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ABSTRACT One of the key problems facing cloud applications is to reduce their energy consumption, which
can increase the working lifetime of a machine, decrease the operation costs of cloud providers, and the
environmental impact caused by power consumption. It is very important to design and evaluate an energy-
efficient cloud. Recently, two open problems are raised in the literature: 1) what is the optimal solution
(the lower bound) for the total energy consumption? and 2) what is the energy-efficiency for a scheduling
algorithm? In this paper, we consider two major scheduling policies: 1) always power-on physical machines
(PMs) once turning-on and 2) turning-off (hibernating) idle PMs, both with possible virtual machine
migrations during evaluation. Focusing on compute-intensive applications on cloud, we propose analytical
methods to settle down the two open problems. Our theoretical results are validated by experimental results in
different scheduling scenarios and can be applied in cloud computing environments to help energy-efficient
design.

INDEX TERMS Cloud data centers, energy-aware resource scheduling, the lower bound, energy efficiency,
modified interval scheduling.

I. INTRODUCTION
Cloud computing is one of the key technologies to deploy
various applications. It provides computational and stor-
age network resources on demand. Although cloud comput-
ing paradigm is rapidly emerging, there exist several open
challenges including energy-efficiency management of its
resources. As the scale of cloud computing and data center
increase, the cost and impact of energy consumption become
very important issues. One of the key problems facing cloud
applications is to reduce their energy consumption, which
can increase the working lifetime of a machine, decrease
the operation costs of cloud providers and the environmental
impact caused by power consumption.

A simplified VM allocation process in cloud is presented
in FIGURE 1. In Cloud, users can send requests through
Internet or intranet. The procedure is as follows:

1). User’s request initialization: user initiates a request
through the Internet;

2). Finding suitable resources: based on the user’s identity
(such as geographic location, etc.) and the business character-
istics (quantity and quality requirements), the schedule center
submits the request to an appropriate physical machine(PM),
in which the management program submits the request to
a scheduling domain and a type of scheduling algorithm is
executed and resource is allocated to the user;

3). Sending feedbacks (scheduled results) to users;
4). Scheduling the tasks: executing scheduling tasks and

deploying resources;
5). Updating/Optimization: the schedule center executes

optimization in the back-end and prepares resources in dif-
ferent PMs based on the optimization objective functions for
later use.
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FIGURE 1. VM allocation process in the IaaS cloud.

A. RELATED WORK
This paper focus on compute-intensive applications of Infras-
tructure as a Service (IaaS) in cloud data centers. Related
work in cloud is extensive. The following are closely related
to our research. There are generally two types of VM schedul-
ing algorithms, one is offline where a set of VM requests
is known in advance and the scheduler can proceed these
requests together, another type is online where jobs come
one by one and the scheduler can only proceed one request
each time. Beloglazov et al. [1] proposed offline allocation
of VMs to minimize the total number of migrations through
modified best-fit bin packing heuristics, which is considered
one of the best algorithm for energy-efficiency and we will
compare our proposed method against it. Guazzone et al. [4]
considered two-level control model to automatically allocat-
ing resource to reduce energy consumptions for web-service
applications, this approach can be discussed. Kolen et al. [8]
modeled a real-time service as a real-time VM request, and
used dynamic voltage frequency scaling schemes to provision
VMs in cloud data centers, we will discuss online schedul-
ing as real-time applications and use different algorithms
for energy-efficient scheduling. Matthew et al. [9] proposed
dynamic programming methods for minimizing total energy
related costs for offline and online virtual machine allocation
in Content Delivery Networks, their approaches are similar
to some of our proposed methods. One of the difficulty
scheduling problems in cloud data centers is to combine
the allocation and migration of Virtual Machines (VMs)
with full life cycle constraints, which is often neglected [6].
Flammini et al. [13] proposed offline algorithms to minimize
the total busy time of all machines through turning-off idle
servers, this is one of two scheduling policies we will discuss
in this paper. Liu et al. [14] explored the balance between
server energy consumption and network energy consump-
tion to present an energy-aware joint virtual machine (VM)
placement. These research laid foundation for our study.
Tian et al. [20] consider scheduling parallel jobs formed by
a set of independent tasks and consider energy consumption
during scheduling, they proposed efficient methods for sin-
gle job and multiple online jobs respectively by minimizing

the total completion time (TCT), which is one of the metrics
we also apply. Li et al. [21] proposed method for minimiz-
ing total busy time of parallel job offline scheduling and
also provided trace-driven simulation results, which we can
compare our methods in this paper easily. For modern server
systems, I/O device and NUMA inter-node buses play impor-
tant roles, as shown in studies [22], [23]. Tian et al. [24]
introduce an algorithm to minimize total energy consumption
by considering virtual machine reservations where approxi-
mation ratio is applied. Since this paper focuses on computing
intensive applications, we consider CPU and memory espe-
cially with VMmigrations in our energy consumption model.
We will discuss in the future for other types of applications.
Lefèvre and Orgerie [11] provided a framework for designing
and evaluating an energy-efficient cloud with Green Open
cloud (GOC) architecture. They showed experimental results
from real tests without analytical models. They also raised
two open problems:

(1) what is the optimal solution (the lower bound) for the
total energy consumption?

(2) what is the energy efficiency for a scheduling
algorithm?

