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ABSTRACT The optimization of spare parts inventory is very important in themodern aerospace engineering
system, especially in the environment with low management effectiveness and a wide variety of spare
parts. At present, there are many optimization models for spare parts inventory, and the single-objective
optimization inventory is mostly used. But the single-objective optimization model has some limitations.
First, in the applications of practical engineering, a single-goal decision problem is generally rare, and most
of the decisions we have experienced involve many complicated goals. Second, it is difficult to truly present
the actual situation when the mathematical programming model is used to discuss the optimization problem
in practical engineering application. The solution to solve the model is a hybrid intelligent algorithm by
combining the genetic algorithm with the inverse uncertainty distribution function. Finally, an example is
given to illustrate the feasibility of the optimization model.

INDEX TERMS Genetic algorithm, multi-objective chance planning, spare parts, uncertainty theory.

I. INTRODUCTION
Under the condition of modern war, support capability of
equipment is directly related to the combat readiness and
mission sustainability. Support equipment is a key factor in
determining the outcome of wars. As one kind of important
goods to ensure the maintenance work, the spare parts is the
key factor to ensure the good use of the equipment support
ability.

Exponential smoothing [1], [2] is a robust method of
demand estimation. It is not only a means to predict con-
tinuous needs, but also a widely used method for intermit-
tent demand forecasting. Based on the theory of exponential
smoothing, Croston gives us a method to forecast demand for
intermittent demands, which is called Croston method. The
Croston method is suitable for the situation of the lead time
demand obeys the normal distribution. When the demand
is not normal distribution, the prediction accuracy of this
method is low.

Then, the Bootstrap method is given by Gamero et al. [3].
Bootstrap method extracts samples from the demand histor-
ical data to get the virtual data, so that it can be applied to
predict the demand by the data generated in the historical
demand. The shortcomings of the Bootstrap method are low
accuracy, poor stability, and a lack of accurate estimation of

the differences when demand changes in the first phase of the
method [4].

On the basis of fault information in the early part of the
spare parts, Cheng et al. [5] gave a method to evaluate
the reliability of spare parts. And a forecasting model of
spare parts demand is put forward, which accords with a
certain degree of support. Fu and Zhao [6] put forward a
mathematical model when the demand for spare parts yields
to Poisson distribution. This model is used to predict spare
parts demand when spare parts meet the expected guarantee
probability [6]. The model is suitable for the prediction of
spare parts demand which has maintenance period, wear and
tear period, the period of purchase.

On the basis of how to accurately predict the spare parts
demand for aeronautical equipment, Duan and Li [7] con-
structed a model block diagram in a object-oriented simula-
tion way. The model block diagram is built under a relatively
steady demand. For the needs of spare parts in combat period
caused by operational damage, the key of the current way is to
analyze the factors that restrict the demand of spare parts, and
build the analytical model of demand prediction and calcula-
tion, which is also called direct calculation method [8], [9].
This method is simple and easy to understand, but the values
of parameters related to the request is not easy gotten, so as
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to the fix parameters related especially relevant indicators
of battle damage. And this method is also not easy to be
applied directly to the estimation of spare parts demand in
the operational environment.

The METRIC model built by Sherbrooke [10] takes
account of the economic andmilitary benefits, which is a very
influential inventory model in the field of spare parts logis-
tics support model. Graves improves the performance of the
METRICmodel in solving the shortage of the expected value.
The Poisson distribution is replaced by negative two distri-
bution to describe the expected shortage value at the base
level, and the VARI-METRIC model is given. Meanwhile,
the accuracy of the model is explored through simulation
analysis. Two main advantages of the METRIC model [12]
as follows. The multi-stage storage maintenance structure of
spare parts logistics is considered. And this method considers
the multilevel storage and maintenance structure of spare
parts logistics support, which is integrated and comprehen-
sively takes into account the characteristics of the problem.

Li Ya firstly analyzes the two-level logistics support system
corresponding to the repairable spare parts of complicated
weapons and equipment. And then provided an algorithm
based on the optimization of Pareto. Finally the relationship
between spare parts supply and equipment combat readiness
is explored. Based on the ordering cost and storage cost of
spare parts, and aiming at the benefit of logistics support
of equipment system, the model of repairable spare parts is
built [13]–[15].

