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ABSTRACT This paper focuses on planning a three-dimensional (3-D) path for the autonomous underwater
vehicle in ocean environment with complicated static and dynamic obstacles as well as the ocean current.
Imitating the principle of natural flow avoiding rocks, we develop a submerged path planning method
based on improved interfered fluid dynamical system (IIFDS). In view of the particular feature of ocean
environment, the obstacles and ocean current are modeled first. The flow field weight coefficient is then
proposed to add the current into the confluence of IIFDS, so that the planned path could make use of the
current. In order to obtain the energy-optimal path, the improved genetic algorithm whose mutation operator
is modified by grey wolf optimizer is proposed to optimize the repulsive and tangential reaction coefficient,
tangential direction coefficient, and flow field weight coefficient. Furthermore, a reverse-avoidance strategy
is applied to real-time path planning to avoid dynamic obstacles, combined with IIFDS. Finally, the good
performance of our proposed method is verified by simulations in various scenarios.

INDEX TERMS Three-dimensional path planning, interfered fluid dynamical system (IFDS), ocean current,
improved genetic algorithm (IGA), dynamic obstacles.

I. INTRODUCTION
The geographical and hydrological environment in the ocean
is complex and uncertain, including undulating terrain, cur-
rent and enemy torpedoes, etc. Path planning plays a vital
role in the intelligence of autonomous underwater vehi-
cle (AUV) and is the key to successful, efficient and safe
completion of missions. It should plan an optimal path
from the starting point to the destination while avoid-
ing kinds of obstacles. Compared with 2-D path planning
methods, 3-D path planning methods are more compli-
cated but more flexible and feasible. The main difference
between underwater robots and other robots’ path planning
is that the submerged planning needs to take the com-
plexity of ocean into account. In addition to the obstacles,
ocean current could easily have an influence on underwater
vehicles[1].

A large number of experts in this field have already
conducted a variety of researches. Rapidly exploring ran-
dom tree (RRT) was used to plan paths and could obtain

collision-free paths in a short time [2]. Reference [3] com-
bined the genetic algorithm (GA) with particle swarm
optimization (PSO) to obtain the quasi-optimal 3-D paths
in complex situations. With the help of ‘‘single-program,
multiple-data’’ parallel programming paradigm, it improved
the calculating speed on multicore CPUs. A potential field
obstacle avoidance algorithm based on the fluid mechanics
panel methods was introduced in [4] to avoid obstacles in
3-D space. Reference [5] developed a method for construct-
ing risk-maps using automatic information systems, based on
the A∗ algorithm, in order to find the minimum risk path
between the specified start and target position. It reduces the
risk of collision at the expense of efficiency. A novel fast
marching (FM) algorithm which absorbs the high efficiency
of A∗ and the accuracy of the FM algorithm was applied to
extracting the continuous path in a 2-D discrete environment.
And multi-resolution method was introduced to improve the
planning efficiency [6]. Even though these methods have
laid out feasible paths, they have not been applied to the
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marine environment. The ocean current has not been consid-
ered or only the uncertainty caused by ocean current has been
taken into consideration. However, the AUV path planning
usually takes the ocean current into account.

Reference [7] introduced two stochastic planners,
a Minimum Expected Risk planner and a risk-aware Markov
Decision Process, to utilize the forecasting of current prob-
abilistically. It helps to improve the safety and reliability of
AUV navigation in coastal regions. Reference [8] developed
a new modified level set equation to plan a 2-D path. The
horizontal flow is combinedwith the standard vehiclemotion,
and the time-optimal paths in continuous dynamic flows are
obtained by solving the particle tracking equation backwards.
Reference [9] adopted a method based on partial differential
equations to obtain a 2-D time-optimal path and it requires
to make full use of ocean current. Reference [10] proposed
an approach based on annular space decomposition (ASD)
for AUV, which can be applied in turbulent, cluttered and
uncertain environments. This method decomposes the space
into annular areas and generates trajectories in each annular
area. On the basis of ASD, [11] presented an optimal and
efficient path planner based on a shell space decomposi-
tion (SSD) scheme. Instead of the annuli in a 2-D plane,
the shells were used to define the volumes and obtain
paths in a 3-D space. With the help of quantum-behaved
particle swarm optimization (QPSO) planner, it figured out
the optimal path that could bypass the upstream flow and
exploit the downstream flow. This type of literature considers
the utilization of ocean current and the uncertainty of the
marine environment while planning underwater paths. It is
no denying that they have higher practicality. Nevertheless,
there are also some problems. For example, it is difficult to
fully consider the requirements of path feasibility, optimality
and complex environmental constraints. They have problems
such as local extreme points, excessive calculations and
2-D limitation.