These two problems are very important for energy con-
sumption design and evaluation. In this paper, we propose
analytical methods for evaluating power and energy con-
sumption in compute-intensive application on cloud.

The main contributions of this paper are:

• Proposed analytical methods for evaluating total energy
consumption for two major scheduling policies: (A).
always power-on Physical Machines (PMs) once
turning-on and (B).turning-off (hibernating) idle PMs
during evaluation, both with possible virtual machine
(VM) migrations.

• Offered analytical solutions for two open issues sug-
gested in literature, one is for the lower bound of
total energy consumption and another is for evaluating
energy-efficiency of a given algorithm.

• Validated theoretical results for different scheduling sce-
narios by real environment test and simulation.

II. PROBLEM FORMULATION
The problem of real-time scheduling of VMs is modelled as
a modified interval scheduling problem. There are detailed
explanation and analysis on fixed interval scheduling prob-
lems in [7], [8] and references therein. We have following
assumptions for our scheduling:

- 1). The required CPU capacity of each VM is a part of
the total CPU capacity of a PM. We focus on compute-
intensive applications, this is reasonable and applied
already in some research.

- 2). The time is discrete in slotted windows. The total
time period [0,T ] is slotted into equal length (l0) in
discrete time, thus the total number of slots is K = T/l0
(forming a positive integer). The start-time is set as s0,
the interval of a request j is shown in slot format as
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[StartTime, EndTime, RequestedCapacity]=[sj, ej, dj]
with both start-time sj and end-time ej being non-
negative integers, dj is the CPU capacity demand of a
VM from a physical machine (PM).

- 3). For all jobs, there are no precedence constraints
other than those implied by the start-time and end-time.
Preemption is not considered in this paper.

The following key definitions are based on above
assumptions:
Definition 1: Traditional fixed processing time interval

scheduling. A request set {1, 2, · · · , n} is considered in which
the i-th request has an interval of time starting at si and
finishing at ei. Each request occupies the whole capacity of a
machine during fixed processing time. This paper considers
that each request occupies a virtual machine (VM), this is
an reasonable scenario. More results on traditional interval
scheduling problem (ISP) can be found in Kleinberg et al. [5],
Kovalyov et al. [7] and Kolen et al. [8].
Definition 2: Interval scheduling with capacity shar-

ing (ISWCS). The key difference from traditional interval
scheduling is that the resource can be shared by different
VM requests if at any time the total capacity of all requests is
not more than the total capacity the resource can offer.

The organization of remaining contents is: the power and
energy consumption models are proposed respectively in
Section III and IV; performance evaluation and our theoretical
observations are in Section V; The Conclusions and Future
Work are provided in Section VI.

III. THE POWER CONSUMPTION MODEL OF A PM
The most of research has found that the overall load of a
PM is generally proportional to its CPU utilization (similar
to Beloglazov et al. [1], Mathew et al. [9], Fan et al. [15],
Mastroianni et al. [17] and references therein). This is
valid for compute-intensive applications where CPU utiliza-
tion dominates. This paper focuses on power and energy
consumption caused by compute-intensive applications of
PMs and VMs. We consider homogeneous case that all
PMs have same configurations unless otherwise specified.
As for heterogeneous case, we separate PMs by homogeneous
groups so that homogeneous case can still be applied, this is
shown in performance evaluation section. A power consump-
tion model for a PM (or aVM) i is proposed [1], [9], [17]:

Pi(Ui(t)) = Pmin + (Pmax − Pmin)Ui(t) (1)

where Pmax is the power consumed when the PM is fully
utilized, Pmin is the power consumed when the PM is idle;
and Ui(t) is the CPU utilization at time t . There is also
power consumption model for a blade server considering
disk, memory and network [16]:

Pi(t) = 14.5+ 0.2U t
cpu + 0.003U t

disk

+ 4.5e−8U t
mem + 3.1e−8U t

net (2)

One can see that CPU is the dominating factor for power
consumption in Equ (2). There are also non-linear model and

Dynamic Voltage Frequency Scaling (DVFS) model [6] for
the power consumption. However, we concentrate on energy-
efficiency analysis of compute-intensive applications so that
we take power consumption model in Equ (1). Our results
hold for the energy model which is a convex function with
time. When using average CPU utilization Ui (arithmetic
mean) during [0,t], the average power consumption can be
represented as:

Pi(Ui) = Pmin + (Pmax − Pmin)Ui (3)

IV. THE ENERGY CONSUMPTION MODEL OF A PM
Formally, the energy consumption of PM i during time inter-
val [t0, t1] can be computed by:

Ei =
∫ t1

t0
Pi(Ui(t))dt (4)

When average CPU utilization and power model are applied,
the energy consumption of a PM i during [t0, t1] is:

Ei = Pi(Ui)(t1 − t0) = P(Ui)ti
= Pminti + (Pmax − Pmin)Uiti (5)

where ti = t1 − t0 is the total power-on time of PM i, Pminti
is the energy consumption during the power-on time of PM i
which we set as Pminti = Eion , and (Pmax − Pmin)Uiti is the
energy consumption by hosting VMs on PM i. Considering
that a VM j increases the total utilization of a PM i from U to
U ′ with U ′ −U = 1U and VM j is fully utilized (this is the
worst case), then the energy increase1Eij after hosting VM j
on PM i from time t0 to t1 can be defined as:

1Eij = (Pmin + (Pmax − Pmin)U ′ − (Pmin
+ (Pmax − Pmin)U ))(t1 − t0)

= (Pmax − Pmin)(U ′ − U )(t1 − t0)

= (Pmax − Pmin)1U (t1 − t0) (6)

Considering the additional energy consumption of VM j
migration at slot k . Denote the total number of VMmigrations
in slot k as Mk . In the following equations, mig is abbrevi-
ated for migration, tot for total, and tra for transition. The
additional energy consumption of migrating VM j is related
to its capacity (especially memory), and can be computed as
reported in [14].