The probability theory needs a large number of historical
data, the theory of stochastic spare parts inventory model
based on probability theory also needs sufficient statistical
data to ensure the accuracy and availability of the premise.
Because of the complex structure, systematicness and high
test cost of weapon system, it is difficult to get a lot of
statistical data of failure and maintenance in practical appli-
cations. So, the traditional method of decision making for
spare parts support based on probability theory is not appli-
cable [16]. Therefore, many scholars have begun to try to use
other methods to study the problem. Under this circumstance,
the uncertainty theory was proposed by Liu [17] in 2007 and
refined by Liu [18] in 2010 to treat human’s belief degree.

The rest of this paper will be organized as follows: Firstly,
uncertainty theory will be introduced in Section 2; Then
Section 3 will give a description of the multi-objective chance
constrained programming model. An genetic algorithm will
be introduced in Section 4, and in Section 5, a numerical
example will be given to illustrate the availability and effec-
tiveness of these models.

II. UNCERTAINTY THEORY
Let 0 be a nonempty set, and L is a σ -algebra over 0. Each3
in L is called an event. An uncertain measure is a set function
M from L to [0,1] satisfying the following axioms.
Axiom 1 (Normality Axiom): M {0} = 1 for the universal

set 0.

Axiom 2 (Duality Axiom): M {3} + M {3c} = 1 for any
event 3
Axiom 3 (Subadditivity Axiom): For every countable

sequence of events 31,32,. . .

M

{
∞⋃
i=1

3i

}
≤

∞∑
i=1

M {3i} (1)

Axiom 4 (Product Axiom): Let (0k ,Lk ,Mk) be uncertainty
spaces for k = 1, 2, ... The product uncertain measure M is
an uncertain measure satisfying

M

{
∞∏
i=1

3k

}
=
∞

3
k=1

Mk {3k} (2)

Where 3k are arbitrarily chosen events from LK for
k = 1, 2, ... respectively.
Definition 1: An uncertain variable is a measurable func-

tion ξ from an uncertainty space (0,L,M) to the set of real
numbers, i.e., for any Borel set B of real numbers, we have

{ξ ∈ B} = {γ ∈ T |ξ (γ ) ∈ B} (3)

Definition 2:The uncertain variables ξ1, ξ2, . . . , ξn are said
to be independent, If

M

{
n⋃
i=1

(ξi ∈ Bi)

}
=

n
3
i=1

M {ξi ∈ B}

for any Borel sets B1,B2, . . . ,BN of real numbers.
To describe the uncertain variables, we define the indeter-

minate distribution.
Definition 3:The uncertainty distribution8 of an uncertain

variable ξ is defined by

8(x) = M {ξ ≤ x} (4)

for any real number x.
Example 1: An uncertain variable ξ is called zigzag if it

has a zigzag uncertainty distribution

8(x) =


0
(x − a)/2(b− a)
(x + c− 2b)/2(c− b)
1

if x < a
if a ≤ x ≤ b
if b ≤ x ≤ c
if x > c

(5)

denoted by Z (a, b, c) where a,b,c are real numbers with a <
b < c. An uncertain variable ξ is called normal if it has a
normal uncertainty distribution.
Definition 4: An uncertainty distribution 8(x) is said to

be regular if it is a continuous and strictly increasing function
with respect to x at which 0 < 8(x) < 1, and

lim
x→−∞

8(x) = 0, lim
x→+∞

8(x) = 1

Then its inverse function 8−1 (α) exists and is unique for
each α ∈ (0, 1). In this case, the inverse function 8−1 (α) is
called the inverse uncertainty distribution of ξ .
Theorem 1: Let ξ1, ξ2, . . . , ξn be independent

uncertain variables with regular uncertainty distributions
81,82, . . . , 8n respectively. If f is a strictly increasing
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function, then ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable
with inverse uncertainty distribution

8−1 (α) = f (8−11 (α) ,8−12 (α) , . . . , 8−1n (α)) (6)

Example 2: Let ξ1, ξ2, . . . , ξn be independent uncertain
variableswith regular uncertainty distributions81,82, . . . , 8n
respectively. Then ξ = ξ1 + ξ2 + · · · + ξn is an uncertain
variable with inverse uncertainty distribution

8−1 (α) = 8−11 (α)+8−12 (α)+ · · · +8−1n (α) (7)

Theorem 2: The expected value of an uncertain variable ξ
is defined by

E [ξ ] =

∞∫
0

M {ξ ≥ X}dx −

0∫
−∞

M {ξ ≤ X}dx (8)

provided that at least one of the two integrals is finite.
Theorem 3: Let ξ be an uncertain variable with an uncer-

tainty distribution 8. If E [ξ ] exists, then

E [ξ ] =
∫
+∞

0
(1−8(x))dx −

∫ 0

−∞

8(x)dx (9)

