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ABSTRACT In graphics processing unit (GPU) computing community, bitonic mergesort (BM) is recog-
nized as one of the most investigated sorting algorithms. It is specially designed for parallel architectures,
requires minor inter-process communication, can be implemented in-place, and is logically appropriate for
single instructions multiple data platforms. In addition, GPUs have shown tremendous improvements in
power and performance efficiency and thus have become essential ingredients in pursuit of the prospective
exascale systems whose major obstacle is the excessive power consumption. In a recent research work,
we found that fundamental software building blocks can offer a reasonable amount of power and energy
saving that can offer newways to tackle the power obstacle of the prospective exascale systems.We evaluated
average peak power, average energy, and average kernel runtime of BM under various workloads and
compared it with advanced quicksort (AQ). The results showed that BM outperformed AQ based on all
the three metrics in most cases. In this paper, we further investigate BM to identify the factors that result in
its underlying power and energy efficiency advantage over AQ. We analyze the power and energy efficiency
of BM and AQ based on their performance evaluation on NVIDIA K40 GPU. The performance of both the
algorithms is investigated using various experiments offered by NVIDIA Nsight Visual Studio.

INDEX TERMS Energy measurement, power measurement, exascale computing, GPU, sorting.

I. INTRODUCTION
One of the main obstacles to reach exascale performance
(order 1018 floating point operations per second) is the exces-
sive power consumption. Innovations and improvements are
required to reach exascale performance in a reasonable
power budget. Recently, graphics processing unit (GPU) has
become a perfect choice for exascale research due to its
developments in power and performance efficiency. Scaling
the current petascale high-performance computing (HPC)
machines on top500 list [1] to exascale would consume
power in Gigawatts, and providing such huge amount of
power would need a nuclear power plant of medium size [2].
It is estimated in a report of the US Defense Advanced
Research Projects Agency (DARPA) that the maximum
peak power of upcoming HPC machines must be lower
than 20 Megawatts [3]. Huge investment in various areas
of research and development is required to address these
challenges.

Existing techniques are not appropriate for exascale com-
puting and alternative methods are required that can deal
with limitations of energy consumption. It is suggested in

our recent research [4] that evaluating power and energy
consumption of fundamental software building blocks can
provide new techniques to address the power obstacle of the
upcoming exascale systems. We found that basic software
building blocks can offer a reasonable amount of power and
energy saving. In [4], we evaluated power and energy effi-
ciency of Bitonic Mergesort (BM) [5] under various work-
loads and compared it with Advanced Quicksort (AQ) [6].
The results compared BM with AQ based on three metrics,
as stated in [4]:
• ‘‘Peak Power: is the peak level of GPU power that is
reached when the algorithm (AQ or BM) is executing
on the GPU (GPU active state). It is obtained from the
power profile of the algorithm.

• Energy: is the total energy consumed by the algorithm
(AQ or BM). It is indicated by the area under the power
curve of the algorithm. It is calculated by integrating the
power curve over kernel runtime.

• Kernel Runtime: is the runtime of a kernel (AQ ker-
nel or BM kernel) that is executing on the GPU. It is
the time in which a kernel keeps GPU busy and as a
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result the GPU consumes more power than its idle state
power.’’

In [4], it is demonstrated that a simple BM outperforms
a performance-optimized AQ based on kernel runtime, peak
power, and energy. In this paper, we further evaluate BM
and AQ based on various performance metrics and iden-
tified that the underlying power and energy consumption
advantage of BM occurs due to its efficient execution on
the GPU because BM is an example of data-independent
sorting algorithm intended to execute on fragment processors
whose output location cannot be altered in memory based on
input sequence [7]. In contrast, AQ is an example of data-
driven algorithms, which are completely dependent on the
input sequence. Data-independent sorting algorithms (such as
BM) look logically more suitable for GPUs and other parallel
platforms because the points of communication are known in
advanced. Furthermore, BM is specially designed for parallel
architectures, requires minor inter-process communication,
can be implemented in-place, and is logically appropriate for
the single instructions multiple data (SIMD) platforms [7].
In GPU computing community, BM is recognized as one of
the most investigated sorting algorithms [4], [7]–[12]. It is
also used as construction technique for developing sorting
networks that comprise O(n log2(n)) comparators and having
a delay of O(n log2(n)), where n is the number of elements in
the list to be sorted [10]. In contrast, AQ is a parallel quicksort
(available in CUDA SDK) based on CUDA dynamic par-
allelism [13]. It is supported on all NVIDIA GPUs having
compute capability 3.5 or greater.