Emigj = c1dj + c2 (7)

where c1, c2 is constant, dj is the requested capacity of VM j.
For simplicity, we can consider the additional energy con-
sumption by VMmigrations is constant with the total number
of migrations. Therefore the total energy consumption (Emigtot )
by VM migrations in K slots can be computed as

Emigtot =

K∑
k=1

c0Mk (8)

Considering the additional energy computation of transiting
PM i from on state to off (hibernating) state (or vice versa) as

VOLUME 6, 2018 45517



P. Kuang et al.: Analyzing Energy Efficiency of Two Scheduling Policies in Compute-Intensive Applications on Cloud

γ (constant) and there aremk power-on PMs at slot k , then the
total energy consumption of PMs transitions can be computed
as

E tratot =
K∑
k=1

γ |mk − mk−1| = γ
K∑
k=1

|mk − mk−1| (9)

where m0 is the total number of PMs in the off (hibernating)
state at the beginning. Set α = Pmin, β = (Pmax − Pmin),
I ik as a Boolean variable indicates whether PM i is power-

on or not in slot k . Let ρ =
∑m

i=1 Uiti∑m
i=1 ti

=

∑m
i=1 Uiti
T as the offered

load to the CDC (cloud data center), T =
∑m

i=1 ti, then
∑m

i=1
Uiti = ρT , and we have the energy consumption (Eontot ) by
running m PMs during K slots:

Eontot =
m∑
i=1

Ei = PminT + (Pmax − Pmin)
m∑
i=1

Uiti

= αT + βρT = (α + βρ)
m∑
i=1

ti

= (α + βρ)
m∑
i=1

K∑
k=1

I ik (10)

By considering three parts of energy consumption of running
PMs (a), transiting PMs (b) and migrating VMs (c), the total
energy consumption of a cloud data center (CDC) can be
counted as:

ECDCtot = a+ b+ c = EOntot + E
tra
tot + E

mig
tot

= (α + βρ)
m∑
i=1

K∑
k=1

I ik + γ
K∑
k=1

|mk − mk−1|

+ c0
K∑
k=1

Mk (11)

Set the total number of VM migrations as M during eval-
uation period of K slots. The problem of minimizing total
energy consumption subject to someQuality of Service (QoS)
constraints can be formally stated as

min
m∑
i=1

Ei

= min ((α + βρ)
m∑
i=1

K∑
k=1

I ik

+ γ

K∑
k=1

|mk − mk−1| + c0
K∑
k=1

Mk )

subject to : (a) ∀ slot s ∈ {1, 2, . . . ,K },∑
VMj∈PMi

dj ≤ gi (CPU constraint)

(b) ∀ slot s ∈ {1, 2, . . . ,K },∑
VMj∈PMi

VMEMj ≤ MEMi (Memory constraint)

(c) ∀j, 0 ≤ sj < ej (interval constraint)

(d) ∀i&∀t,Ul ≤ CPUi(t) ≤ Uu (CPU bounds)

(e) M ≤ M0 (Migration constraint)

where (a) requires that the total CPU capacity of all VMs on
PM i cannot be larger than the available CPU capacity (gi)
PM i can provide; (b) requires that the total memory capacity
of all VMs on PM i cannot be larger than the available
memory capacity (MEMi) PM i can provide; (c) requires that
each job has start-time sj and end-time ej; (d) states that at any
time the CPU utilization of each PM has a lower threshold
(Ul) and a upper threshold (Uu); (e) requires that the total
number of migrations during evaluation period should be less
than M0.

Given a set of VM jobs J , the total number of PM status
(On/Off) transitions and the total number of VM migrations
are constants under strongly divisible capacity configuration
comparing to optimal results (explained in the following
section). We will prove this in the following section.

A. THE LOWER BOUND OF THE TOTAL ENERGY
CONSUMPTION
The theoretical lower bound of the total energy consumption
in a Cloud data center is determined by the configuration
of jobs (VM requests) and the PMs. Firstly we consider the
strongly divisible capacity configuration.
Definition 4: Strongly divisible capacity configuration

(SDC): the capacity of all jobs form a divisible sequence,
i.e., the sequence of distinct capacities d1 ≥d2 ≥ . . . ≥di≥
di+1 ≥ . . . taken on by jobs (the number of jobs of each
capacity is arbitrary) is such that for all i > 1, di exactly is
divisible by di+1. A list J of items has divisible item capacity
if the capacities of the items in J form a divisible sequence.
If J is a list of items and g is the total capacity of a PM,
then the pair (J , g) is weakly divisible if J has divisible item
capacities and strongly divisible if in addition the largest item
capacity d1 in J exactly divides the capacity g. See paper [3]
for the detailed discussion.
Example 1: Set the total CPU capacity of a PM as g = 8

which represents the CPU Cores, and each VM requests one
of capacities in {1, 2, 4, 8}, then the sequence of requested
capacities forms a strongly divisible capacity (SDC). But
the sequence {1, 3, 5, 7} does not form a strongly divisible
capacity for g = 8. If all jobs have unit demand (dj = 1),
then the sequence of requested capacities also form a SDC.
In the Following Sections, Unless Otherwise Specified,

the SDC Is Considered:
Theorem 1: For a given set of jobs under SDC and the

workload is is represented in the slot window format in
discrete time, the total power-on time (in slots) is the total
number of the minimum number of machines used in each
slot. Therefore the lower bound of total energy consumption
can be counted easily.