Example 3: Let ξ ∼ Z (a, b, c) be a zigzag uncertain
variable. Then it has an expected value

E [ξ ] =
a+ 2b+ c

4
(10)

Theorem 4: Assume that ξ1, ξ2, . . . , ξn are independent
uncertain variables with regular uncertainty distributions
81,82, . . . , 8n respectively. If f (x1, x2, . . . , xn) is strictly
increasing with respect to x1, x2, . . . , xm, and strictly decreas-
ing with respect to xm+1, xm+2, . . . , xn, then the uncertain
variable ξ = f (ξ1, ξ2, . . . , ξn) has an expected value

E [ξ ] =
∫ 1

0
f (8−11 (α) , . . . , 8−1m (α) ,

8−1m+1 (1− α) . . . , 8
−1
n (1− α))dα (11)

III. MODEL
As an part of aeronautical equipment, spare parts inventory
plays an important role. The spare parts must be sufficient.
The shortage of spare parts in the aviation equipment sys-
tem will cause immeasurable loss. In terms of availability,
the more spare parts, the better. But the increase in spare
parts inventory means the increase of the cost, which is
not our expectation. Therefore, it is a major target to keep
balance between costs for spare parts and readiness capability
of equipment system. Combined with the analysis of the
characteristics of spare parts inventory of aviation equipment,
the expected shortage and total cost (holding cost and short-
age cost) are selected as the objective function in the end.
It not only guarantees the supply efficiency to achieve the
proper operational efficiency of the equipment, but also min-
imizes the related support costs. Compared with the single
objective model, the optimal balance between the operational
efficiency and economic efficiency of the equipment can

be considered more intuitively. Obviously, the two objective
functions are conflicting. And there is no way to meet two
goals optimal at the same time. This is a typical multi-
objective problem.

In practical engineering applications, a single goal determi-
nation problem is generally rare. Many of the problems we
experience are decisions involving multiple complex objec-
tives, and these goals are interrelated and constrained. How
to balance multiple goals, It is often necessary to think of
a multi-objective programming method to select a suitable
scheme. And a mathematical programming model on the
practical application of the optimization problem is difficult
to truly present the actual situation. The solution is using the
uncertain variables of uncertain programming to describe the
optimization problem, so it is necessary to establish a multi-
objective chance constrained programming model. Based on
the theory of uncertainty, this paper will optimize the spare
parts inventory and establish a multi-objective chance pro-
gramming model, so as to realize the rational allocation and
optimization of spare parts resources.

A. UNCERTAIN PARAMETER
1) MULTI-OBJECTIVE CHANCE CONSTRAINED
PROGRAMMING MODEL
The decision system of this article includes multiple targets.
We can deal with multiple objective functions by the measure
generated by the objective function, in order to avoid the
the expectations retained shortcomings of objective function,
then, an uncertain multi-objective chance constrained pro-
gramming model which is not less than a certain reliability is
obtained by multiple objective functions. x is decision vari-
able, ξ is uncertainty variable, f1 (x, ξ), f2 (x, ξ), K, fm (x, ξ),
(i = 1, 2,K ,m) are objective functions of x. There are many
possible values f̄m to make M

{
fi(x, ξ ) ≤ f̄i

}
≥ βi, we want

to achieve the goal of minimizing the f̄i. An uncertain multi-
objective chance constrained programming model is showing
as followed:

min
[
f̄1, f̄2, . . . , f̄m

]
M
{
fi (x, ξ) ≤ fi−

}
≥ βi i = 1, 2, . . . ,m

M
{
gj (x, ξ) ≤ 0

}
≥ αj j = 1, 2, . . . , p

(12)

Based on the theory above, this part applies the idea of
chance programming to deal with uncertain variables, and
establishes corresponding optimization models to achieve the
goal of this paper.

2) OPTIMISTIC VALUE AND PESSIMISTIC VALUE OF
UNCERTAIN VARIABLES
a: OPTIMISTIC VALUE OF UNCERTAIN VARIABLES
Definition 5: Assuming that ξ is an uncertain variable and
satisfies α ∈ (0, 1), then ξsup (α) = sup {γ |M {ζ ≥ γ } ≥ α }
is the α optimistic value of ξ .
Theorem 5: Assuming that ξ is an uncertain variable and

an uncertain distribution is 8, then the α optimism value of
ξ is ξsup (α) = 8−1 (1− α).
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b: PESSIMISTIC VALUE OF UNCERTAIN VARIABLES
Definition 6: Assuming that ξ is an uncertain variable and
satisfies α ∈ (0, 1), then ξinf (α) = inf {γ |M {ζ ≤ γ } ≥ α }
is the α pessimistic value of ξ .
Theorem 6: Assuming that ξ is an uncertain variable and

an uncertain distribution is8, then the α pessimistic value of
ξ is ξinf (α) = 8−1 (α).