Power consumption of a program executing on the GPU
is related to its performance on the GPU, as stated in [14],
‘‘Even with a powerful hardware in parallel execution, it is
still difficult to improve the application performance and
reduce energy consumption without realizing the perfor-
mance bottlenecks of parallel programs on GPU architec-
tures.’’ Furthermore, it is demonstrated in [15] that changes
in the implementation of GPU code not only significantly
result in better performance, but also result in several times
improvements in energy consumption and reduce the power
consumption by over a factor of two. On the other hand,
in [16] CUDA performance counters are used to obtain
performance profiles of kernels and linear correlation is
observed between the performance profiles and power con-
sumption by statistical model learning. Furthermore, in [17],
it is stated that ‘‘Power performance of a CUDA process-
ing element (PE) is dependent on electrical features of the
inside hardware components and their interconnections; also
high-level applications and the parallel algorithms performed
on it.’’

Inspired by the observations in these studies, we fur-
ther investigate BM based on its performance evaluation to
explore its underlying power and energy consumption advan-
tage over AQ. We investigate BM under various experiments
offered by NVIDIA Nsight Visual Studio [18]. These experi-
ments are used for performance analysis of kernels executing
on GPU and determine how kernels use GPU resources and

identify performance bottlenecks. We execute four of these
experiments both on BM and AQ in order to compare their
performance on K40 GPU. The results of each experiment
provide a comprehensive comparison of both the algorithms
based on a number of performance metrics. Then, we provide
a general background on power consumption of GPUs and
finally analyze power and energy consumption of BM and
AQ based on their performance on the K40 GPU. We tested
BM and AQ on 7 different datasets of unsigned integer
random numbers. The 7 datasets include 2Mega (M) ele-
ments, 16M elements, 32M elements, 64M elements, 128M
elements, 256M elements, and 512M elements as described
in Table 1. The datasets were generated in the same way
as in [4].

TABLE 1. Datasets of unsigned integer random numbers [4].

We carried out the experiments on a Fujitsu HPC work-
station with a dedicated NVIDIA Tesla K40c GPU. NVIDIA
Kepler (Tesla K40c) [19] can be found in various top500 [1]
and green500 [20] supercomputers. Tesla K40 contains
GK110 chip that is composed of 7.1 billion transistors.
GK110 is specifically designed to provide outstanding with
power and performance efficiency in order to tackle the
most devastating challenges in high-performance computing.
GK110 chip is capable to accomplish integer, single preci-
sion, and double precision performance and high memory
bandwidth [19]. Due to the innovative computing technology,
Tesla K40 GPU is used by a number of scientific applica-
tions [20]. Streaming Multiprocessors (SM), dynamic paral-
lelism [13], and hyper-Q [19] are three unique innovations
in Kepler Tesla K40 architecture [19]. Other popular Kepler
architecture includes Tesla K20 series, and Tesla K80 series
GPUs. Additionally, Microsoft Visual Studio 2013, and
NVIDIA Nsight Visual Studio Edition 5.2 were used to
successfully accomplish the experiments. Table 2 shows
the specifications of the Fujitsu workstation that we used
in the experiments. We repeated some of our experiments
on another K40c GPU in order to make sure that we
obtain the identical results, which we obtained. We used
CUDA programming standard in order to benefit from
the parallel programming capabilities offered by NVIDIA
GPUs. Below is a brief description of the relevant CUDA
terminologies [23]:
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TABLE 2. System specifications [4].

• Host: is the CPU and its memory. In case of our exper-
iments, the host is Intel(R) Xeon(R) CPU E5-2640
2.50GHz and its memory.

• Device: means the GPU and its memory. In the context
of our experiments, the device is the NVIDIA Kepler
Tesla K40c GPU and its memory.

• Kernel: means a function that is executed on the device.
Programs are executed in parallel on the device (GPU)
as kernels. A kernel is executed at a time by various
threads. In case of our experiments, we have AQ and BM
kernels that contain the underlying source codes of the
algorithms.

• Warp:means a group of 32 threads that are consecutively
numbered within a thread block.

• Barrier: in the source code, the barrier for a group of
threads or process is a point at which threads or process
must stop execution and cannot proceed until all other
threads or processes are reached at this point.

In general, the contributions of this paper are as follow:

• This paper provides detailed experimental investigation
of power, energy and performance efficiency of BM on
K40 GPU, compares it with AQ, and highlights some
performance factors that result in high power and energy
consumption.

• This paper justifies the power and energy consumption
advantage of BM over AQ based on the experimental
findings, and power and performance analysis.

The rest of this paper is organized as follows. Section II
presents adequate literature review of related research work.
Section III presents background on performance and power
consumption on GPUs. Section IV provides a discussion on
results evaluation. Finally, Section V concludes the whole
work and provides some future research directions.

II. LITERATURE REVIEW
Al-Hashimi et al. [4] provided an experimental investigation
of Bitonic Mergesort (BM) for power and energy consump-
tion and compared it with Advanced Quicksort (AQ) on
NVIDIA Tesla K40 GPU. The researchers identified that a
simple BM provides a reasonable power and energy advan-
tage over an optimized quicksort algorithm in most cases.
The study identified that other fundamental software build-
ing blocks could also be investigated for power and energy

advantage in order to provide better recommendations for the
upcoming exascale systems.