Proof: Consider a set of jobs J under SDC, we can com-
pute the minimum number of PMs needed for each time slot,
as m1,m2, . . .mK for total K slots, where mi is the minimum
number of machines needed for slot i. The minimum number
of power-on PMs at slot i, mi = d

li
g e, and li is the sum of

load for slot i. An example is shown in FIGURE 2. The total
power-on time (in slots) of all machines is the sum of the

45518 VOLUME 6, 2018



P. Kuang et al.: Analyzing Energy Efficiency of Two Scheduling Policies in Compute-Intensive Applications on Cloud

FIGURE 2. Lower bound of energy consumption.

minimum number of PMs in all slots, i.e. T =
∑K

k=1 mi =∑K
k=1d

li
g e. This indicates the total power-on time in each slot

is the sum of the minimum number of PMs used in each slot.
Then the lower bound of total energy consumption can be
computed by Equ (5). This completes the proof.
Remark:The lower bound can be computed easily and used

for the solution to the open problem (1). But it is not easy
to achieve in the general capacity configuration case because
that minimizing the total power-on time of a given set jobs is
a NP-complete problem in general case [12], [13].

However, for SDC, the lower bound of the total power-on
time can be easily obtained by algorithms such as Best-Fit-
Decreasing (BFD) and First-Fit (FF), see [3] for a detailed
introduction. Under SDC, the total number of On/Off PMs
can be easily computed and the total number of VM migra-
tions is fixed once a set of jobs J is given. As for minimizing
the total power-on time, it is also possible to obtain the lower
bound with job (VM) migrations.
Observation 1: It is possible to reach the lower bound of

the total energy consumption by a constant number (M ) of
job migrations under SDC.

Proof: By Theorem 1 and Equ (11), one can see that a
lower bound exists for the total energy consumption. How-
ever without job migration, it is NP-complete in general case
while reaching the lower bound is possible with job migration
(a job can be migrated from one host machine to another host
machine to be continuously proceeded).

The approach is presented in Algorithm 4.1 LB-Min-
Migration. Algorithm 4.1 firstly sorts all jobs in non-
decreasing order of jobs’ start-time (line 1) and computes
the load of each slot by the minimum number of PMs used
(line 3-4); then it computes the longest continuous interval
[z1, z2] with same load and divides jobs into two groups
(line 5-9); it schedules jobs in each group by First Fit; and
migrates the job to an existing PM when the minimum num-
ber of PMs will be larger than the slot load (line 12-15);
it updates the load of each PM and deletes allocated jobs
and repeats the major steps until all jobs are scheduled
(line 17-22). If a new schedule passes through an interval
that already has the minimum number of PMs used (by the

Algorithm 1 LB-Min-Migration Under SDC
Input: A Job instance J = {j1, j2, . . . , jn}, and g,

the max capacity g of a machine
Output: The scheduled jobs, the total power-on time of

all machines, the total number VM migrations
M

1 Sort all jobs in non-decreasing order of their start-time
(sj for job j), such that s1 ≤ s2 . . . ≤ sn, set h = 1,
M = 0;

2 forall the slots under consideration do
3 Represent load of slot i by the min number of

machines needed for it, denoted as mi (take integral
value by ceiling function)

4 end
5 forall the jobs under consideration do
6 Find the longest continuous interval with same load

first, denoted as [z1, z2];
7 forall the jobs either started or ended in [z1, z2] do
8 separate jobs into end-time first and start-time

first groups, consider the longest job first in the
same group;

9 if mi is not reached in all slots of this interval
then

10 allocate to the first machine if available,
otherwise open a new machine and set
h = h+ 1;

11 else
12 forall the those slots that the min

number of machines will be more than
mi by new allocation do

13 the allocation is migrated to an
existing machine which still can host
in those slots.

14 M = M + 1;
15 end
16 end
17 end
18 update load of mh, remove allocated jobs;
19 end
20 Find total power-on time of all machines;
21 Return the total number of power-on PMs (m),

the total power-on time of all machines, and the total
number VM migrations M

22 end

lower bound), then the new allocation will be migrated to an
existing PM that still have available capacity in the interval,
therefore only the minimum number of PMs is needed for
any slot (or interval). Job migration only happens when nec-
essary. Hence the algorithm reaches the lower bound with the
minimum total number (M ) of job migrations only.
Taking the example in FIGURE 2 and assuming that two

PMs are at hibernating (energy-saving) state at time 0. Four
jobs have following characteristics: d1 = 1, d2 = 2, d3 = 8,

VOLUME 6, 2018 45519



P. Kuang et al.: Analyzing Energy Efficiency of Two Scheduling Policies in Compute-Intensive Applications on Cloud

d4 = 8, respectively; j1, j2 have starting-time at t = 0 and
end-time at t = 2; j3 has starting-time at t = 0 and end-
time at t = 3; j4 has start-time at t = 1 and end-time at
t = 3. If {j1, j2, j3} are allocated to PM h1, j4 is allocated to h2,
the total power-on time of two PMs will be t1 during [0,3],
t2 during [1,3], i. e., 3+2 = 5 slots. Applying Algorithm 4.1,
with 1 migration at time 2 (the 3rd slot), j4 is migrated to h1 in
the 4th slot, then the total power-on time of the two PMs will
be 3+1 = 4, which is the lower bound for the total power-on
time.

