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ABSTRACT Micro-computed tomography (micro-CT) provides an in vivo high-resolution preclinical
imaging for murine kidneys. However, due to the relatively low dosage of X-rays, accurate and efficient
segmentation of murine kidneys in micro-CT imaging remains challenging. In this paper, we proposed an
efficient kidney segmentation method in micro-CT images based on multi-atlas registration (MAR) and
random forests (RFs). First, we constructed a probability map of kidneys by the MAR and obtained an
initial shape estimation of kidneys. We acquired the transformations of MAR based on high-contrast organs
and then mapped kidneys to the new micro-CT images. Second, we extracted multiple features (including
intensity, texture, and context features) from the voxels with lower probabilities and fed these features to
a RF classifier. The role of RF is to fine-tune kidney boundaries after MAR. Finally, combining the initial
shape with high probabilities and the fine-tuning of RF, we obtained the final segmentation of kidneys.
The experiments were conducted on datasets acquired by micro-CT imaging of mice with and without the
administration of contrast agent (Dataset1 and Dataset2). The results demonstrated the proposed MAR-RF
outperformed the level sets, statistical-atlas registration, active shape model, and other supervised learning
methods, with the Dice coefficients of 0.9766 and 0.9255, and the mean surface distances of 1.25 and
0.98 mm on Dataset1 and Dataset2, respectively. The training and prediction time of our MAR-RF were
only 37.04% and 17.68% of the compared method, respectively. The proposed method has great potential
for applications in other segmentation tasks of computer-aided diagnosis.

INDEX TERMS Kidney segmentation, computed tomography, multi-atlas registration, random forests.

I. INTRODUCTION
According to a survey conducted by the National Institute
of Health in 2011, about 4.4 million adults in the United
States suffer from renal diseases and the mortality is up
to 50,476 [1]. Thus, precise diagnosis and treatment of these
diseases are of great importance for improving the health
conditions of the patients. In the past decade, state-of-the-art
medical imaging techniques (such as computed tomography
(CT), magnetic resonance imaging (MRI), and ultrasound
(US)) make it possible to investigate the anatomical informa-
tion of kidneys in vivo. Specifically, micro-computed tomog-
raphy (micro-CT) provides in vivo high-resolution preclinical
imaging of murine kidneys. In this regard, accurate seg-
mentation of kidneys is the critical step for the anatomical
analysis. However, due to the relatively low dosage of X-rays,

the desirable delineation of renal shapes and boundaries in
micro-CT imaging remains challenging.

Forouzan et al. [2] proposed a segmentation method for
soft tissue organs based on multiple thresholds that were
determined by analyzing the statistics of intensities. With
spines as landmarks, Lin et al. [3] estimated the locations
of kidneys with elliptical regions and then grew the regions
to segment kidneys. However, due to the heterogeneous dis-
tribution of intensities, it is difficult to adaptively determine
the thresholds and growing criteria for the above meth-
ods. Khalifa et al. proposed a level-set approach for kidney
segmentation guided by a stochastic speed function. This
method integrated both the shape prior knowledge and the
spatial interaction model between the kidney voxels and
its background [4]. Moreover, Wu and Sun [5] constructed
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a probabilistic deformable model for kidney segmenta-
tion, which was initialized by Laws’ micro-texture ener-
gies and maximuma posteriori (MAP) estimation. Generally,
the model-based methods outperformed the thresholding and
region growing techniques. Another popular method in medi-
cal image segmentation is the active shape model (ASM) [6],
which constructs a statistically mean shape by iterative
closest point (ICP) registration [7]. The specific shape
variance for each object is determined by the standard
deviation calculated by covariance matrix. Furthermore,
Spiegel et al. and Wimmer et al. modified the ASM by
introducing a non-rigid registration and a non-parametric
framework, respectively [8], [9]. These modified methods
improved the accuracy of ASM in terms of point correspon-
dence and the adaption for kidney boundaries. Nevertheless,
they are sensitive to the initialization andmay not be plausible
if the initial shapes are too far from the target shapes.