Ikram et al. [8] proposed a methodology for measuring
power and energy consumption of programs executing on
NVIDIA Kepler GPUs. They used Kepler K40 GPU as a
test platform and studied power and energy consumption of
a Bitonic Mergesort program and a Matrix Multiplication
program under various workloads.

Al-Hashimi et al. [24] investigated the effect of three
control loops (for, while and do-while) on system power
consumption and identified for loop the most power efficient.
Al-Hashimi et al. [25] evaluated power and energy consump-
tion of a generic mergesort and an optimized quicksort on
Intel Xeon E5-2640 (Sandy Bridge) CPU. The researchers
identified some power advantage in mergesort over quicksort.

O’brien et al. [26] presented a survey of power and energy
predictive models in HPC systems and applications. The
researchers highlighted the weaknesses of the power and
energy efficiency models to precisely predict the power
and energy consumptions by considering the hierarchical and
heterogeneous behavior of tightly integrated HPC systems.
Bridges et al. [27] presented a survey ofGPUpowermodeling
and profiling methods with focusing more on significant
efforts in this area. They discussed GPU internal and exter-
nal sensors for evaluation of GPU power consumption. The
researchers also discussed developments and challenges of
counter-based GPU power modeling.

Padoin et al. [28] explored load balancing thresholds
for saving energy on iterative applications. The researchers
proposed two variants of a novel energy-aware load bal-
ancer that aim to reduce the energy consumption of paral-
lel architectures running imbalanced scientific applications
without performance degradation. The researchers identi-
fied the trade-off between runtime, power demand and total
energy consumption while applying two energy-aware load
balancer variants on real-world applications.

Vijaykrishnan et al. [29] and Kasichayanula et al. [30],
analyzed power consumption of applications on graph-
ics processing units and other heterogeneous platforms.
Nagasaka et al. [16] proposed statistical models for GPUs
based on vendor provided performance counters.
Kasichayanula et al. [30] provided an investigation on
numerous microbenchmarks executing on GPUs from power
consumption perspective.

Zecena et al. [31] studied performance and energy con-
sumption both serial and parallel versions of odd-even sort,
shell sort, and quicksort on a shared memory system con-
taining two quad-core AMD 2380 Opteron processors. They
used iterative versions of odd-even sort and shell sort while
for quicksort, they used recursive implementation.

Ukidave et al. [32] investigated a number of optimization
techniques for power and performance efficiency on various
heterogeneous platforms including discrete GPUs, shared
memory GPUs, low power system-on-chip (SoC) devices and
includes hardware from NVIDIA, Intel and Qualcomm. They
measured the energy consumption of optimization techniques
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in order to evaluate the tradeoff between power and perfor-
mance. The researchers identified that architectural and algo-
rithmic factors have an effect on power consumption. They
showed that algorithms that implement the same operation
can exhibit different performance based on target hardware
and design of an application.

Burtscher et al. [33] proposed a methodology for power
and energy measurement on NVIDIA Kepler K20 GPU using
the on-board sensor. The researchers identified a number of
anomalies in power and energy measurements. They used
multiple systems, GPUs, CUDA programs, and scenarios
to validate their methodology. Burtscher and Coplin [34]
studied irregular and regular programs executing on K20
GPU from power and energy consumption perspective. They
examined the power profile with varying GPU’s core and
memory frequencies, using different versions of the same
algorithm, and varying the program’s input. The researchers
identified that power behavior of irregular programs cannot
be measured accurately with a single average but it must be
considered as a function of time and should be evaluated each
input after changing the code.

Padoin et al. [35] investigated performance and energy
consumption of application on hybrid CPU and GPU archi-
tecture. The researchers used a scientific application from the
agroforestry domain as a case-study and identified how the
workload of the application may affect energy efficiency on
hybrid architectures.

Roy et al. [36] suggested energy measurement as a basis
for designing and implementing algorithms. The researchers
found memory parallelism as a factor that has an effect on
energy consumption of algorithm. For validation, they used
asymptotic energy complexity model [37]. The researchers
found that the energy optimal layout (8-way parallel) of
selection sort have better performance than non-optimal
(1-way parallel). They also found a reasonable energy saving
in mergesort and quicksort can be achieved due to changes in
parallelization.

Vila et al. [38] demonstrated the research conducted be
NVIDIA Corporation towards designing exascale systems by
integrating features that address the scaling problems of per-
formance and energy efficiency. They concluded that more
innovations in algorithms and architecture will be required
for improvements in the performance of applications in order
to improve memory locality, better scaling, and integer exe-
cution efficiency.

Dally [39] explained the challenges for the upcoming exas-
cale systems and current methods to address those challenges.
He demonstrated that 200-fold improvement will be required
in energy per instruction in order to obtain exascale perfor-
mance in 20 Megawatts power budget. He further explained
that more creative programming environment will be required
for programming exascale systems.