We also have the following Theorem:
Theorem 2: For energy model given in Equ. (11) and a

given set of VM requests J , the total energy consumption
of all PMs can be exactly computed and is related to the
total number of power-on PMs, the total power-on time
of all PMs, the total offered load (ρ) by running VMs,
and some constant additional energy by PM transitions and
VM migrations.

Proof: Let us set α = Pmin and β = (Pmax − Pmin),
we have:

ECDCtot = a+ b+ c = EOntot + E
tra
tot + E

mig
tot

= (α + βρ)
m∑
i=1

K∑
k=1

Ik + γ
K∑
k=1

|mk − mk−1|

+ c0
K∑
k=1

Mk

= (α + βρ)T + C1 + C2 (12)

where T =
∑m

i=1
∑K

k=1 Ik is the total power-on time of
all PMs, C1, C2 is the energy consumption of transiting
PMs and migrating VMs respectively, which is fixed and
negligible compared to Eontot once the set of VM jobs is
given by Theorem 1 and Observation 1. We can know that
the total energy consumption of all PMs is determined by
the total number of power-on PMs (m), the total power-on
time (T ) of all PMs and total offered load (ρ). Once J is
known, then m and T are major factors affecting total energy
consumption.

This paper considers two major scheduling policies:
(A) always power-on PMs once turning-on and (B) turning-
off (hibernating) idle PMs during evaluation, both with pos-
sible VM migrations.
Observation 2: For Policy A, the total energy consumption

is affected by the total power-on time of all PMs for a given
set of VM jobs.

Proof: From Equ (11), it is known that the total energy
consumption can be affected by the total power-on time of
all PMs (T ), the total number of power-on PMs (m), and total
workload (ρ) by hosting all VMs. ρ is fixed once the jobs
are given. Therefore, the total energy consumption is affected
by the combination of total power-on PMs and their total
power-time.
Observation 3: For Policy B (turning-off (hibernating)

idle PMs), once a set of VM jobs are given, the total number
of PMs (m) and their total power-on time (T ) determine the

difference of total energy consumption of any two scheduling
algorithms, so that if one algorithm can reduce T , then the
total energy consumption can be decreased.

Proof: From Equ (11), it can be seen that the total
energy consumption is affected by the total power-on time
of all PMs (T ) and total workload (ρ) through hosting
all VMs when ρ is fixed once the jobs are given. Then the
total number of power-on PMs (m) and the total power-on
time (T ) of all PMs will affect the total energy consumption.
So turning-off (or hibernating) idle PMs will reduce T and
therefore decrease the total energy consumption. And the
reduced energy can be computed easily.

The practical ways to decrease the total energy consump-
tion include turning-off (or hibernating) idle servers and using
workload consolidation to migrate VMs from lower utiliza-
tion PMs to other PMs and then turning-off (hibernating) idle
servers. Having the lower bound, we can evaluate the energy
efficiency as follows.

B. ENERGY EFFICIENCY EVALUATION OF SCHEDULING
ALGORITHMS
To find a solution to the open problem (2), i.e., to compute
the energy-efficiency of a scheduling algorithm, it is needed
to compare the result obtained by an algorithm with the lower
bound (abbreviated as LB in this paper). In this paper, we set
the lower bound as the optimum (abbreviated as OPT). The
ratio of the result received by an approximation algorithm
over the OPT is called approximation ratio and can be applied
to measure the energy-efficiency in this case.
Definition 5: The Approximation Ratio: a deterministic

algorithm is a C-approximation for the objective of minimiz-
ing the total energy consumption if its total energy consump-
tion is at most C times that of the lower bound (LB).
Example 2: For a given set of VM requests, BFD

(Best-Fit-Decreasing) is ( 119 )-approximation in general case
regarding the total number of power-on PMs (see [1]), and is
4-approximation for unit-demand regarding the total power-
on time (see Flammini et al. [13]).

In the following section, we provide performance evalua-
tion for the two major scheduling policies.