Many studies employed the atlas registration method to
estimate organ locations from in vivo small animal imag-
ing. Generally, the rigid/non-rigid registrations of high-
contrast organs (such as skeleton, lungs and skin) were firstly
conducted. Then, whole-body organs were mapped from
an atlas to the newly scanned CT images, based on the
correspondences established from the registration of high-
contrast organs [10], [11]. Nevertheless, even if non-rigid
transformations were adopted, a single atlas was not suffi-
cient to compensate the inter-subject anatomical variations.
Therefore, Wang et al. [12] proposed a statistical atlas-
based approach to estimate major organs in mouse micro-
CT images. They firstly registered the high-contrast organs
in micro-CT images by fitting a statistical shape model,
then estimated the low-contrast organs using a conditional
Gaussian model. Subsequently, they modified the model of
mouse atlas and make it adaptable for any body weight
by changing body length and fat amount [13]. In addition,
Alchatzidis et al. [14] established the consistency between
multi-atlas registration and segmentation of target organs
from the new image by introducing a pairwise Markov ran-
dom field. These atlas-based methods can quickly estimate
the locations of multiple organs, but cannot segment each
organ accurately. Worse yet, the performance would greatly
decrease when the quantity or quality of training images was
insufficient.

Recently, more and more supervised learning methods
were applied to the kidney segmentation, which reduce the
segmentation to a problem of pixel classification by marking
each pixel as kidneys or background. Cuingnet et al. [15]
segmented kidneys by combining and refining random forests
(RF) and template deformation. In their method, kidneys
were localized with RF following a coarse-to-fine strategy.
RF collaborating with other methods were also employed to
further segment a kidney into four components (renal cor-
tex, renal column, renal medulla, and renal pelvis) [1], [16].
Moreover, Gloger et al. [17] and Verma et al. [18] realized the
volumetry and identification of renal diseases with support
vector machines (SVM). The role of SVM was to automate

the procedure of conventional diagnosis of renal diseases
with suitable feature extraction. Both RF and SVM require
the handcrafted features that distinguish kidneys from back-
ground in CT images. It is worth mentioning that applications
of deep neural networks (DNNs) in segmentation of poly-
cystic or pathological kidneys emerged [19]–[21]. Compared
with RF and SVM, DNNs directly took CT images as inputs
instead of the handcrafted features, thus further reduced the
user intervention during kidney segmentation. These super-
vised learningmethods achieved relatively high segmentation
accuracy. However, the computation costs for these methods
are enormous, due to the time-consuming feature extraction
in RF and SVM or the training of DNNs.

In this paper, we proposed an efficient kidney segmentation
method in micro-CT images based on multi-atlas registration
(MAR) and random forests (RF). Firstly, we constructed a
probability map of kidneys with MAR and obtained an initial
shape estimation of kidneys. Similar to previous methods,
we acquired the transformations of MAR based on high-
contrast organs and then mapped kidneys to the new micro-
CT images. Then, we extracted multiple features (including
intensity, texture, and context features) from the voxels with
lower probabilities and fed these features to an RF classifier.
The role of RF is to fine-tune the kidney boundaries after
MAR. Combining the initial shape with high probabilities
and the fine-tuning of RF, we obtained the final segmentation
of kidneys. Our method balanced the computational cost
and segmentation accuracy with the effective combination
of MAR and RF. The main contributions of this paper were
given as follows.

1) The effective combination took advantages of both the
MAR and RF for segmenting murine kidneys in micro-CT
images. The segmentationwas speeded upwithout sacrificing
the segmentation accuracy.

2) The image features we used in RF consisted of inten-
sity, texture (Gray-level co-occurrence matrix, GLCM), and
context features, which were able to distinguish kidneys
from background. Although the micro-CT datasets used
in this paper contained very large individual differences,
the designed image features showed good discrimination
capability.

3) We proposed an efficient feature extraction scheme in
both the training and testing stage. In the training stage,
we extracted the image features from the bounding boxes
circumscribed the kidneys in training datasets. In the testing
stage, only the image features in the regions with low proba-
bilities (in probability map) were extracted.

4) The proposed method was applied to our micro-CT
datasets with/without administration of contrast agent. The
results showed that our method can accurately and efficiently.
segment murine kidneys. The proposed method has great
potential for applications in other segmentation tasks.

The rest of the paper was structured as follows.
We described our method in Sections II, followed by the
experiments and results in Section III. We discussed and
concluded the paper in Section IV.
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FIGURE 1. Framework of the proposed kidney segmentation method, which mainly consists of two stages: the acquisition of kidney probability
map based on multi-atlas registration and kidney segmentation with random forests.

II. METHOD
The framework of the proposed method is shown in Fig. 1,
which mainly consists of two stages, i.e. the acquisition
of kidney probability map based on MAR and the kidney
segmentation using RF. In the first stage, the high-contrast
organs of the training atlases were registered one by one to
the testing image, and thus the transformations are obtained.
Subsequently, these transformations mapped the correspond-
ing kidneys in the training dataset to the testing image. The
probability map of the kidney was constructed based on
the mapping results. In the second stage, multiple features
(including intensity, texture, and context features) of training
images were extracted to train an RF. The RF was applied
to further classify the initial shape with low probabilities
as kidneys or background. Finally, the probability map and
the classification result were integrated to generate the final
segmentation of the kidney.