Suda and Ren [40] proposed two models for predicting
execution time and energy consumption. Their models enable
programmers to have a better understanding of the perfor-
mance and energy-saving bottleneck of parallel applications

on GPU architectures. Ren and Suda [17] proposed a method
for load sharing in order to adjust the workload assignment
within the CPU and GPU components inside a CUDA pro-
cessing element (PE) with the objective of optimizing the
overall power efficiency.

Lim et al. [41] developed a power model based on
McPAT [42] for GPUs. In their model, initial data was gener-
ated fromMcPAT that contained GPU configuration in detail.
Afterwards, the model was adjusted by comparing them with
empirical data. NVIDIA’s Fermi architecture was used for
developing the power model. Chen et al. [42] proposed an
integrated power and performance (IPP) prediction model
for GPU architecture. For a given application, their model
can predict the optimal number of active processors. The
researchers argued that improvement in application perfor-
mance cannot be achieved when an application reaches the
peak memory bandwidth and using more cores. Their model
can also predict the runtime events occurring on the GPU,
unlike previous models.

Zhang et al. [43] used a tree-based random forest technique
for developing a model for power consumption. Compared
to regression-based techniques, their model achieved better
accuracy for investigating correlation among individual per-
formance metrics. Similarly, for ATI GPUs, Pool et al. [44]
also used random forest techniques and investigated perfor-
mance and power consumption together. On the other hand,
Lee et al. [45] used a technique in which energy and power
model was developed based on the unit energy consumed by
each instruction.

Connors and Qasem [46] exploited value similarity
for improving power consumption of register file. The
researchers proposed a warp compression scheme for GPU
register files on the basis of similarity of register values that
resulted in a reduction of both dynamic and leakage power.

Coplin and Burtscher [47] studied the impact of thread
block size and register allocation on the performance and
power consumption of three heuristic search algorithms. They
observed significant variations in performance for codes exe-
cuting at the same level of occupancy. The best power-
performance trade-offs were not always achieved at the high-
est level of occupancy. The study also found that, for a
given occupancy level, having larger thread blocks, and con-
sequently fewer thread blocks per SM, generally leads to
improvements in both performance and power consumption.

The researchers studied source-code optimizations and
their effects GPU performance, power draw, and energy con-
sumption. The researchers investigated 128 versions of two
n-body codes and measured the active runtime and the power
consumption of each code version on three inputs, various
GPU clock frequencies, two arithmetic precisions, and with
and without ECC. They showed that performance and energy
consumption of a GPU kernel can be altered by a factor of up
to five using individual and combinations of optimizations.
Coplin and Burtscher [15] studied the energy consumption,
power draw, and runtime of 34 programs from 5 general
purpose GPU benchmark suites. Ferro et al. [48] employed
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the GPU sensors to obtain high-resolution power profiles of
real and benchmark applications. The researchers wrote their
own tools to query the sensors of two NVIDIA GPUs from
different generations and compare the accuracy of them. They
also compared the power profile of GPU with CPU using
IPMItool.

Inspired by these prior studies, this paper takes an orthogo-
nal approach to exploit fundamental software building blocks
such as sorting algorithms for the inherent algorithmic power
and energy efficiency. In this regard, we previously inves-
tigated kernel runtime and power and energy efficiency of
BM and compared it with AQ [4]. In this paper, we further
analyze the power and energy efficiency of BM based on its
performance on the GPU to identify its inherent algorithmic
power and energy consumption advantage and open insights
for exascale research.

III. BACKGROUND ON PERFORMANCE ANALYSIS AND
POWER CONSUMPTION ON GPUS
In this section, we provide background information on per-
formance and power consumption of applications executing
on GPUs. We provide background on performance based on
various experiment offered by NVIDIA Nsight Visual Studio
Edition. Background on power consumption is discussed
based on analytical modeling.

A. BACKGROUND ON PERFORMANCE
NVIDIA Nsight Visual Studio Edition 5.2 [18] is a develop-
ment environment for CUDA and graphics applications run-
ning on NVIDIA GPUs, which is integrated into Microsoft
Visual Studio. It provides a number of experiments that can
be used to know how the kernels got executed on the device
and how they utilized the device resources and capabilities.
We performed four experiments on AQ and BM that include
occupancy experiment, issue efficiency experiment, instruc-
tion statistics experiment, and memory statistics experiment.
These experiments are described below [18]:

Occupancy Experiment: determines the achieved
occupancy during kernel runtime. Achieved occupancy is
determined by obtaining the ratio of active warps in each
streaming multiprocessor (SM) to the maximum possible
active warps (on an SM of K40 GPU, maximum active warps
= 64). A warp becomes active from the time its threads
begin execution on the SM to the time it completes the last
instruction. The following equation represents the achieved
occupancy on an SM for a kernel executing on the device:

Achieved occupancy =
active warps

maximum active warps
(1)