V. PERFORMANCE EVALUATION
First, a simple example is given below to explain how power
and energy consumptions are computed for (A) PMs are
always power-on once turning-on and (B) PMs are turning
off when idle.
Example 3: Considering a testing period of [0, 490]

seconds, a PM is always turned on during the interval [0, 490],
with average CPU utilization 0.50 during [10,130] and
[310,490], CPU utilization is zero during [0,10] and
[130,310] ; from real tests we have Pmax = 300 watts,
Pmin = 210 watts, and its total length of power-on time
490 seconds. The average CPU utilization in [0, 490]
is 0.3125.The average power consumption is 210+(300-
210)×0.50=255 watts. Then the total energy consumption
is:(210+(300-210)×0.3125)×490/3600= 32.41 watts-hours
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while the energy consumption of power-on is 210×490/
3600 = 28.58 watts-hours and the energy consumption of
hosting VMs is 90×0.3125×490/3600 =3.83 watts-hours.
Example 4: Considering a testing period of [0, 490]

seconds, a PM is turned on during two intervals [10, 130],
[310, 490] respectively and turned off during [0,10] and
[130,310]. The average CPU utilization is 0.50; Pmax =
300 watts, Pmin = 210 watts, the total length of power-
on time for the PM is 130-10+490-310=300 seconds.
The average power consumption is 210+(300-210)×0.50=
255 watts. Then the total energy consumption is:(210+(300-
210)×0.50)×300/3600=21.25 watts-hours while the energy
consumption of power-on is 210×300/3600=17.5 watts-
hours and the energy consumption of hosting VMs is
90×0.5×480/3600=3.75 watts-hours.

We can see that the energy consumption of hosting VMs
are the same for case (A) and (B), the difference for
(A) and (B) lies in the energy consumption of the power-on
time of PMs.

A. TEST IN REAL ENVIRONMENT
In this section, we evaluate our theoretical results in a real
environment. We have set-up two-node cloud the same as
in [11]. Each VM reservation is a compute-intensive job with
a cpuburn (consuming mainly CPU resource) running on
the VM. Each node can host up to 7 VMs. All the VMs are
identical in terms of memory and CPU configuration.The
two scheduling algorithms considered are:

(1). Round-robin (abbreviated as Round): the 1st job
is allocated to the 1st cloud node, the 2nd job to the 2nd one,
and so on. When all the nodes are idle, the order of the nodes
is changed (do not always attribute the 1st job in the queue to
the 1st node).

(2).First-Fit: it puts all the jobs on the 1st cloud node, and
if there are still jobs in the queue, the second node is used and
so on (the order is changed to balance the roles when all the
nodes are idle).

These two scheduling algorithms are well-known and
widely applied in large-scale distributed systems manage-
ment. The two-node PMs are identical with Pmax = 300
watts and Pmin = 210 watts. Each On/Off state transition
for a PM costs 5 Joules in less than 2 minutes, so γ �
10/60 = 0.167 watt-hour. Similarly, each VM migration
costs 10 Joules in less than 1 minutes so c0 � 0.167 watt-
hour. These are very small and negligible. In the following,
there are at most 2 times state transitions or VM migrations
for each case, so that we do not consider the additional energy
costs by PM state transitions and VM migrations. The job
arrival scenario is also same as in [11], the Gantt chart is
shown in Fig.3:

At t = 10, 3 jobs of length 120 seconds each and 3 jobs
of length 20s each;

At t = 130, 1 job of length 180s;
At t = 310, 8 jobs of length 60s each;
At t = 370, 5 jobs of length 120s each, 3 jobs of length 20s

each and 1 job of length 120s, in that order.

FIGURE 3. The lower bound for 24 jobs instance.

FIGURE 4. Gantt chart for round-robin under policy A.

1) THE LOWER BOUND OF TOTAL ENERGY CONSUMPTION
In FIGURE 3, for the same 24 jobs, we can find the lower
bound of total power-on time is 560 seconds: one machine
works during [10, 490] with power-on time 480 seconds,
another machine works during [310, 390] with power-on time
80 seconds (turned off during other intervals), so the total
power-on time is 560 seconds. From these, we can find the
lower bound for the total power and energy consumption,
LB=35.4912 Watt-hours.

2) POLICY A: ALWAYS POWER-ON PMS ONCE TURNING ON
Example 5: Consider the instance shown FIGURE 4 and

FIGURE 5. For Round-Robin, two machines have utilization
U1 = U2 =

9
28 ; the average utilization U =

31
112 .

For unbalanced scheduling, two machines have
utilization Û1 =

25
84 , Û2 =

43
168 ; the average utilization

Û = 31
112 .

Since their average utilization are the same and total
power-on time also same, so that their average power con-
sumption are the same and their total energy consumption are
identical,i.e, EA = (210+ (300−210)× 31

112 )×960/3600 =
62.6428 watts-hours, the result is consistent with results
obtained in [11]. This result validate Observation 2. Also the
energy efficiency is EA

LB =
62.6428
35.492 ≈1.76.
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FIGURE 5. Gantt chart for first-fit under policy A.

FIGURE 6. Gantt chart for the round-robin under policy B.

FIGURE 7. Gantt chart for the first-fit under policy B.

3) POLICY B: TURNING-OFF PMS WHEN IDLE
Example 6: Consider the instance shown FIGURE 6 and

FIGURE 7. For Round-Robin, two machines have utilization
U1 =

26
105 , U2 =

9
28 ; the average utilization U = 239

840 ; the
total power-on time of two machines is 780 seconds in this
case, and the total energy consumption is EBround = 51.048

Watt-hours, the energy efficiency is
EBround
LB =

51.048
35.492 ≈ 1.44.

For First-Fit, two machines have utilization Û1 =
29
84 ,

Û2 =
5
9 ; the average utilization Û = 227

504 ; the total power-
on time of two machines is 660 seconds in this case, and

FIGURE 8. Gantt chart for round-robin under policy B with VM migrations.