A. ACQUISITION OF PROBABILITY MAP
1) ATLAS CONSTRUCTION
All the organs in the training dataset were interactively seg-
mented under the supervised of experts. Multiple atlases in
mouse trunk region were constructed, including high-contrast
organs (skins, skeletons, and lungs) and kidneys. The high-
contrast organs are easily identifiable in micro-CT images,
which were labeled using a semi-automatic software incorpo-
rating thresholding, region growing, and deformable simplex
mesh methods. As we all know, the shape representation

is fundamental for designing models and constructing atlas
in medical image segmentation. In our method, the shape
representation of the high-contrast organs was composed of
a set of points distributed across the organ surface, which
were extracted from labeled data using the marching cubes
algorithm [22]. This is probably the simplest and the most
generic method used to represent shapes [23]. The high-
contrast organs were taken as the references in the atlas
registration to overcome large variations in postures among
individuals. To balance the registration time and the main-
tenance cost of organ shape, the numbers of representation
points were 3400 for skin, 1250 for skeleton, and 1350 for
lung. In order to obtain an accurate kidney probability map,
the representation of kidneys in the training dataset was com-
posed of the volumetric kidney voxels rather than the surface
points.

Let Xi denote the ith training image, Hi denote the high-
contrast organs in Xi

Hi =
[
X skini ;X

skeloton
i ;X lungi

]
(1)

whereX skini ,X skelotoni , andX lungi denote the skin, skeleton, and
lung in Xi, respectively.

X skini =

[
xskini,1 , y

skin
i,1 , z

skin
i,1 ; · · · ; x

skin
i,N skin , y

skin
i,N skin , z

skin
i,N skin

]
(2)

with
(
xskini,j , y

skin
i,j , z

skin
i,j

)
being the 3D coordinates of the

jth point of X skini , and N skin being the total number of points
that represent the skin. Similar denotations also apply to
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the skeleton, lung, and kidney. Therefore, Hi contains the
3D coordinates of

(
N skin

+ N skeleton
+ N lung

)
= 6000 points.

2) ATLAS REGISTRATION AND PROBABILITY MAP
CONSTRUCTION
Due to the variances in individuals, the size, shape, and loca-
tion of the same organ generally vary among different images.
To establish the point correspondence between each pair of
atlas and the testing image, we firstly registered all the high-
contrast organs in the training dataset to the ones in the testing
image. Secondly, we calculated the transformation matrices
from all the atlases to the testing image. Finally, we applied
the transformationmatrices tomap the corresponding kidneys
to the testing image to build a probability map of the kidney.

In detail, we denote Ho as the high-contrast organs in
the testing image. The transformation Ti was obtained by
registering Hi to Ho using the iterative closest point (ICP)
algorithm [24]. Then Ti was used to map X kidneyi to the testing
image and produce X ′kidneyi . Similar to X kidneyi , X ′kidneyi con-
tained 3D coordinates of the points representing the kidney
after mapping. We created a binary matrixMi, which is of the
same size as Xi. In Mi, the value of those positions covered
by the points of X ′kidneyi is 1 and those of the other positions

is 0. 9 =
{
X ′kidney1 , · · · ,X ′kidneyN a

}
represents all the mapped

kidneys, where N a is the number of training images. � =
{M1, · · · ,MN a} was obtained when the registration traversed
all the images in the training dataset. The probability map P
of the kidney in the testing image was computed as

P =
1
N a

N a∑
i=1

Mi (3)

Since each element of Mi is either 0 or 1, the value of
each element of P is within [0, 1]. For ∀p ⊆ P, if p = 1
then the corresponding voxel was covered by all the elements
of 9. On the contrary, p = 0 means that no element of 9
covered the corresponding voxel. Hence, if the value of p
was closer to 1, the corresponding voxel in P had a higher
probability of being the target, and vice versa. The right inset
of Fig. 5 shows the probability map. Darker color indicates
the greater probability of the voxel being the kidney.

B. KIDNEY SEGMENTATION
The probability map describes the probability that each voxel
in the testing image belongs to the kidney.We can set a proba-
bility threshold and obtain the segmentation result. However,
experiments showed that the segmentation results were not
accurate enough, as shown in Fig. 2. The 0.1-threshold causes
the issue of over-segmentation, while the 0.9-threshold results
in the under-segmentation with non-smooth contours. Obvi-
ously, such segmentation was far from meeting the clinical
needs. Therefore, it was necessary to further fine-tune the seg-
mentation based on the probability map. As shown in Fig. 3,
we used an RF classifier to achieve this goal.