If achieved occupancy is low, it leads to poor instruction
issue efficiency because of less eligible warps to hide latency
between dependent instructions. On the other hand, when
achieved occupancy is at an adequate level to hide latency,
further increasing it has a negative effect on the performance
of a kernel due to reduction of resources per thread [18].
Investigating achieved occupancy and observing its effect on

kernel runtime when running at different occupancy levels
should be one of the initial steps in analyzing kernel’s per-
formance on the device. The causes of low achieved occu-
pancy include unbalanced workload within the blocks and
across the blocks and launching fewer blocks. The values
reported for achieved occupancy in Section IV are the average
across all warp schedulers [23] for the duration of the kernel
execution. An SM contains one or more warp schedulers,
each of which attempts to issue instructions from a warp
on each clock cycle. To sufficiently hide latencies between
dependent instructions, each scheduler must have at least
one warp eligible to issue an instruction every clock cycle.
Keeping occupancy at a high level throughout kernel runtime
helps to avoid situations where all warps are stalled and no
instructions are issued (this is explained in detail in issue
efficiency experiment). Achieved occupancy per SM over the
kernel runtime is obtained as follows. Firstly, occupancy is
measured on each warp scheduler based on performance
counters to count the number of active warps on that sched-
uler every clock cycle. Secondly, to find the average active
warps across each SM, these counts are added across allwarp
schedulers on each SM and divided by the clock cycles the
SM is active. Finally, achieved occupancy is obtained per SM
averaged over the kernel runtime based on equation 1, i.e.
dividing average active warps per SM by the SM’s maximum
supported number of active warps [18].

Issue Efficiency Experiment: provides information about
the device’s ability to issue the instructions. This experiment
collects results for warps per SM, warp issue efficiency, and
issue stall reasons as described below [18].

• Warps per SM: provides an overview of the various
warps per SM metrics. The metrics are reported as aver-
age values across the complete kernel execution for each
individual SM of the target device. The device limit for
K40 GPU is 64. The following metrics are collected for
warps per SM in issue efficiency experiment.

– Active Warps: A warp is active from the time it is
scheduled on a multiprocessor until it completes the
last instruction. Each warp scheduler maintains its
own list of assigned active warps. This assignment
of warps to the schedulers is done once at the time
a warp becomes active and is valid for the lifetime
of the warp. There should be at least a minimum
of eight active warps per warp scheduler. More
active warps might allow hiding warp latencies
more efficiently.

– Eligible Warps: An active warp is considered eligi-
ble if it is able to issue the next instruction. Each
warp scheduler will select the next warp to issue an
instruction from the pool of eligible warps. Warps
that are not eligiblewill report an issue stall reason.

• Warp Issue Efficiency: shows the distribution of the
availability of eligible warps per cycle across the GPU.
The values are reported as the sum across all warp
schedulers for the duration of the kernel execution. The
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following metrics are collected for warp issue efficiency
in issue efficiency experiment [18].
– No Eligible: shows the number of cycles that a warp
scheduler had no eligible warps to select from and
therefore did not issue an instruction. The lower
the percentage of cycles with no eligible warp,
the more efficient the code runs on the target device.
We investigate the issue stall reason to understand
what keeps warps from becoming eligible if this
value is high.

– One or More Eligible: shows the number of cycles
that a warp scheduler had at least one eligible warp
to select from.

• Issue Stall Reasons: capture why an active warp is
not eligible. On devices of compute capability 3.0 and
higher, every stalled warp increments its most critical
stall reason by one on every cycle. The sum of the stall
reasons, hence increment per multiprocessor per cycle,
by a value between zero (if all warps are eligible) and the
number of active warps (if all warps are stalled). In this
experiment, values are collected for the following issue
stall reasons as described below [18].
– Instruction Fetch: The next assembly instruction has
not yet been fetched.

– Pipeline Busy: The compute resources required by
the instruction are not yet available.

– Execution Dependency: An input required by the
instruction is not yet available. Execution depen-
dency stalls can potentially be reduced by increas-
ing instruction-level parallelism.

– Memory Dependency: A load/store cannot be made
because the required resources are not avail-
able or are fully utilized, or too many requests of
a given type are outstanding.Memory dependency
stalls can potentially be reduced by optimizing
memory alignment and access patterns.

– Memory Throttle: A large number of incom-
plete memory operations obstruct further forward
progress. These can be decreased by bringing
together a number of memory transactions into one.

– Synchronization: The warp is blocked at a barrier
(_syncthreads( ) call).