FIGURE 9. Gantt chart for first-fit under policy B with VM migrations.

the total energy consumption is EBFF = 45.9315 Watt-hours,

the energy efficiency is EBFF
LB =

45.9315
35.492 ≈1.29.

The total energy consumption of balanced Round-Robin
scheduling (with total power-on time 780 seconds) is larger
than unbalanced First-Fit scheduling (with total power-on
time 660 seconds).

We also observe that the total energy-consumption of
Policy B is less than Policy A for a given set of jobs and same
PM configurations.
Observation 4: The total energy-consumption of Policy B

is less than Policy A for a given set of jobs and same
PM configurations, and for Policy B, First-Fit is more energy-
efficient than Round-Robin.

Next we consider Policy B with VM migrations to further
decrease the total energy consumption.

B. POLICY B: TURNING-OFF PMS WHEN IDLE WITH
VM MIGRATIONS
Example 7:Consider the instance shown in Fig.8 and Fig.9.

For Round-Robin scheduling, two machines have utilization
U1 =

43
153 , U2 =

5
7 ; the average utilization U = 23

51 ; the
total power-on time of two machines is 580 seconds in this
case, and the total energy consumption is EBround = 40.3725

Watt-hours, the energy efficiency is
EBround
LB =

40.3725
35.492 ≈1.14.
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For unbalanced First-Fit scheduling, two machines have
utilization Û1 =

54
133 , Û2 =

40
63 ; the average utilization

Û =
161
798 ; the total power-on time of two machines is

560 seconds in this case, and the total energy consump-
tion is EBFF = 35.4912 Watt-hours,the energy efficiency is
EBFF
LB =

35.4912
35.492 = 1.0.

In this case, the total energy consumption of bal-
anced Round-Robin scheduling (with total power-on time
580 seconds) is larger than unbalanced First-Fit scheduling
(with total power-on time 560 seconds). These results are
consistent with experimental results in [11].

We observe that the total energy consumption is further
reduced with VM migrations.

C. SIMULATION USING SYNTHETIC DATA
The configuration of VMs and PMs are given in Table 1 and 2.
We consider SDC case. Table 3 also provides differ-
ent Pmin and Pmax for three type of PMs. Notice that
VM Type i− can only be allocated to PM Type i, heteroge-
neous case is transformed to homogeneous case by grouping
in this way. It is assumed that all VMs occupy all their
requested capacity (the worst case), and all PMs are at power-
saving mode (hibernating) at the start-time to save energy
consumption. A limited number of VM migrations are also
applied by setting CPU threshold (Ul = 0.2, Uu = 0.90) and
VM migrations are triggered when the CPU utilization of a
PM is below Ul or above Uu. Each On/Off state transition for
a PM costs γ = 0.167 watt-hour. Similarly, each VM migra-
tion costs 10 Joules in 1 minutes so c0 = 0.167 watt-hour.

The metrics include:
1) The total number of PMs used, the actual total number

of powered-on PMs during the testing period.
2) The total length of power-on time of all PMs during the

testing period.
3) The total energy consumption of a cloud data center.
We considered seven algorithms in this simulation:

• Round-Robin (Round): the round-robin is one of com-
monly used scheduling algorithms (for example by
Amazon EC2 [19]), which allocates VM requests in turn
to each PM. The strength of this algorithm is that it is
easy to implement and can keep good load balance when
VM requests and PMs are homogeneous.

• Offline scheduling without migration (OFWIM): It
firstly sorts all requests in non-decreasing order of
their start-time and then schedules the request to the
1st available PM, also called First-Fit-Decreasing
(FFD). Its computational complexity is of O(nlogn)
where n is the total number of requests.

• Offline scheduling with migration (OFWM): This is
same as OFWIM except that VMmigrations are applied.

• Online scheduling without migration (ONWIM):
It firstly allocates the request to the first available
PM, also called First-Fit (FF). Its computational com-
plexity is of O(n) where n is the total number of
requests.

TABLE 1. 8 Types of virtual machines (VMs) in Amazon EC2.

• Online scheduling with migration (ONWM):This is
same asONWIMexcept that VMmigrations are applied.

• Modified Best Fit Decreasing (MBFD) algorithm: is a
bin-packing algorithm introduced in [1], it firstly sorts
all requests in non-increasing order of their processing
time and then allocates the request to the first avail-
able PM. It is 11

9 -approximation regarding the total num-
ber of PMs. Its computational complexity is ofO(nlogn)
where n is the total number of requests.

• The lower bound (LB): It is the theoretical lower bound,
obtained by the approach proved in Theorem 1. The
computational complexity of computing the theoretical
lower bound is linear with the total loads on all slots.

In the simulation, the total numbers of arrivals (requests)
is 1000, each type of VMs has equal number, i.e., 125 and
the total time slots K = 10000. Poisson arrival process and
have exponential service time are followed by all requests,
the mean inter-arrival period is set as 5 slots, the maximum
intermediate period is set as 50 slots, the maximum dura-
tion of all requests is set as 50, 100, 200, 400, 800 slots,
respectively. Each slot is set as 5 minutes. For instance, if the
requested duration (service time) of a VM is 20 slots, actually
its duration is 20 × 5 = 100 minutes. Simulations are run
10 times and all the results shown in this paper are the average
of the 10 runs for each set of inputs. For the case where
VM migration is adopted, we record the total number of
migrations.