Firstly, we selected an upper threshold TH and a lower
threshold TL . In the probabilitymap, voxels with probabilities

FIGURE 2. Threshold segmentation results based on the probability map,
where purple represents algorithmic segmentation and yellow represents
expert segmentation.

FIGURE 3. The combination MAR and RF for the kidney segmentation.

greater than TH and smaller than TL were directly marked
as kidney voxels and background voxels, respectively. The
voxels with probabilities between TH and TL were defined
as the quasi-target voxels. Then, the trained RF classifier
was applied to classify these quasi-target voxels as kidneys
(label = 1) or background (label = 0). Finally, combining
the voxels with high probabilities and the fine-tuning of RF,
we obtained the final segmentation of the kidney. It is worth
noting that the accuracy of the RF largely depended on the
exquisite designed image features.

1) IMAGE FEATURES
Both 2D and 3D features were previously extracted to seg-
ment kidneys [1], [16]. The 2D features include hog features,
Gabor features, Robert and Hessian features. The 3D fea-
tures include mean and variance of voxels, which describe
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different relationships between the voxels of interest and their
surrounding ones. Moreover, Cuingnet et al. [15] segmented
kidneys by an RF with intensity features and first/second
order derivatives of the voxels. In our study, only the
2D features were extracted, which consisted of intensity
features, texture features (gray-level co-occurrence matrices,
GLCM), and context features. The intensity features and
GLCMwere calculated in n1×n1patches centered at voxels of
interest. The context features contained the average intensity,
Gabor texture, and curvature. We combined these three types
of features to segment kidneys in micro-CT images.

a: INTENSITY FEATURES
Studies have shown that the human visual system is sensitive
to the mean and variance of image gray information [25].
However, in medical image analysis, some features that can-
not be distinguished by human eyes may provide more dis-
tinguishing information, so we not only computed the mean
and variance, but also the skewness and kurtosis [26]. Thus,
each voxel had four intensity features, i.e. mean, variance,
skewness, and kurtosis.

b: TEXTURE FEATURES
As one class of popular texture features, gray-level
co-occurrence matrix (GLCM) has been widely used to
evaluate image properties related to second-order statis-
tics [27], [28]. Given the linear spatial relationship between
two pixels, GLCMof an n×m image patch Is can be generated
by counting the co-occurrence gray levels as follows.

P (i, j) =
n∑

x=1

m∑
y=1

 1, if Is (x, y) = i and
Is (x +1x, y+1y) = j

0, otherwise
(4)

where (x, y) indicates the image coordinate. P (i, j) describes
the occurring frequency of two pixels constrained by the
displacement vector d = (1x,1y), one with grey-level i
and the other with grey-level j. Obviously, the size of the
GLCM depends on the range of values of the gray levels i
and j, so it is very important to quantize the image to a certain
gray level N g before calculating the GLCM.
We calculated four most commonly used texture features

from the GLCM as follows.

Contrast =
∑
i,j

(i− j)2P (i, j) (5)

Correlation =
∑
i,j

(i− µi)
(
j− µj

)
P (i, j)

σiσj
(6)

Energy =
∑
i,j

P (i, j)2 (7)

Homogeneity =
∑
i,j

P (i, j)
1+ |i− j|

(8)

where µi and σi, µj and σj are the means and standard devi-
ations of Pi =

∑
k P(i, k) and Pj =

∑
k P(k, j), respectively.

In order to obtainmore effective texture information, different

GLCMs were calculated by setting different d . 1x and 1y
are usually smaller in the practical applications. Empirically,
we took four different values of d as (0, 1), (−1, 1), (−1, 0),
and (−1, −1). Thus, we obtained 16 (4× 4) texture features
for each voxel in total.

c: CONTEXT FEATURES
Contextual information is of particular importance for med-
ical image processing [29], which has been used to segment
prostates from CT images [30] and cardiac structures from
MRI [31], [32]. The context features in our paper consisted
of average intensity, texture, and curvature. Fig. 4 shows
the strategy for calculating context features. Centered at the
current voxel, the intersections of the red lines and the three
circles are the sampled points (24 in total, one indicated
by ’+’). At each sampling point, we extracted a n2×n2 patch
(indicated by a square) and calculated the average intensity,
texture, and curvature. The average texture was derived from
the texture map of the patch. The average curvature was
obtained based on the curvature map corresponding to the
patch. The generation of texture map and curvature map was
given as follows.

FIGURE 4. The strategy for calculating context features, where the angle
between the adjacent red lines is 45◦, and the radii of the three circles
are a1, a2 and a3, respectively.