Instruction Statistics Experiment: provides a first level
triage for understanding the overall utilization of the target
device when executing the kernel. It answers the following
questions: 1) is the kernel grid able to keep all SMs busy
over the kernel runtime? 2) is a well-balanced distribution
of workloads achieved? and 3) does the achieved instruc-
tion throughput come close to the hardware’s peak perfor-
mance? This experiment collects results for SM activity,
warps launched, instructions per warp (IPW), and instruc-
tions per clock (IPC), as described below [18].
• SM Activity: shows the percentage how long each SM
was active during the execution of the kernel. If an
SM is busy in executing at least one active warp, it is

considered to be active. An SM can be inactive, even
though the kernel has not finished its execution because
of imbalances in the workload between the SMs, which
can occur due to some factors that include different
execution times for the kernel blocks, variations between
the number of scheduled blocks per SM, or a combi-
nation of the two. The imbalance workload across the
SMs simplymeans that some SMs finished the workload
execution and become idle while other SMs are still
busy in executing the workload. This behavior of SMs
is referred to as tail effect.

• Warps Launched: shows the total number of warps
launched per SM for the executed kernel grid. Large
variation in the number of warps launched across each
SM shows lack of adequate amount of parallelismwithin
the kernel grid, which results in poor usage of all avail-
able compute resources of the device.

• Instructions per Warp (IPW): shows the average exe-
cuted instructions per warp for each SM.

• Instructions per Clock (IPC): shows the achieved
instructions throughputs per SM for both issued instruc-
tions and executed instructions. Issued IPC and exe-
cuted IPC show the number of issued and executed
instructions per cycle accounting for every iteration of
instruction replays respectively. At every instruction
issue time, each warp scheduler selects one warp that
is able to make forward progress from its assigned list
of warps. For this selected warp, the warp scheduler
then issues either the next single instruction or the next
two instructions. A warp scheduler might need to issue
an instruction multiple times to actually complete the
execution of all 32 threads of a warp. Issuing an instruc-
tion multiple times is also referred to as instruction
replay. Each replay iteration takes away the ability to
make forward progress by issuing new instructions on
that warp scheduler. In addition, the compute resources
required to process the instruction are consumed for
every instruction replay [18].

Memory Statistics Experiment: focuses on the usage of
the memory subsystem during kernel execution [18]. Each
individual experiment covers a particular area of the mem-
ory hierarchy that includes buffers, caches, atomics, global,
local, and shared memory spaces as defined by the CUDA
programming model [23].

B. BACKGROUND ON POWER AND ENERGY
CONSUMPTION OF GPUS
Power consumption of electronics devices including GPUs
can be classified into two parts, which are static power, and
dynamic power as represented by equation 2 [42].

Power = Static Power + Dynamic Power (2)

Static power depends on the circuit technology, chip lay-
out, and the operating temperature. On the other hand,
dynamic power is based on the switching overhead in transis-
tors and it depends on the runtime events on the device [42].
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In simple terms, static power means GPU idle state power,
which means the power consumption when GPU is on but
no program is running on it. On the other hand, dynamic
powermeans theGPU active state power, which is the power
consumption when the GPU is busy in executing a workload.
In [20], we proposed amethodology for measuring power and
energy consumption of programs running on Kepler GPUs.
The methodology was applied on two programs, which are
BM and Matrix Multiplication (MM) program. We obtained
power profile of the program using various tools that include
NVIDIA System Management Interface (NVSMI), Excel
Worksheets, and Origin Software.

FIGURE 1. GPU full power profile (Idle + Active) for BM: Dataset = 1G
elements [20].

Figure 1 shows full power profile of GPU while BM
kernel starts and finishes its execution on a dataset having
1Giga (230) elements [20]. The power profile represents the
current power draw of the GPU board that is obtained through
the built-in GPU sensor at 66.6Hz sampling rate through
NVSMI. We have highlighted GPU idle state, GPU active
state, kernel runtime, and peak power. Point ‘A’ in Figure 1
illustrates the point where GPU becomes active as workload
starts execution on it. As a result, the current power draw of
the GPU board goes high. We have identified peak power by
Point ‘B’, where Point ‘C’ shows the point whenGPU reaches
its idle state again after executing the kernel. In simple terms,
the GPU is in the active state only between Point ‘A’ and
Point ‘C’, and before Point ‘A’ and after Point ‘C’, it is in
the idle state. In idle state, the GPU consumes only its statics
power, which is 20.57W [49] for K40 GPU while in the
active state, it is consuming dynamic power, which depends
on many factors including the workload and the algorithm
executing on it. The energy consumption of the kernel is
obtained by integrating the dynamic power curve between
Point ‘A’ and Point ‘C’ as shown in equation 3. The difference
between timestamps at Point ‘C’ and Point ‘A’ represents the
kernel runtime as expressed in equations 4. Peak Power is
represented by Point ‘B’ in Figure 1, and it is expressed in

equation 5.