1) POLICY A: ALWAYS POWER-ON PMS ONCE TURNING-ON
FIGURE 10 shows the total number of power-on PMs
as the maximum duration of VMs varies from 50 to
800 slots while all other parameters are the same. For all
cases, Round>ONWIM ≥ OFWIM ≥ MBFD≥ ONWM≥
OFWM≥ LB regarding the total number of power-on PMs.
We observe that ONWM and OFWM use almost the same
number of PMs, very close to LB in this test. Round Robin
(Round) is the worst regarding the total number of power-
on PMs. The reason for MBFD, ONWM, and OFWM to
perform better than ONWIM, OFWIM, and Round is that
ONWM and OFWM are among better algorithms to reduce
the total number of power-on PMs.

FIGURE 11 presents the total energy consumption com-
parisons as the maximum duration of VMs varies from 50 to
800 slots when all other parameters are kept the same.
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TABLE 2. 3 Types of PMs for divisible configuration.

FIGURE 10. Total number of power-on PMs under policy A.

FIGURE 11. The total energy consumption (in KWh) under policy A.

With regarding to the total energy consumptions, Round>
ONWIM ≥ OFWIM ≥ MBFD≥ ONWM≥ OFWM≥ LB in
all cases. The reason for MBFD, ONWM, and OFWM to
perform better than ONWIM, OFWIM, and Round is that
ONWM and OFWM are among better algorithms to uses
less total number of power-on PMs. When other parameters
are the same, the total number of power-on PMs affects
the total energy-consumption. The average energy efficiency
(ratio) for (Round, ONWIM, OFWIM, MBFD,ONWM,
OFWM) is respectively (1.861, 1.302,1.275,1.239, 1.236,
1.017) when maximum duration of VMs is 50, 100,200,400,
800 slots respectively. This is consistent with Theorem 2 and
Observation 2.

2) POLICY B: TURING-OFF IDLE PMS WITH VM MIGRATIONS
FIGURE 12 gives the total number of power-on PMs of
seven algorithms as the maximum duration of VMs varies
from 50 to 800 slots when all other parameters are kept the

FIGURE 12. Total number of power-on PMs under policy B.

TABLE 3. The number of VM migrations.

same. In all cases, Round>ONWIM ≥ OFWIM ≥MBFD≥
ONWM≥ OFWM≥ LB. The reason for MBFD, ONWM,
and OFWM to perform better than ONWIM, OFWIM, and
Round is that ONWM and OFWM are among better algo-
rithms to use VM migrations to reduce the total number of
power-on PMs.

The number of migrations for ONWM and OFWM are
given in Table 3.

FIGURE 13 provides the total power-on time comparisons
as the maximum duration of VMs varies from 50 to 800 slots
when all other parameters are kept the same. With regarding
to the total power-on time, Round>ONWIM ≥ OFWIM ≥
MBFD≥ ONWM≥ OFWM≥ LB for all cases. The reason
for MBFD, ONWM, and OFWM to perform better than
ONWIM, OFWIM, and Round is that ONWM and OFWM
are among better algorithms to use VM migrations to reduce
the total power-on time of power-on PMs. MBFD, ONWM,
and OFWM perform similarly under SDC.

FIGURE 14 shows the total energy consumption as the
maximum duration of VMs varies from 50 to 800 slots
when all other parameters are kept the same. In all
cases, Round>ONWIM ≥ OFWIM ≥ MBFD≥ ONWM≥
OFWM≥ LB. Combining results of FIGURE 12 and 13,
we can see that the reason for MBFD, ONWM, and OFWM
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FIGURE 13. The total power-on time (milliseconds) of all PMs under
policy B.

FIGURE 14. The total energy consumption (in KWh) under policy B.

to perform better than ONWIM, OFWIM, and Round is that
ONWM and OFWM are among better algorithms to use
VMmigrations to reduce the combination of the total number
of power-on PMs and their total power-on time. The aver-
age energy efficiency (ratio) for (Round, ONWIM, OFWIM,
MBFD,ONWM, OFWM) is respectively (1.565, 1.062,
1.061,1.020,1.020,1.010) when max duration of VMs is 50,
100,200,400, 800 slots respectively. This is consistent with
Observation 3.

VI. CONCLUSIONS AND FUTURE WORK
This paper proposed analytical methods for average power
consumption and total energy consumption. Our theoretical
results are validated by different scheduling scenarios in
real tests and simulation. These results show that our pro-
posed methods can be applied to design and evaluate energy-
efficiency in cloud computing. There are a few research issues
under further investigation:

• Considering other overheads during VM migrations:
It is possible to reduce the total energy consumption
by limiting number of VM migrations. As frequently
migrating VMs can cause network congestion and vibra-
tion, the number of VM migrations should be min-
imized. Other overheads including delay, overloaded
PMs and management costs than additional energy

consumption during VM migrations should also be
considered.

• Evaluating more power consumption models such as
DVFS (Dynamic Voltage Frequency Scaling). Intensive
research already show that combining DVFS can further
improve energy-efficiency.We are analyzing the energy-
efficiency combining DVFS and CPU utilization.

• Considering energy consumption of other applications.
The power consumptionmodel based on CPU utilization
works fine for compute-intensive applications. Other
applications such as RAM-intensive, IO-intensive and
their combinations are also under investigation.
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