The establishment of Multi-objective chance constrained
programming model

Based on the theory we has been known, we establish the
multi-objective chance constrained programming model as
follows:

min
x
{f , g} (13)

s.t.

M


J∑
j=1

I∑
i=1

(
ξij − xij

)
≤ f

 ≥ a (14)

M


J∑
j=1

I∑
i=1

[
cHij T

(
xij−0.5ξij

)
+cOij xij

]
≤ g

 ≥ b (15)

M


J∑
j=1

{
I
5
i=1

[
1−

(
E
[
ξij
]
− xij

)
/
(
KjMij

)]Mij

}
Kj

/

 J∑
j=1

Kj

 ≥ C−
 ≥ η (16)

M


I∑
i=1

1

30


J∑
j=1

(
ξij − xij

)
− xi0

 ≥ A0
 ≤ β0 (17)

M

{
I∑
i=1

1

3j

(
ξij − xij

)
≥ Aj

}
≤ βj, j = 1, 2, · · · , J (18)

M


I∑
i=1


J∑
j=1

(
ξij − xij

)
− xi0

 ≥ B0
 ≤ γ0 (19)

M

{
I∑
i=1

(
ξij − xij

)
≥ Bj

}
≤ γj, j = 1, 2, · · · , J

xij ∈ N , i = 1, 2, · · · , I , j = 0, 1, 2, · · · , J (20)

In which f, g are the target values, that is, the minimum
value when the confidence level is guaranteed to be at least
a, b. The equation (14) and (15) are the guarantee to make
the objective function obtain the optimal value under the
confidence degree. The equation (16) is a constraint that
makes supply availability under the reliability of η for the
normal operation of the supply system. The equation (17)
and the equation (18) are the constraints that make the reac-
tion time to guarantee the supply efficiency under confi-
dence β0 and βj. The equations (19) and (20) are the con-
straints that make the expected shortage of the base level
and the grass-roots level at the level of γ0, γj as minimum as
possible.

3) EQUIVALENT MODEL
When solving the uncertain multi-objective constrained pro-
gramming model, we need to use its deterministic equivalent
model. According to the relevant theorems in the operation
rules of uncertain variables, and theorem 5-6, we can obtain
the following form of the deterministic equivalent model

min
x


J∑
j=1

I∑
i=1

(
8
−1
ij (a)− xij

)
J∑
j=1

I∑
i=1

[
cHij T

(
xij − 0.58−1ij (1− b)

)
+ cOij xij

]


(21)

s.t
J∑
j=1

{
I
5
i=1

[
1−

(
8
−1
ij (η)− xij

)
/
(
KjMij

)]Mij
}
Kj

/

 J∑
j=1

Kj

 ≥ C− (22)

1

30

I∑
i=1


J∑
j=1

[
8
−1
ij (β0)− xij

]
− xi0

 ≥ A0 (23)

I∑
i=1

1

3j

[
8
−1
ij

(
βj
)
− xij

]
≥ Aj, j = 1, 2, · · · , J (24)

I∑
i=1


J∑
j=1

[
8
−1
ij (

γ0)− xij
]
− xi0

 ≥ B0 (25)

I∑
i=1

[
8
−1
ij

(
γj
)
− xij

]
≥ Bj, j = 1, 2, · · · , J

xij ∈ N , i = 1, 2, · · · , I , j = 0, 1, 2, · · · , J (26)

Equation (21) is a definite form after the equivalent trans-
formation of equations (14) and (15).The equations (22) is
the equivalent forms of equations (16).The equations (23)
and (24) are the equivalent forms of equations (17) and (18),
respectively. The same as (25)-(26) and (19)-(20).

IV. ALGORITHM
Genetic algorithms (GAs) as efficient algorithms for solution
of optimization problems have been shown to be effective at
exploring a large and complex search space in an adaptive
way guided by the equivalent biological evolution mech-
anisms of reproduction, crossover and mutation. They are
random search algorithms which have been derived based
on the ‘Darwin’s theory of survival of the fittest’ [19], [20].
In this paper, a hybrid intelligent algorithm is proposed to
solve this model by integrating genetic algorithm and inverse
uncertain distribution function. Based on the existing genetic
algorithms, the two processes of cross and mutation are
improved. And a hybrid intelligent algorithm is constructed
synthetically with the inverse uncertainty distribution func-
tion method. Finally, the rationality of the model will be
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explained and verified by the numerical example in the fol-
lowing chapter.