The Gabor filter was employed to extract average tex-
ture features. Given the current image patch I , the texture
map TexI can be calculated as

TexI = I ⊗ Gγ,ω (x, y) (9)

where ⊗ denotes the 2D convolution, and Gγ,ω (x, y) is the
Gabor filter function, which can be expressed as

Gγ,ω (x, y) = α × g [α (x cos θ + y sin θ) ,

α (−x sin θ + y cos θ)] (10)

where α is the scale factor, θ is the direction factor, and
g (x, y) is defined as

g (x, y) =
γ

2πσ 2 × exp
[
−
x2 + γ 2y2

2σ 2 + 2π j
(
λxx + λyy

)]
(11)

with γ being the spatial aspect ratio, which determines the
ellipticity of the support of the Gabor function. σ is the
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standard deviation of the Gaussian kernel. λx and λy are
shifting parameters in the frequency domain. Empirically,
we set α = 1, θ = π/2, γ = 0.5, σ = 2, and λx = λy = 0.1.

The curvature is another commonly used feature to distin-
guish different tissues [33]. In our paper, the curvature map
CurI of I was calculated as

CurI =
CurupI
CurdownI

(12)

with

CurupI =
∂2I
∂y2

[
1+

(
∂I
∂x

)2
]

−2
∂I
∂x
∂I
∂y

∂2I
∂x∂y

+
∂2I
∂x2

[
1+

(
∂I
∂y

)2
]

(13)

and

CurdownI = 2×

[
1+

(
∂I
∂x

)2

+

(
∂I
∂y

)2
] 3

2

(14)

As the above description shows, each voxel corresponds to
72 (24× 3) context features. Combining 4 intensity features
and 16 texture features, we finally obtained a 92 (4+16+72)
dimensional feature vector.

2) SUPERVISED LEARNING USING RANDOM FORESTS
As we all know, it is time-consuming to extract multiple
features (i.e. the intensity, texture, and curvature features)
over the whole volumetric training data. Moreover, large
amount of features also increase the burden of RF training.
Therefore, to make full use of training atlases, we proposed
an efficient feature extraction strategy in both the training and
testing stage of kidney segmentation with an RF classifier.

In the training stage, we extracted the image features from
the bounding boxes of the kidneys in the training dataset.
As shown in the left inset of Fig. 5, the smallest hexahedron
circumscribed the kidney obtained from the corresponding
atlas was regarded as the region of interest (ROI). The multi-
ple features were only extracted within the ROI. In addition,
a sampling strategy among training images was adopted.
We assumed 0 = {F1, · · · ,FN a}, with Fi denoting the set
of the feature vectors in Xi. We uniformly selected feature
vectors from each element of 0 to build a set F with less
feature vectors used for RF training.

F =
{
Sam

(
F1,NF1/N a

)
, · · · , Sam

(
FN a ,NFNa /N a

)}
(15)

where Sam (A, a) represents the operation of randomly select-
ing a elements from A, andNFi denotes the number of feature
vectors in Fi. The sampling number is defined as NFi/N a

(where N a is the number of training images) aiming at
preserving the importance of the feature vectors from each
training image, i.e., the feature vectors in Fi accounted for
the same proportion in 0 and F .

FIGURE 5. The feature extraction scheme. The left and the right insets
show the feature extraction scheme in the training stage and testing
stage, respectively.

In the testing stage, only the multiple features of the quasi-
target voxels (whose probability within the interval (TL , TH ))
were extracted (the right inset of Fig. 5). It was because
the voxels with higher probability (larger than TH ) and the
voxels with lower probability (smaller than TL) were directly
taken as kidneys and background, respectively. As a result,
the number of voxels requiring feature extractionwas reduced
dramatically. This strategy undoubtedly speeded up the super-
vised learning and thus improved the efficiency of kidney
segmentation.

Considering both the accuracy and efficiency, random for-
est (RF) was selected as the supervised learning classifier.
RF is an ensemble learning method for classification, which
is composed of a plenty of decision trees and outputs the clas-
sification results by the voting of individual trees. A decision
tree is a collection of nodes and leaves with each node being
a weak classifier and each leaf storing a posterior probability
distribution. Training an RF was finding the best parameters
for the weak classifiers by optimizing each node with a ran-
dom subspace of the feature space on a random subset of the
whole training set. Then, the trained random forest was used
to classify the quasi-target voxels as kidneys or background.
It is noted that the number (N t ) and depth (Dt ) of trees are
the key indicators affecting the classification performance
of an RF. In fact, they affect not only the accuracy of the
segmentation, but also its efficiency. Finally, combining the
voxels with high probabilities after MAR and the classifica-
tion results of RF, we obtained the final segmentation of the
kidney.