In addition to static obstacles, there are many unknown
dynamic threats in the actual marine environment, such as
large-scale oceanic lives, enemy torpedoes, submarines, etc.
Reference [12], [13] realized real-time avoidance of sin-
gle or multiple obstacles of the manipulator by using a
dynamic system (DS) method. Velocity Change Space (VCS)
was established in [14] by using the velocity and direction
change of the robot as axes, and the motion planning problem
of mobile robots avoiding dynamic threats was discussed
in this space. Reference [15] described a fast path planning
method suitable for avoiding moving obstacles by using
Laplace potential. However, most of these literatures are
used for mobile robots or robotic arms to avoid small obsta-
cles. Few studies are applied to avoiding dynamic threats in
underwater space. Reference [16] considered the static and
dynamic threats in the spatiotemporal current vectors, using
the evolutionary algorithm (EA) to plan the 3-D rendezvous
path. Reference [17] proposed a 2-D path re-planning algo-
rithm combined with EA and was applied to a cluttered
environment with moving obstacles.

Inspired by the natural phenomena that flowing water
could avoid obstacles, Wang et al. [18] proposed a path
planning algorithm based on interfered fluid dynamical sys-
tem (IFDS) which was applied to the unmanned aerial vehi-
cle (UAV) path planning. In response to the existence of
stagnation points and trap areas, the improved IFDS (IIFDS)
was hence employed [19]. It has the advantages of low com-
putational complexity, suitability for 3-D space and good
path quality. Based on this method, we plan the path for
AUV in 3-D marine environment in this paper. We not only
consider the complex static obstacles of the seabed, but also
introduce ocean current into the initial convergence of the
IIFDS algorithm in a certain proportion so that the algorithm
could utilize the current simultaneously. Improved GA (IGA)
incorporating grey wolf optimization (GWO) is used to opti-
mize the feasible path. The length of path and the angle
between AUV and current are included in the fitness function,
in order to get the energy-optimal, feasible and efficient path.
In the end, the IIFDS combined with the reverse-avoidance
strategy is used for real-time path planning to avoid possible
dynamic threats.

The remaining paper is organized as follows. Section 2
describes the IIFDS method. In Section 3, ocean current is
added to the IIFDS. IGA for path optimization is presented
in Section 4. Dynamic threats are considered in Section 5.
Section 6 describes the simulation results. Finally, the con-
clusion is drawn in Section 7.

II. DESCRIPTION OF STANDARD IIFDS METHOD
A. OBSTACLE MODEL
The high-quality environment model is the precondition and
the basis of path planning work. In order to balance the accu-
racy with the efficiency, this paper adopts a unified standard
model to represent various irregular obstacles [19]. Obstacles
are extracted from the typical feature points for envelope
processing. The equivalent are standard convex polyhedrons
and the obstacles can be expressed as (1).

0 (x, y, z) =
(
x − x0
τa

)2p

+

(
y− y0
τb

)2q

+

(
z− z0
τc

)2r

(1)

where P = (x, y, z) is the position. The complex terrain
generated by simulation in MATLAB is shown in Fig.1. Then
the description of any obstacle in the actual environment can
be simplified to select a suitable envelope by adjusting the
coefficients.

B. IIFDS FORMULATION
The IFDS algorithm imitates the property of flowing water
and establishes the basic model of path planning: the undis-
turbed flowing water is regarded as the initial flow field;
the stones are regarded as obstacles; the flowing water that
bypasses the stone is regarded as the disturbed flow field;
the disturbed flow field line is regarded as the planning path.
When there is no obstruction in the planning area, the AUV
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FIGURE 1. Simulated 3-D topographic map.

FIGURE 2. Illustration of convergence. (a) Undisturbed convergence.
(b) Disturbed convergence.

can reach the target point along the straight line of the con-
fluence (Fig.2 (a)). In contrast, when there are obstacles in
the area, the flow field of the confluence will change its
original straight state due to obstacles, but it can still smoothly
bypass the obstacles and eventually converge to the target
point (Fig.2 (b)).

By using the matrix to represent the disturbed effect of
obstacles on the flow field, the disturbed flow field which
helps to get the planning path can be obtained. First, we estab-
lish the initial flow field model without obstacle, i.e., the
convergence:

U(P) = −
(
V0 · (x − xd )
d(P,Pd )

V0 · (y− yd )
d(P,Pd )

V0 · (z− zd )
d(P,Pd )

)T
(2)

where V0 is a virtual interval with no practical significance,
f (P,Pd ) is the Euclidean distance between the current AUV
position P and the target position Pd :

d(P,Pd ) =
√
(x − xd )2 + (y− yd )2 + (z− zd )2 (3)

Assuming that the number of known obstacles is K, the dis-
turbance influence of obstacles on the confluence can be
expressed as a matrix:

M(P) =
K∑
k=1

ωk (P)Mk (P) (4)

where ωk (P) is the disturbance coefficient, M(P) is the dis-
turbance matrix:

ωk (P) =


1 K = 1

K∏
i=1,i6=k

0i(P)− 1
(0i(P)− 1)+ (0k (P)− 1)

K 6= 1

(5)

ωk (P) =
ωk (P)
K∑
k=1

ωk (P)

(6)

Mk (P) = I−
nk (P) · nk (P)T

|0k (P)|
1
ρk nk (P)Tnk (P)