1) Gene coding design and confirm: the binary code and
the real value coding are usually seen to be selected as
the appropriate encoding method.

2) The selection of the initial population and the size of
the population: random generation of initial groups is
generally used. Group size is one of the control param-
eters of evolutionary algorithm, and its selection has an
effect on the efficiency of evolutionary algorithm. The
size of the group is between tens to hundreds. The value
of group size is different according to the complexity
of the problem. The more difficult the problem is,
the higher the dimension is, the larger the scale of the
population is, on the contrary, it is small.

3) Determine the equivalent transformation: transform the
function into its equivalent form, and then generate a
new evaluation function.

4) Operator selection: The best individual retention
methodwas used to copy the highly adaptable individu-
als directly to the next generation without mating. Then
the roulette method is used to randomly select a certain
number of individuals from the group.

5) Crossover operator: according to the crossover prob-
ability Pc adopts sigle-point crossing or multi-point
crossing.

6) Mutation operator: m chromosomes were randomly
selected according to the m times of variation
determined by the variation rate of Pm. And the
mutation operation was performed respectively on
chromosomes.

7) Iterative termination principle: the upper limit of iter-
ative is G times or the iteration stops when optimal
solution continuous Q times without change.

The following steps are given to solve this kind of model:
Step 1: The binary form or real number are chosen as

coding form to determine the population size N, the cross
rate Pc, the mutation rate Pm, and the number of termination
iterations G.
Step 2: Solving the problem according to the equivalent

determination model.
Step 3: Pop_size chromosomes were generated randomly.

At the same time, the feasibility of detecting chromosomes is
done by the formula of the equivalent model, and then form
an initial group of G (t), and t=0.
Step 4: Calculate the fitness value of each chromosome

in G (t) and decide whether or not it meets the optimization
criteria. If it is conformed, the best individual and the optimal
solution or the satisfactory solution of the best individual are
output, then procedure stops; otherwise, go to step 5.
Step 5: Using the optimal individual reservation method,

the high adaptive individuals inG (t) can be copied directly to
the next generation without mating. Then the roulette method
was used to select N individuals randomly from the group to
form the parent chromosome G (t).

TABLE 1. Other parameters of the system.

TABLE 2. Inventory optimization level of multi objective opportunity
constrained programming model for spare parts.

Step 6: The cross operation of the chromosomes in the set
G (t) is done by crossing probability Pcto obtain G1 (t).
Step 7:Mutation operation of chromosomes inG1 (t)were

conducted according to the mutation rate Pm, and G2 (t),
G3 (t) were obtained.
Step 8: Select the best N individuals fromG1 (t)∪G2 (t)∪

G3 (t) as the next generation population G (t + 1);
Step 9: If it reaches the maximum generation G, and can

satisfy the termination conditions, then stop; otherwisemakes
t=t+1 and go to step 3.

V. NUMERICAL EXAMPLE
Consider a spare part supply system consisting of 1 depot
and 2 bases: each base supplies 2 items. In the system,
we firstly specify two kinds of spare parts, which are defined
as 1 and 2 respectively. Then, we give the relevant param-
eters and the distribution function of uncertain variables in
the spare parts supply system. Parameters of items at all
bases and depot in details are given as follows: T=20 (days),
A−0 =A

−

j =0.5(day),30=3j=0.02 (units/day), B
−

0 = 5, f=5,
g=800, a=0.8; b=0.8; C = 0.9, η = 0.7; β0 = 0.6;
βj=0.75; γ0=γj=0.8. At the same time, the size of the pop-
ulation is N=50, cross probability is Pc=0.9,variation rate is
Pm=0.02. The iterated algebra is G=2000. Other parameters
of the system as shown in Table 1:

In this paper, we need to find appropriate uncertain demand
distribution function as example for analysis and verification,
which requires us to give some uncertain demand distribution
functions. Through the analysis of this paper, we assume
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that the uncertainty variable obeys the Zigzag distribution,
and gives the uncertain distribution function of this paper as
follows:

ξ11 ∼ Z (56, 59, 65), ξ12 ∼ Z (64, 68, 76),

ξ21 ∼ Z (72, 74, 79), ξ22 ∼ Z (62, 64, 70).

We can get the optimal solution set after optimizing the
inventory level of the spare parts at each site. Part of optimal
solutions are shown in Table 2.
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