III. EXPERIMENTS AND RESULTS
A. DATASET AND EXPERIMENTAL ENVIRVONMENT
All animal procedures were in accordance with the North-
west University approved animal protocol. The mice were
randomly divided into two groups with 6 and 35 mice for
each group, respectively. The mice in the first group were
imaged after the administration of the X-ray contrast agent,
while the mice in the second group were directly imaged
without contrast agent. The micro-CT system was comprised
of an X-ray tube (HAMAMATSU L9181-02, Hamamatsu,
Japan) with a minimum focal spot size of 5 µm, and a CCD

VOLUME 6, 2018 43717



F. Zhao et al.: Efficient Kidney Segmentation in Micro-CT-Based on MAR and RFs

X-ray detector (Dexela 1512, PerkinElmer, MA) with a
1944 × 1536 pixel array and pixel size of 74.8 µm. The
3D micro-CT images were reconstructed with 3DMed soft-
ware 4.0 (www.3dmed.net). After imaging of the two groups
of mice, we obtained two datasets denoted as Dataset1 and
Dataset2, respectively. The examples of the two datasets
were shown in Fig. 6. It is obvious the kidney segmen-
tation on the micro-CT images without contrast agent
(Dataset2) is more challenging than that on images with
contrast agent (Dataset1). The segmentation method was
implemented in MATLAB 2016a. Computational experi-
ments were conducted on a Workstation with Intel Core i5,
3.3GHz CPU, 8GB RAM under Windows 10. Multithread-
ing technology was applied in the MAR and the feature
extraction.

FIGURE 6. Examples of Dataset1 and Dataset2, respectively. The kidney
(delineated with the red box) in Dataset2 has a more blurred boundary
and a more uneven grayscale distribution than that in Dataset1.

B. BASIC PARAMETER SETTINGS AND EVALUATION
Since our method involves many parameters, Table 1 lists
the basic parameters and their values which were tuned
by trial-and-error. The remaining parameters are set sepa-
rately or calculated by the corresponding formula. All rele-
vant experiments in this article use this parameter setting. All
the experimental results were obtained with the leave-one-out
test. The segmentation accuracy was measured by comparing
the segmentation with the manually segmented ground truth.
Dice coefficient (Dice) and mean surface distance (Dsurf )
were used for the quantitative assessment. Their definitions
are given as follows,

Dice = 2
|Ra ∩ Re|
|Ra| + |Re|

Dsurf = Mean
i

(
min
j

(
V i
a − V

j
e

))
where Ra and Re represent the segmented kidney and ground
truth, respectively. Va and Ve represent the surface points
of the segmented kidney and ground truth, respectively,
with i and j as the point indices of the two surfaces. Dice
coefficient better manifested the segmentation performance
by measuring the overlapping between the segmented kidney
and ground truth.Mean surface distance aimed tomeasure the

TABLE 1. The basic parameters of the proposed method (MAR-RF).

surface distance between the segmented kidney and ground
truth.

C. EXPERIMENTAL RESULTS
We compared our proposed method with the distance reg-
ularized level set evolution (DRLSE) [34], active shape
model (ASM) with non-rigid registration [8], statistical atlas
registration (SAR) [12], as well as MAR with other clas-
sifiers, such as K-nearest neighbor (MAR-KNN) and lin-
ear support vector machine (MAR-LSVM). The average
kidney shape was used to initialize the DRLSE, which
saved the time spending on the slice-by-slice initialization.
MAR-KNN and MAR-LSVM had the same segmentation
process as MAR-RF. We tested MAR with these classifiers
to evaluate the influence of different classifiers. The number
of atlases for our proposed method was 5 (N a

= 5), and the
number and depth of trees in RF were 20 (N t

= 20) and
10 (Dt

= 10), respectively. For fair comparison, we adjusted
the parameters of all the above methods and the optimal
parameters were used in the comparative experiment.

The segmentation results of different methods are shown
in Fig. 7. Due to the administration of X-ray contrast agent,
all the segmentation methods but SAR performed well on
Dataset1. It has little visual differences among the proposed
method (MAR-RF), DRSLE, ASM, and the combinations
of MAR with two other supervised learning methods. The
SAR failed to segment kidney accurately onDataset1 because
of the great difference between the statistical shape and the
target shape. For Dataset2 (without administration of X-ray
contrast agent), the segmented kidneys by DRLSE, SAR, and
ASM have obvious displacements compared to the ground
truth. However, the results of the combinations of MAR with
three supervised learning methods (including our proposed
MAR-RF) still approximated the ground truth kidneys well.