+
tk (P) · nk (P)T

|0k (P)|
1
σk |tk (P)| |nk (P)|

(7)

ρk = ρ
0
k · e

(
1− 1

d(P,Pd)d(P,Ok)

)
(8)

σk = σ
0
k · e

(
1− 1

d(P,Pd )d(P,Ok )

)
(9)

tk (P) = Rk t ′k (P) (10)

where 0(P) is the obstacle function, I is a third-order identity
matrix, ρ0k > 0 is repulsive reaction coefficient of obstacle k ,
σ 0
k > 0 is tangential reaction coefficient, Rk represents the

coordinate rotation matrix of the coordinate system O′_x ′y′z′

to O_xyz, d(P,Pd ) is the distance between the AUV and the
destination, d(P,Ok) is the distance between the AUV and
the surface of the kth obstacle, nk (P) which is perpendicular
to the obstacle surface outward is the radial normal vector of
the kth obstacle:

nk (P) =
[
∂0k (P)
∂x

∂0k (P)
∂y

∂0k (P)
∂z

]T
(11)

Construct a coordinate system O′_x ′y′z′ on a tangential
plane S which is perpendicular to nk (P) with nk (P) as the
z′-axis. The x ′-axis and the y′-axis are:

x ′ =
[
∂0k (P)
∂y

−
∂0k (P)
∂x

0
]T

y′ =


∂0k (P)
∂x

·
∂0k (P)
∂z

∂0k (P)
∂y

·
∂0k (P)
∂z

−

(
∂0k (P)
∂x

)2

−

(
∂0k (P)
∂y

)2


T

(12)

t′k(P) =
[
cos θk sin θk 0

]T is any tangent vector on the
S plane, θk ∈ [−π, π] is the tangential direction coefficient
which represents the angle between t′k and the x ′-axis.
The final disturbance flow velocity is:

U(P) =M(P)U(P) =
K∑
k=1

ωk (P)Mk (P)U(P)

=

K∑
k=1

ωk (P)Uk (P) (13)

The path can be obtained through integrating the velocity:

Pi+1 = Pi + U(P)1t (14)
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andUk (P) is the disturbed flow velocity of the kth obstacle at
the point P,1t is the step length and the smaller the value is,
the more accurate the path is but the greater the amount of
calculation is. This method accords with the general charac-
teristics of flowing water:

a) The path satisfies the terrain boundary constraints, and
the disturbance flow velocity does not point to the
obstacle’s radial normal vector, i.e., the path has the
characteristics of following obstacles, but will never
pass through the interior of the obstacles;

b) The path finally converges to the destination, i.e., the
underwater robot can reach the destination;

c) There is no local extreme point outside of the obstacles
which will prevent the AUV from moving;

These characteristics have been demonstrated in [19].

FIGURE 3. Paths distribution with different coefficients.

Fig.3 shows a variety of feasible paths planned by the
IIFDS to avoid a single obstacle. The effect of each coeffi-
cient on the path can be roughly summarized as follows: The
tangential direction coefficient θk determines the plane where
the path lies. The closer the θk approaches 0,π ,−π , the closer
the streamlines are to the horizontal plane, i.e., the AUV
tends to avoid obstacles from the side. As θk approaches
π/2, the streamlines become closer to the vertical plane,
i.e., AUV tends to bypass obstacles from above. The larger
ρ and σ is, the earlier the path avoids obstacles, the farther
away from the obstacles is and the safer the path is. But
the length of path may increase, which is not conducive to
saving energy. In general, the IIFDS can safely and smoothly
avoid all obstacles by selecting appropriate combination of
coefficients.

III. IIFDS METHOD UNDER OCEAN CURRENT
The rational use of ocean current can not only increase the
navigational power of AUV and save the energy consump-
tion, but also ensure the safety of vehicles and contribute to
improving the concealment. One of the advantages of IIFDS
is that it can be modeled for specific situations. With respect
to the impact of current, we consider adding a proportion of
its velocity V to the initial flow field U to construct a new
convergence W:

W = λU+ (1− λ)V (15)

where λ ∈ [0, 1] is called the flow field weight coefficient,
which determines the proportion of the current and the initial
flow in the new convergence. Convergence determines the
basic direction of the path. Through the introduction of the λ,
on one hand the AUV moves toward the target point, on the
other hand it is affected by the current. As a result, when the
current is helpful, λ can take a smaller value so that AUV can
save energy by drifting along the current as much as possible.
On the contrary, when the current is unusable and even affects
the navigation and safety of AUV, λ can take a higher value.

This paper assumes the current during the course is time-
stable, i.e., the magnitude and direction of the current velocity
at each point at different instants of time are constant. And
relative to the horizontal movement, the current in the vertical
direction can be neglected. The current in the horizontal plane
can be expressed by the stream function [20] shown in (16).

