some visualization
results on the Extended YaleB dataset in Figure 7. For more
clarity, we take the identity operator as A in this experiment.
That is, the self-regression component is the face image itself.
From Figure 7, we can observe that the shared structure
components extracted with WS presents some special infor-
mation, which can be learned from all of the tasks, such
as imperceptible illumination variation, global facial sketch
and fine structures existing in different persons. In fact, these
structures are tremendously helpful for class-specific com-
ponents to further decrease regression residual error. Mean-
while, the decreased residual error can significantly facilitate
higher classification performance due to the loss function-
based classification principle (Eq.19) adopted in our frame-
work. Nevertheless, the shared structures cannot be learned
sufficiently from only a certain class itself due to the limited
instances in each class. Hence, thanks to theMTL framework,
the latent shared structures are collaboratively learned and
transferred to mutual benefit among classes.

To evaluate the individual effectiveness of shared and
class-specific parameters respectively, we test the classifi-
cation performance when the proposed model is with only
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TABLE 6. The classification accuracy(%) of proposed method with only
one kind of regression parameter.

one of them. The accuracies are presented in Table 6. From
Table 6, it can be observed that the performance with both
of the regression parameters are better than with only any-
one of them. It is due to the fact that collaborative shared
structures and class-specific structures can be employed
simultaneously to synthesis the self-projected component.
Furthermore, the results also shows that the accuracy withWi
is a little higher than that withWS . In our opinion, it is because
that the regression object is the self-projected counterpart
of sample but not a binary label vector here. So, it will be
effectiveness to train respective regression matrix for each
class to be adaptive to the complex self-projected objective
component.

D. CONVERGENCE AND PARAMETERS
In this section, some analysis will be discussed on the param-
eters and convergence of our proposed model respectively.
For testing the effectiveness of parameters, we still conduct
experiments on Extended YaleB with nonlinear function 21
for analyzing. In our proposed model, we introduce the λ and
λS to constrain the regression parameters matrices, which can
control the generality ability of themodel. In the experiments,
these two parameters are both selected from {0, 0.02, 0.2, 2}.
The classification accuracy with pair of varying values are
presented in Table7. It can be observed that performance is
not obvious sensitive to λ and λS , and robustness with most
of parameter couples.

TABLE 7. The classification accuracy(%) varying on Extended YaleB with
regularization parameters λ and λS .

The parameters γ and θ are used to trade-off between the
generality and discrimination of projection operator P. In our
test experiments, we found that the classification perfor-
mance is inferior when both of the two parameters increased.
It may be due to that if the parameters for projection are com-
parable to λ and λS , it will degrade the regression parameter
learning, which is more significant to the final classification
result. The relative stable performance can be obtained with
the varying range of parameters in Table 8.

TABLE 8. The classification accuracy(%) varying on Extended YaleB with
regularization parameters γ and θ .

FIGURE 8. Convergence results of the objective function on Extended
YaleB.

FIGURE 9. Convergence results of the objective function on COIL20.

The effective convergence is significant for our method in
practical usage. So, to investigate the convergence, we exam-
ine the objective function value during the iteration on
Extended YaleB and COIL20 dataset, respectively. The two
convergence curves with respect to the outer loop steps are
depicted in Figure 8 and Figure 9. It can be observed that
the two objective functions both decrease monotonically with
respect to the iterative steps. In fact, though we only show
the objective function on two representative datasets, all the
evaluation datasets in our experiments reach convergence
within 20 iterations. The quickly decreasing curves shown
in these two figures guarantee the great efficiency in conver-
gence of our developed iterative numerical scheme.

V. CONCLUSION
In this paper, we have proposed an MTL-based nonlin-
ear collaborative regression method for image classification
problems. The novel framework in the proposed method
enables jointly learning the shared regression parameters,
class-specific regression parameters and class-specific sub-
space projection. To take the instances of different classes
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as related tasks, in our method, the image classification
is converted into a multi-target regression problem, and
the knowledge from different tasks can be transferred to
better learn the latent shared structures among classes.
Meanwhile, to explore the potential nonlinear relationship
between input and output, the nonlinear operation is intro-
duced into our framework to obtain extra performance facili-
tation. The objective function in the novel framework can be
efficiently solved by a developed iterative numerical scheme
with guaranteed convergence. The competitive classification
results on test datasets validates the outstanding performance
of our approach.
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