Furthermore, we quantitatively validated the proposed
method, and the results are shown in Fig. 8. The Dice
coefficients of MAR-KNN, MAR-LSVM, and MAR-RF on
Dataset1 are close and they are higher than that of DRSLE,
SAR, and ASM (Fig. 8 (a)). However, the Dice coefficient
of MAR-RF obviously exceeds that of other methods on
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FIGURE 7. The kidney segmentation results with different methods on two datasets (Dataset1: D1, and Dataset2: D2). The insets from the left to right
columns are the segmentation results with DRLSE, SAR, ASM, MAR-KNN, MAR-LSVM, and MAR-RF, respectively. Purple indicates the segmentation by
each method, yellow indicates the ground truth, and orange indicates their overlap.

Dataset2. From Fig. 8 (b), it can be clearly seen that the mean
surface distance of MAR-RF is the smallest on both datasets.
The Dice coefficient of MAR-RF achieved of 0.9766 and
0.9255 on Dataset1 and Dataset2, meanwhile the mean sur-
face distances reduced to 1.25mm and 0.98mm, respectively.
The comparison demonstrates that the proposed method
(MAR-RF) is superior to other methods for themurine kidney
segmentation.

In general, the supervised learningmethod consumedmore
time due to the voxel-wise feature extraction compared with
other methods. Nevertheless, we have speeded up the pro-
posed method with our efficient feature extraction strategy in
both the training and testing stage. Besides the combinations
of MAR with three supervised learning methods, the super-
vised method (RF) without using the MAR in [26] was also
implemented in our comparative experiment. The computa-
tion times of different methods are given in Table 2. It can be
seen that both the training time and the prediction time of our
proposed method (MAR-RF) are smaller than the RF without
MAR, with the training time and prediction time of MAR-RF
being only 37.04% and 17.68% of the latter. Since MAR-RF,
MAR-KNN, and MAR-LSVM all took advantage of multi-
atlas information and employed the same strategy during
feature extraction, their computation time are relatively close
to each other.

D. EVALUATION OF PARAMETERS ON MAR-RF
Among all the parameters, the number of atlases in MAR,
the image features, and the number and depth of decision trees
in RF are critical for the overall performance of the proposed

TABLE 2. The results of computation times for different kidney
segmentation methods.

MAR-RF. Therefore, the influences of these parameters were
evaluation based on a series of quantitative experiments.

1) THE COMPARISON OF DIFFERENT FEATURES
As mentioned earlier, image features are one of the most
important factors in determining the classification accuracy
of supervised learning (e.g. RF). To demonstrate the effective-
ness of the proposed image features including intensity fea-
tures, texture features, and context features, we conducted the
comparative experiment with different image features. The
results of kidney segmentation with different combinations
of image features are shown in Fig. 9.

When the three types of features were individually used
for the kidney segmentation, the context features ranked the
first in terms of surface error. Among the combinations of
two types of features, the combination of intensity and con-
text features had the better segmentation accuracy. Never-
theless, our combination of all the three types of features
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FIGURE 8. The quantitative comparison of accuracies of different
methods with Dice coefficient and Mean surface distance.

(including intensity features, texture features, and context
features) still ranks the first from visual inspection in Fig. 9.

FIGURE 9. The surface errors caused by using different combinations of
image features, including Intensity features (Int), texture features (Tex),
and context features (Con). The closer the color is to blue, the closer the
surface of segmented kidney is from that of the ground truth.

We also quantitatively evaluated the performance of our
proposed image features with the other combinations of fea-
tures. The values of Dice coefficient and mean surface dis-
tance for different features are shown in Fig. 10. Compared
with the intensity and texture features, the context features

FIGURE 10. The effect of the combination of image features on the
performance of MAR-RF.

have the highest Dice coefficient (Fig. 10 (a)) and lowest
surface distance (Fig. 10 (b)). This is probably because the
context features contain the information of local intensity,
texture, and curvature, which fully exploit the spatial relation-
ship of voxels. Nevertheless, it does notmean that other image
features are unimportant. In fact, the combination of texture
features with intensity or texture features has higher Dice
coefficient and lower surface distance. Specifically, when
combining all the three types of features, the Dice coefficient
and surface distance achieved its highest and lowest values,
respectively. Therefore, the effectiveness of our proposed
features was quantitatively validated.

2) THE NUMBER OF ATLASES
The results of different numbers of atlases in our MAR-RF
are shown in Fig. 11. When less than five atlases were used
(N a < 5), both the Dice coefficient and time consump-
tion (Tc) increased as the number of atlases (N a) increased.
There is no significant increase in Dice when N a > 5,
while the Tc increases significantly. Therefore, the best trade-
off between the accuracy and time consumption is achieved
when N a

= 5.