F (x, y, t) = 1− tanh(
y− b (t) cos [k (x − ct)]√
1+k2b2(t) sin2 [k (x−ct)]

) (16)

b (t) = b0 + e cos($ t + χ ) (17)

Different meandering current can be obtained by adjusting
the parameters. The current described by this function is also
related to time and will change as the time changes. Since we
suppose the current is constant, t takes a fixed value. When
t = 3, c = 1.2, k = 0.8, e = 0.1, b0 = 2.2,$ = 0.4,
χ = π/2, the flow field is shown in Fig.5. According to this
stream function, the velocity in the x and y directions at the
point (x, y) can be obtained. The velocity in each direction is
still a function of x, y, and t:

Vx(x, y, t) = −
∂F
∂y

Vy(x, y, t) =
∂F
∂x

(18)

FIGURE 4. The influence of current on the safety of AUV navigation.
(a) No current. (b) Affected by current.

where Vx ,Vy are x, y velocities respectively. The velocity
obtained here is the relative speed whose maximum value is
1, so it should be multiplied by the maximum value of the
actual current speed during application. Fig.4 (a) illustrates
the planned path when there is no current, whereas (b) illus-
trates the planned path when the current velocity is (−0.25,
0.25, −0.5) m/s, the initial flow field velocity is 1.5 m/s,
λ = 0.5. It is obvious that the path under the influence of
ocean current is too close to the obstacle. Therefore, if we
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FIGURE 5. Meandering current and the path that utilizes the current.

do not make appropriate adjustments or optimization to the
path when there is current, it may not only result in excessive
energy consumption, but alsomake the path infeasible. On the
contrary, if we select the flow field weight coefficient λ rea-
sonably in some cases tomake theAUV sail along the current,
it can save energy or increase the speed of navigation (Fig.5).

IV. PATH OPTIMIZATION
The coefficients of IIFDS are selected randomly in the above
section, so some paths may be too long or too close to
obstacles or influenced by current which could make the
path infeasible. Therefore, the optimization of coefficients is
also discussed. GA are widely used because of its implicit
parallelism and strong global optimization ability.

A. GA
1) ENCODING
The different paths generated by the IIFDS algorithm are
determined by the three coefficients in the original algorithm
and the flow field weight coefficient that is added after con-
sideration of the ocean current, so the four coefficients are
selected as GA chromosomes, and floating-point numbers
are used for encoding. The chromosome of an individual is
C = {ρ, θ, σ, λ} denoting repulsive reaction coefficient, tan-
gential direction coefficient, tangential reaction coefficient,
flow field weight coefficient respectively.

2) INITIALIZATION
Initialize a population that contains multiple individuals
G (g) = {C1,C2, . . .Cn}, g = 1, where g is the num-
ber of iterations, n is the number of individuals in the
population (20-200) to ensure the diversity of chromo-
some. The randomly generated coefficients are constrained
according to (19). 

1 ≤ ρ ≤ ρmax
0 ≤ θ ≤ π
1 ≤ σ ≤ σmax
0 ≤ λ ≤ 1

(19)

where ρmax and ρmax are maximum values of repul-
sive reaction coefficient and tangential reaction coefficient
respectively.

3) FITNESS FUNCTION
While AUV is free from cable constraints, limited energy
has become the primary factor limiting its path planning.

How to save energy should be the primary considered ques-
tion especially under the influence of ocean current, so we
choose energy consumption as the fitness value. Assuming
that the speed of AUV’s external performance is constant,
the energy consumption is mainly related to the length of
the path, the angle between the AUV velocity and the current
velocity. The fitness function A is defined as:

A = η1A1 + η2A2 (20)

FIGURE 6. Paths focusing on different costs. (a) Emphasis on short paths.
(b) Emphasis on downstream paths.

where A1 is the cost of path length, A2 is the cost of angle
between the AUV velocity and the current velocity, η1, η2 are
the corresponding weight coefficients. By choosing differ-
ent weight coefficients, the importance of the path length
and ocean current can be changed. The higher the value of
η1/η2 is, the more emphasis is placed on the path length.
In this situation, the planned path is biased towards Fig.6 (a).
Otherwise, the emphasis is placed on saving energy with
the help of current and the path is more biased towards
Fig.6 (b). Section 6 will specifically analyze the relationship
between η1, η2 and the path through simulation.
Set the AUV starting point as Ps = (xs, ys, zs), the tar-

get point as Pd = (xd , yd , zd ), the waypoint as Pw =
(xw, yw, zw), then the collection of all points on the path
can be expressed as {P1,P2 . . .Pw . . .PW }, where W is the
number of points and P1 = Ps, PW = Pd . Define A1 as the
sum of Euclidean distances between waypoints:

A1 =
W∑
w=2

|Pw − Pw−1| (21)

According to the principle of dynamics, a downstream
path is more conducive to saving energy or saving time for
AUV [20], [21].We use the angle between AUV and current’s
velocity to determine the degree of downstream, with the
following definition of A2:

A2 =

W∑
w=1

[
arccos( UT

w ·V
|Uw||V |

)
]

W
(22)

where Uw is the velocity along the wth path segment, V is
the constant current velocity. WhenUw and V are in the same
direction, i.e., the included angle is 0◦, A2 = 0. As the angle

42908 VOLUME 6, 2018



P. Yao, S. Zhao: 3-D Path Planning for AUV Based on IFDS Under Ocean Current

increases, the AUV gradually reverses the flow.WhenUw and
V are completely reversed, A2 = π . And the lower the value
of A2 is, the more the AUV tends to sail downstream and the
higher the fitness is.