Energy =
∫ tC

tA
P (t) dt, where tA ≤ t ≤ tC (3)

Kernel Runtime = tC − tA (4)

Peak Power = max(P (t) = PtB (5)

where P (t) represents the corresponding power curve
obtained through GPU built-in sensor.
tA, tB, and tC correspond to timestamps at Point ‘A’,

Point ‘B’, and Point ‘C’ respectively.
PtB shows peak power, which represents the maximum

value in the power curve and it lies at Point ‘B’.
Equation 3 suggests that energy consumption of a kernel is

directly proportional to its dynamic power (GPU active state
power) consumption and its kernel runtime. In general, kernel
runtime of a program can be improved by optimizing it for
performance but the dynamic power consumption is associ-
ated with some other factors, which are discussed below.
Chen et al. [42] represent the GPU active state power as

aggregated power across all the components of GPU, which
include the Streaming Multiprocessors (SMs) and memory
subsystem of the GPU, as expressed in equation 6.

Poweractive =
∑n

i=0
Poweractiv_componenti

= Poweractive_SMs + Poweractive_Memory (6)

An SM contains several units, which include integer arith-
metic unit (IAU), floating point unit (FPU), special func-
tion unit (SFU), arithmetic logic unit (ALU), texture cache
(TC), constant cache (CC), shared memory (SHM), register
file (RF), and fetch-decode-schedule (FDS) unit. The dynamic
power consumption of a single SM is modeled by equa-
tion 7 and the dynamic power consumption across all the SMs
is given by equation 8 [42].

Poweractive_SM
= Poweractive_IAU + Poweractive_FPU + Poweractive_SFU
+Poweractive_ALU + Poweractive_TC + Poweractive_CC
+Poweractive_SHM + Poweractive_const_mem
+Poweractive_RF + Poweractive_FDS (7)

Poweractive_all_SMs
= N .Poweractive_SM (8)

where N is the total number of SMs in a GPU.
On the other hand, the memory subsystem of the GPU

contains global memory, shared memory, local memory, tex-
ture memory, and constant memory. Shared memory, constant
memory, and texture memory are modeled as components of
SM as they mostly use caches inside an SM as represented
in equation 7. The global memory and the local memory
share the same physical graphics double data rate (GDDR)
memory. The dynamic power consumption of the memory
subsystem is modeled by equation 9 [42].

Poweractive_Memory
= Poweractive_global_mem + Poweractive_local_mem (9)
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TABLE 3. Average peak power, average energy, and average kernel runtime for AQ and BM.

TABLE 4. Performance results for AQ and BM for all datasets.

Isci and Martonosi [50] presented an empirical method
to develop a power model. They studied the runtime power
(dynamic power) consumption of Intel Pentium 4 processor.
Their basic model contains both static power and dynamic
power. The researchers demonstrated that dynamic power
consumption of an architectural unit has a linear relation with
the access rate of that component. The access rate shows how
often the component is accessed per unit of time. In [42],
access rate for a component of GPU is modeled, which is
based on the dynamic number of instructions per component
(DPC), warps per SM, and execution cycles as given in
equation 10. The execution cycles are divided by 4 because
a single instruction is fetched, scheduled, and executed every
four cycles.

Access Rate =
DPC ×Warps_per_SM
execution cycles/4

(10)

DPC andWarps per SM are obtained using equation 11 and 12
respectively [42].

DPC =
∑n

i=0
Number_of _Instructions_per_Warpi

× (Component) (11)

Warp_per_SM

=
#threadsPerBlock
#threadsPerWarp

×
#Blocks

active_SMs
(12)

IV. RESULTS EVALUATION
In this section, we investigate the power and energy efficiency
of Bitonic Mergesort (BM) and Advanced Quicksort (AQ)
on NVIDIA Tesla K40 GPU based on the four experiments
described in Section III. Table 3 shows results of BM and AQ
for 5 datasets (2M, 64M, 128M, 256M, and 512M elements),

which are taken from our recently published research [4].
The results provide a comprehensive comparison of BM and
AQ based on three metrics, which are average peak power,
average energy and average kernel runtime for the 5 datasets.
More importantly, for power consumption analysis, we com-
pared the algorithms based on its peak power because it is
the relevant energy concern for parallel computers as iden-
tified by Poon and Sout [51]. It is obvious from results
in Table 4 that AQ not only has higher peak power and
energy than BM but also has higher kernel runtime in most
cases. Higher kernel runtime of AQ means that it keeps the
GPU busy for a longer time than BM while executing similar
workloads. The results reveal that energy consumption of AQ
andBM is directly associatedwith kernel runtime and the area
under the power curve of the dataset. BM seems to provide
increasingly better energy efficiency as the working set of
the workload increases. More importantly, results illustrate
that in most cases, BM has a very clear advantage over
AQ in terms of peak power, energy and kernel runtime. For
instance, for a dataset of 512M elements, average energy
consumption of AQ andBM is 2311.13J and 1670.28J respec-
tively. This means that on average, BM has 640.85J lower
energy consumption than AQwhile sorting a dataset of 512M
elements.

Figures 2 to 4 show results of occupancy experiment
for AQ and BM for three datasets respectively. The val-
ues reported are the average across all warp schedulers for
the duration of the kernel execution. In this experiment,
we obtained results for all the seven datasets for achieved
occupancy. For brevity, we only show results of this metric
for 3 datasets (64M, 128M, and 256M) for AQ and BM
in Figures 2 and 3 respectively. In Figure 4, we show results of
average achieved occupancy for all the seven datasets. Since
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FIGURE 2. Achieved occupancy per SM for AQ: (a) 64M, (b) 128M, (c) 256M.