3) THE NUMBER AND DEPTH OF TREES
Table 3 shows the variation of segmentation accuracy and
training time (Tt ) of MAR-RF with different numbers of
trees in RF. When N t

= 20, the training time is T .
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FIGURE 11. The effect of the different numbers of atlases on the
performance of MAR-RF. The horizontal axis is the number
of atlases and the vertical axes are the Dice coefficient
(left) and time consumption (Tc ) (right).

TABLE 3. The effect of number of trees in RF on segmentation accuracy
and training time for MAR-RF.

Considering both the segmentation accuracy and time con-
sumption, it can be concluded from Table 3 that the most
appropriate value for N t is 20. According to the same veri-
fication method, the best value of Dt is 10 (Table 4).

TABLE 4. The effect of depth of trees in RF on segmentation accuracy and
training time for MAR-RF.

IV. DISCUSSION AND CONCLUSION
The proposed MAR-RF is a two-step, coarse-to-fine
segmentation strategy. In the first step, multi-atlas reg-
istration (MAR) was used to compensate the individual
differences in the morphology of the kidney. The coarse
estimation of kidneys was obtained from the probability
map. In the second step, the individual differences of kid-
neys were further fine-tuned by the random forest (RF)
fed with the discriminative features. Therefore, MAR is
different from SAR and ASM, which require more training
images. This is why five atlases in our MAR-RF are enough
to obtain a comparatively accurate segmentation results
(Figs 7 and 8).

The registration method of multiple atlases was the
ICP algorithm, which might be the simplest registration
method for point cloud data. As a rigid registration method,
ICP is suitable for tissues and organs without large mor-
phologically alterations. Based on the results of MAR,
we obtained a probability map providing a coarse estimation
of kidney locations. Finer segmentation was performed by the
random forest fed with multiple image features. In this sense,
few mistakes were allowed when registering an atlas to the
new image in our proposed segmentation method. Non-rigid
registration methods might contribute to more accurate loca-
tion estimation, but the time consumption would inevitably
increase. Considering both the segmentation accuracy and
time consumption, the ICP algorithm was used for atlas reg-
istration in this paper.

The texture features used in our MAR-RF were based on
gray-level co-occurrence matrix (GLCM), with the quanti-
zation gray level (N g) as one of the most important param-
eters. Smaller N g corresponds to smoother image features
with less computation time, while larger N g covers more
detailed image features at the expense of time. In our method,
N g still had a large value (Ng

= 256, as shown in Table 1)
for two reasons. Firstly, the texture feature extraction was
based on small patches, which makes counting symbiotic
gray levels with less time consumption. Secondly, thanks to
our feature extraction scheme, the number of voxels requiring
feature extraction is small. These two reasons can weaken the
effect of a largeN g on the segmentation efficiency. Therefore,
we set Ng

= 256 to preserve more image details and ensured
higher segmentation accuracy.

The sampling radii used to calculate the context features
were set as a1 = 3, a2 = 7, a3 = 10 (Fig.4). The number
of sampling points on each circle was 8. These setting were
obtained through trial-and-error based on specific segmen-
tation target on specific datasets. In general, the sampling
setting are tried under the following principles. Firstly, large
radii may lead to a large amount of image information being
incorporated in context features, which may fail to accurately
describe the attributes of the target organ. Secondly, small
radii corresponds to the context features with a large amount
of redundant image information, such that the spatial rela-
tionship between voxels cannot be fully exploited. Finally,
the number of sampling points on each circle is also a trade-
off as the sampling radii. Taking both the distinguishability
of different voxels and computation efficiency into account,
we set the above sampling radii and number of sampling
points.

As a conclusion, we proposed an efficient kidney seg-
mentation method in micro-CT images based on multi-atlas
registration (MAR) and random forests (RF). Firstly, we con-
structed a probability map of kidneys withMAR and obtained
an initial shape estimation of kidneys. Secondly, we extracted
image features from the voxels with lower probability and
fed these features to an RF classifier. Combining the ini-
tial shape with high probabilities and fine-tuning of RF, we
obtained the final segmentation of kidneys. The validation
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experiments were conducted on micro-CT imaging of mice
with and without administration of X-ray contrast agent
(i.e. Dataset1 and Dataset2). The results demonstrated that
our proposed method MAR-RF outperformed the other
methods (such as DRLSE, SAR, and ASM), as well as
other supervised learning methods (such as MAR-KNN and
MAR-LSVM). Therefore, the accuracy and efficiency of our
proposed method were validated. Our proposed method has
great potential for applications in other segmentation tasks of
computer-aided diagnosis.
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