In some cases, if only energy consumption is used as the
fitness, the planned path may be too close to the obstacles in
order to save energy. We hence introduce the safety cost:

A3 =
K∑
k=1

Ak3 (23)

Ak
3
=

{
∞ 0k (P) ≤ 1
0 0k (P) > 1

(24)

0k (P) ≤ 1means AUVwill collide with an obstacle, in which
case the safety cost is infinite for penalty. Since (1) considers
the puffing treatment of obstacles, the path is considered
safe as long as it does not intersect with any obstacle, which
also guarantees the path’s following characteristic. Then the
whole fitness function is established as (25). The smaller A is,
the better the path is.

A = η1A1 + η2A2 + A3 (25)

4) GENETIC OPERATORS
a: SELECTION
We combine elitist preservation strategy with roulette selec-
tion method to conduct the selection. In order to ensure that
the optimal individualsmust be selected and not destroyed, all
individuals are ranked according to their fitness before selec-
tion and the top 10% of the individuals are remained. Then
the remaining 90% of individuals are selected from the entire
population by roulette principle. The selection probability of
the ith individual is:

Psi =
1
Ai
n∑
i=1

1
Ai

(26)

b: CROSSOVER
The top 4% individuals with the best fitness do not partici-
pate in the crossover. On one hand, it ensures that the best
individuals will not be destroyed, on the other hand, some
excellent genes can participate in the crossover operation so
that excellent genes can be transmitted in the population.
We employ the single-point crossover method. The selected
chromosomes are randomly paired and whether executing
crossover is determined according to the crossover probabil-
ity. If the chromosome satisfies the crossover condition, one
crossover point is selected randomly and the genes following
the selected node will be exchanged.

c: MUTATION
The top 4% individuals also do not participate in themutation.
Alternative-mutation method is used and can be described as
that a gene of an individual who meets the mutation condition
is randomly selected and changed according to the preset

mutation probability. The value after mutation needs to meet
the requirement of (19).

5) TERMINATION CONDITION
We employ a dynamic iteration number. When the fitness
of the best individual in the current population is constant
for three consecutive generations, the cycle is terminated.
Therefore, we only need to set the maximum number of
iterations. The loop can be automatically terminated after the
optimal value is stable, which could avoid wasting time.

B. IMPROVED GA
Better solutions are usually found among new individuals.
From the perspective of GA’s ability to generate new indi-
viduals, crossover is the staple way. Because of the low prob-
ability of mutation, the ability of mutation to generate new
individuals is quite limited. Moreover, there is a high proba-
bility that the mutation will produce an infeasible path, which
makes the mutation less effective. In addition, the specificity
of the coding way and the single-point crossover method
in this paper determine that the genes in the population are
determined at the time of initialization. Although the genes
of organisms in nature are basically fixed, thanks to the large
number of genes in the natural world, various of individu-
als can be obtained only by crossing. But the initial genes
generated by computer is limited, the diversity of popula-
tion decreases rapidly after a high-probability choice and a
low-probability of mutation. These limited genes restrict the
possibility of obtaining a better solution. As a result, it is
necessary to improve the mutation strategy so that with the
help of mutation GA could get favorable genes as much as
possible. At the same time, the mutation probability should
be increased to continuously enrich the gene pool of the
population.

Greywolf optimization (GWO) [22] is a new type of swarm
bionic algorithm, which imitates the predation strategy of the
grey wolf in nature and considers the strict hierarchy in the
wolves for optimization. When wolves prey on the target,
they gradually approached the target under the leadership
of three headed wolves. Because it completely depends on
the known optimal solution, it has the deficiencies of low
solution accuracy, premature and weak local search ability.
However, the guidance of the headed wolves in the GWO
algorithm hierarchy is worth learning. If it is applied to
the GA’s mutation process, the mutation will always change
towards the optimal solution, which can effectively improve
the effectiveness of mutation and enrich the diversity of the
population.

The low value of the mutation probability is to prevent
GA from approaching the inefficient pure random search
algorithm. Besides, the genes generated by mutation are not
always useful and may even destroy the excellent individuals.
However, after the GWO is used to improve the mutation
operator, this problem no longer exists. In addition, although
the probability of mutation in nature is low, the actual number
of mutation genes is not small thanks to the large number of
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its base. Therefore, in order to enrich the number of beneficial
genes among the population, the mutation probability in the
IGA should be appropriately larger than before. The specific
improvement strategy begins with the behavior of the grey
wolf approaching the target:

Cd
i (g+ 1) = Cd

α
(g)

− (2a · rand1 − a)
∣∣∣2 · rand2Cd

α
(g)− Cd

i (g)
∣∣∣

(27)

where Cα(g) is the current optimal individual, Ci(g) is any
individual in this case, d is any gene of an individual, variable
a linearly decreases from 2 to 0, rand1, rand2 ∈ [0, 1] are
random numbers. The improved mutation operation is:

Cd
i (g+ 1) =

3∑
j=1

γjCd
ij
(g+ 1) d = 1, 2, 3, 4 (28)

γj =
Aij

Ai1 + Ai2 + Ai3
, j = 1, 2, 3 (29)

Cd
i1
(g+ 1)=Cd

α1
(g)− a · (rand1 − 0.5) ·

∣∣Cd
α1
(g)− Cd

i
(g)
∣∣

Cd
i2
(g+ 1)=Cd

α2
(g)− a · (rand1 − 0.5) ·

∣∣Cd
α2
(g)− Cd

i
(g)
∣∣

Cd
i3
(g+ 1)=Cd

α3
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i
(g)
∣∣

(30)

where Cα1,Cα2,Cα3 are the top three optimal individuals
respectively, γ1, γ2, γ3 are the corresponding weight coeffi-
cients. Equation (30) determines that each mutation individ-
ual will mutate towards the three optimal individuals, and
the impact of the optimal individual is related to the weight
coefficients, i.e., the value of fitness. The final IGA flow
diagram is shown in Fig.7.

FIGURE 7. Flow diagram of IGA.

V. DYNAMIC IIFDS FOR DYNAMIC THREATS
IIFDS has the advantages of low computational complexity
and high computational efficiency, so it can be applied to

FIGURE 8. Flow diagram of dodging dynamic threats.

real-time path planning. Reference [23] constructed a relative
flow field based on the relative velocity method and used
the IIFDS to avoid dynamic threats as well as obtained a
feasible path. However, this method requires higher AUV
speed performance, and the continuous adjustment of speed
will cause extra energy consumption. This paper combines
IIFDS with a reverse-avoidance strategy for real-time path
planning to avoid dynamic threats. This method allows AUV
to navigate at a constant speed and to avoid dynamic threats
relying solely on planning a security path.

Consider the environment where only dynamic threats
exist. In a 3-D space, dynamic threats are equivalent to
spheres of radius r . When the dynamic threat does not enter
the AUV planning area, the AUV moves in a straight line
towards the target point. Once the dynamic threat affects the
planning area, it begins to process the dynamic threat. The
specific process is shown in Fig.8.

Assume that the position, velocity, and other parameters
can be obtained through a 3-D underwater target tracking
system [24], [25] or by sensors carried by the AUV itself.
In order to avoid the obstacles in advance, Kalman filter (KF)
is used to predict the motion state of dynamic threats [26].
For the case when the dynamic threat’s velocity contains
components perpendicular to theAUVvelocity, the tangential
direction coefficient of IIFDS plays a critical role in the safety
of the path. Set v as a vector of 90◦ clockwise with the
global initial flow field velocity in the x-y plane, as shown
by the dotted vector in Fig.9. We can get v with dxy =√
(xd − x)2 + (yd − y)2:

v = (
yd − y
dxy

,−
xd − x
dxy

) (31)

u is obstacle’s velocity. Assuming that the angle between
u and v in the x-y plane is β, the tangential direction coef-
ficient θ should be chosen according to (32) so that the
AUV will avoid the obstacle in the opposite direction of the
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FIGURE 9. Tangential direction coefficient selection condition diagram.

FIGURE 10. Avoiding a dynamic threat in the same direction.
(a) ‘‘obstacle-following’’ situation. (b) Collided by the obstacle.

obstacle’s movement. The simplified diagram is shown
in Fig.9. If the obstacle moves to the lower right, the AUV
should move to the upper left to avoid the obstacle, i.e., to
avoid the obstacle in the opposite direction. Otherwise, when
the speed of the obstacle is similar to the AUV’s speed,
‘‘obstacle-following’’ may occur because it is hard for AUV
to overtake the obstacle (Fig.10 (a)); when the AUV speed
is not fast enough, it may also be threatened by the dynamic
threat (Fig.10 (b)). If the AUV moves towards the opposite
direction to obstacle in advance, it can easily avoid the above
obstacles. Because we plan paths in 3-D space, it also main-
tains the advantage of being able to avoid obstacles from
above or below.

π

2
≤ θ ≤ π, if 0 ≤ |β| <

π

2
0 ≤ θ <

π

2
, otherwise

(32)

VI. SIMULATION
A. STATIC OBSTACLES
A static scenario with dense obstacles is first simulated, and
there are overlapping hazardous areas. The horizontal area is
10×11km, and the vertical height is determined by obstacles
and paths. Suppose that the starting point is Ps = (0, 0, 1)
km, the target point is Pd = (10, 11, 0.8) km, 1t = 6s, and
AUV’s speed is constant at 2m/s. Three sets of repulsive reac-
tion coefficient ρ, tangential reaction coefficient σ , tangential
direction coefficient θ were randomly selected for IIFDS
simulation. The simulation results are shown in Fig.11. It can

FIGURE 11. Path comparison between IIFDS and A*. (a) 3-D view.
(b) Top view.

be seen that the path planned by IIFDS can avoid all obstacles
and eventually converge to the destination successfully. The
paths have the smooth characteristic of flowing water.

To verify the superiority and effectiveness of the IIFDS,
it is compared with A∗ algorithm in the same environment.
Suppose that the size of area is (10,10,1.5) km, the starting
position is (0,0,0.5) km, the target position is (10,10,0.5) km
and ρ = 1.1, σ = 1.1, θ = 0. The heuristic of the A∗ uses
theManhattan method and only plans on the horizontal plane.
The area is rasterized into 100∗100 grids. The planned path
is shown in Fig.12. It is apparent that even though both of
them successfully reach the destination, the path generated
by the A∗ has sharper turns near obstacles, such as A, B,
C in Fig.12 (b). If the AUV has poor maneuverability, the path
needs additional smoothing. Whereas the path generated by
the IIFDS is smoother, with better security and feasibility.
Besides, the paths length of IIFDS and A∗ are 15 km and
16.8 km respectively, so the quality of path generated by the
IIFDS is better overall.

B. PATH OPTIMIZATION
The ocean current adopts the meander shown in Fig.5 and
the maximum speed is 2m/s. Assume that there is only hor-
izontal current at different depths, i.e., the z-axis velocity
component of the current is 0. From (18), the current velocity
V = 2 · (− ∂F

∂y ,
∂F
∂x , 0) m/s is obtained. Set V0 equal to the cur-

rent maximum velocity so that the initial flow field velocity
and current velocity have the same magnitude. To accelerate
the simulation speed, set1t = 30s. GA parameters are set as
follows: the population size n = 100, the maximum number
of iterations is 30, the crossover probability Pc = 0.5, the GA
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FIGURE 12. Path comparison between IIFDS and A*. (a) 3-D view.
(b) Top view. (C) Partial enlargement.

FIGURE 13. AUV cannot reach the point when λ = 0.

mutation probability Pm1 = 0.01, the IGA mutation proba-
bility Pm2 = 0.5. The other parameters remain unchanged.
In this simulation, it is considered that when the difference
between the fitness of the best individuals in adjacent two
generations is less than 0.001, the fitness does not change.

For the value of the fitness coefficient η1, η2, different
relative values are selected to simulate firstly so that we can
intuitively observe the effect. Table 1 shows the comparison
between specific simulation results. It can be seen from the
table that the smaller η1/η2 is, the larger A1 is, i.e., the longer
the path is, the closer to 0 λ is, and the smaller the cost of the
angle is. But λ will not be equal to 0, because AUV cannot
reach the target point only by means of current (Fig.13).

TABLE 1. Impact of different fitness coefficients.

FIGURE 14. Comparison of paths when choosing different fitness
coefficients.

The typical path is plotted in Fig.14. It can also be seen clearly
that the smaller the ratio of η1 and η2 is, the more downstream
the path is but the longer the path is.

FIGURE 15. Comparison of the best fitness changes in each generation of
GA and IGA, averaged over an ensemble of ten simulations.

Set η1 = 1, η2 = 20. The individuals with the best
fitness in each generation are selected and the fitness of these
optimal individuals are plotted as a line chart so that we
can clearly see the changes of fitness during the simulation.
To get more general results, the average result from 10 runs
by GA and IGA are shown in Fig.15. As the number of
iterations increases, both fitness tend to evolve toward better
overall and eventually converge to feasible optimal solutions.
However, GA is prone to converge prematurely, resulting in
no further optimization. Whereas IGA significantly improves
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TABLE 2. Comparison of GA and IGA.

convergence speed and average optimal convergence value.
Table 2 gives the specific numerical comparisons, where the
optimal convergence value refers to the optimal value that
appears in all 10 simulations and the average optimal value
refers to the average value of 10 optimal values.

FIGURE 16. Comparison of the optimal paths of IGA and GA.

The best path of IGA is shown in red solid line in Fig.16.
In the marine 3-D environment where the current is meander-
ing, although this path is not the shortest one, it is obvious
that it can make the AUV sail downstream. Therefore, this
is a comprehensive result considering the path’s length and
energy. The optimal path of GA is also shown in Fig.16 and
it can be seen that there are some differences from the com-
parison. The path of the IGA is closer to the expectation,
but both are able to obtain safe, viable and energy-optimal
paths with consistency. In a word, the IGA not only retains
the optimization features of the original GA, but also obtains
better convergence values.

C. AVOIDING DYNAMIC THREATS
Consider the dynamic threats of uniform linear motion. Sup-
pose that the size of the area is 10× 10× 4km, the dynamic
threat emerges from the point (8, 2, 1)km and will not stop
until it reaches the boundary of the area, the radius of its
affected area is 1km and it moves with a constant velocity
and direction u = (−0.9, 0.9, 0.01)m/s; AUV sails at a
constant speed of 2m/s, the time interval between adjacent
points 1t = 6s; the starting point Ps = (0, 0, 1)km, target
point Pd = (10, 10, 1)km. Due to the specific nature of
IIFDS, it is possible to avoid obstacles in advance by adjust-
ing the repulsive and tangential reaction coefficients, so it is
not necessary to predict excessively inaccurate information.
Select a prediction width of 5 and the value needs to increase
appropriately for larger dynamic threats.

FIGURE 17. The whole path diagram and decomposition diagram avoiding
a dynamic threat. (a) The whole path. (b) Time 1. (c) Time 2. (d) Time 3.

FIGURE 18. The paths planned by IIFDS with reverse-avoidance strategy.
(a) Paths. (b) Distances between AUV and the obstacle.

The simulation results are shown in Fig.17, and (a) shows
the final result of the simulation. To clearly observe the
process, (b-d) show the more detailed movements of the
AUV when approaching the obstacle. As can be clearly
seen from the figure, the navigation direction is changed in
advance as the AUV approaches the obstacle and AUV can
bypass the obstacle easily. Then the obstacle will move away
automatically. After the obstacle no longer poses a threat,
the AUV moves straightly to the target point again. The
reverse strategy only stipulates a range of avoidance direc-
tions, so the evasion methods are still diverse. Fig.18 shows
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several different paths. It can be seen from the dis-
tances (b) that all the paths successfully avoid the movement
obstacles.

In the presence of current, original convergence and ocean
current together determine the new convergence. Suppose
that the original convergence’s velocity is equal to the cur-
rent’s maximum velocity which is 1.2m/s, current related
parameters are t = 4, c = 1.2, k = 1, e = 0.1,
b0 = 1.5, λ = 0.6, $ = 1.6, χ = π/2. In order
to conduct the comparison fairly, the set of dynamic threat
and other parameters are the same as the simulation with
no current. The simulation results are shown in Fig.19 and
figure (c) means the path is still safe and feasible. Due
to the influence of current, the path is longer and more
twisted. But the planned path can still safely avoid the
dynamic threat, and to some extent, it saves energy by sailing
downstream.

FIGURE 19. Avoiding a dynamic threat in current environment.
(a) 3-D view. (b) Top view. (c) Distances between AUV and the obstacle.

When there are multiple dynamic threats in the environ-
ment, the simulation results are shown in Fig.20. The dis-
tances in Fig.21 demonstrate that the IIFDS method based on
the reverse-avoidance strategy can well plan the path when
the dynamic threats exist, and the path does not require extra
smoothing.

The simulation results when current is added to the
environment are shown in Fig.22. Because current is
mainly horizontal, it can be seen from the comparison of
Fig.22 (a) and (b) that the planned path is greatly influenced
by ocean current in the horizontal direction. However, it still
successfully avoids all the obstacles (Fig.22 (c)) and there
is no sharp turn, which proves the feasibility and certain
robustness of the algorithm.

FIGURE 20. Path planned when there are multiple dynamic threats.
(a) The whole path. (b) Avoiding the first dynamic threat. (c) Avoiding
the second dynamic threat. (d) Avoiding the third dynamic threat.

Avoiding dynamic threats requires high real-time perfor-
mance. In order to verify the real-time performance of the
algorithm, we conduct five different simulations by adjusting
the coefficients of IIFDS and record the average time of
one step of calculation in each simulation. The platform is
configured with 4GB DDR4 memory and the processor is
Intel Core I7-6500U. The results are shown in Table 3. It can
be seen that thanks to the high computational power of the
IIFDS, even if there are three dynamic threats, the single-step
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TABLE 3. Average time of each operation in five different simulations.

FIGURE 21. Distances between AUV and three dynamic threats.
(No current).

FIGURE 22. Path planned when there are multiple dynamic threats and
current. (a) No current. (b) With current. (c) Distances between AUV and
three dynamic threats. (With current).

operation time is much shorter than the unit interval of 6 s.
Therefore, it can completely meet the real-time requirements
of avoiding dynamic threats.

Finally, the IIFDS method is verified in a complex envi-
ronment with current, static and dynamic threats simultane-
ously. Given the starting point Ps = (0, 0, 1) km and the
destination Pd = (10, 10, 1.5) km, the other parameters
are unchanged. A feasible path is also obtained, as shown
in Fig.23.

FIGURE 23. Path planned in a complex environment with current, static
and dynamic threats simultaneously. (a) 3-D view. (b) Top view.

VII. CONCLUSION
This paper applies the IIFDS to AUV 3-D path planning in the
environment with complex static obstacles, ocean current and
dynamic threats. The path planned by IIFDS is smooth and
flexible. With the introduction of the flow field weight coef-
ficient, the algorithm can reasonably balance the length of
path with the utilization of current. The energy-optimal path
obtained by IGA can make the AUV navigate as downstream
as possible while keeping the path as short as possible. When
there are simple dynamic threats in the environment, a feasi-
ble path can be obtained using IIFDS combined with reverse-
avoidance strategy. As obstacles are virtual, the current is not
affected by obstacles in this paper. It does not accord with the
actual situation, so we will consider the impact of obstacles
on current in future studies.
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