FIGURE 3. Achieved occupancy per SM for BM: (a) 64M, (b) 128M, (c) 256M.

FIGURE 4. AQ and BM average achieved occupancy.

NVIDIA Tesla K40 has 15 streaming multiprocessors (SMs),
thus the x-axes in the Figures 2 and 3 show achieved occu-
pancy on each SM (SM0 to SM14) of the Tesla K40 GPU.
The horizontal line across the bars represents the average
achieved occupancy. Figures 2 and 3 suggest that BM has
uniform achieved occupancy across each SM of the GPU

while AQ has varying achieved occupancy across each SM,
particularly for datasets greater than 64M elements. In case of
smaller datasets, AQ has also uniform achieved occupancy
across all the SMs of the GPU like BM, while for datasets
greater than 256M elements, theNVIDIANsight Visual Studio
could not collect results of achieved occupancy for AQ due
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FIGURE 5. AQ and BM issue efficiency: Avg. active warps per SM, Avg. eligible warps per SM, warp issue efficiency (No Eligible),
and warp issue efficiency (Eligible).

FIGURE 6. AQ and BM issue stall reasons: instruction fetch, pipe busy, execution dependency, memory.

to overflow. The overflow in profiling AQ on larger datasets
(datasets > 256M elements) is because all the compute
resources of the GPU are oversubscribed as the profiler runs
each experiment multiple times to collect results for achieved
occupancy metric. On the other hand, for BM, overflow
in profiling does not occur even for larger datasets due to
well-balanced and efficient workload execution on the GPU.
Lower and non-uniform achieved occupancy of AQ across
each SM of the GPU means that there are lower active warps

across each SM throughout the kernel runtime, which results
in higher latencies and stalled warps (limit thewarp scheduler
ability to issue instructions from awarp on every clock cycle).
Each time a warp scheduler is not able to issue an instruction,
an issue stall reason is recorded. This is explained in detail in
issue efficiency experiment as shown in Figures 5 and 6. Next,
we discuss the impact of achieved occupancy on kernel’s
power and energy consumption. In occupancy experiment, the
results reveal that BM has comparatively very high achieved
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occupancy (around 82% on average) while AQ has very low
and non-uniform achieved occupancy (particularly for larger
datasets) across all the SMs throughout the kernel runtime.
Coplin and Burtscher [47] identified that occupancy has a
relation with both performance and power consumption of
the code executing on the GPU. They identified that for a
certain occupancy level, having larger thread blocks, and
subsequently smaller thread blocks per SM, generally result
in improvements in both performance and power consump-
tion. Considering the results of occupancy experiment, lower
achieved occupancy of AQ results in higher latencies and
stalled warps, which limit the warp scheduler ability to issue
instructions from a warp on every clock cycle. Not issuing an
instruction from a warp leads to higher kernel runtime, which
directly affects the energy consumption of the algorithm as
suggested by equation 3. In addition, due to higher latencies
over each SM and prolonged kernel runtime of AQ, operating
temperature of the chip goes higher that results in an increase
in the static power of the device. Equation 2 suggests that
increase in the static power directly affects the total power
consumption of the device. Thus, the lower and unbalanced
achieved occupancy of AQ across all the SMs contribute to its
higher peak power, energy, and kernel runtime as compared
to BM.

Figure 5 shows a comparison of AQ and BMbased on issue
efficiency experiment. The results suggest that BM executes
all the workloads more efficiently than AQ as it has on
average more active and eligible warps across each SM in
most cases, particularly in case of larger datasets, BM has
a significantly higher number of active and eligible warps
across each SM. AQ has very low active warps per SM,which
is one of the reasons of having lower achieved occupancy as
shown in results of occupancy experiment (Figures 2 to 4).
Equation 1 suggests that the lower the number of active
warps per SM, the lower will be the achieved occupancy,
which usually leads to poor performance of kernel on the
device. Higher active and eligible warps across each SM
in case of BM hides warp latencies more efficiently. Due
to more eligible warps across all the SMs in case of BM,

the next instructions are issued more efficiently. Since AQ
has comparatively fewer eligible warps than BM, thus, more
stall reasons are reported as depicted in warp issue efficiency
results. Figure 5 shows that for datasets greater than 32M
elements, AQ has a very high percentage of no eligiblewarps
than BM. The lower the percentage of cycles with no eligible
warps, the more efficient the code runs on the GPU. In most
cases, BM has comparatively lower percentage of no eligible
warps than AQ while executing the same workload, thus
it runs more efficiently on the device having more eligible
warps throughout the kernel runtime.

Figure 6 shows the issue stall reasons, i.e. the reasons why
an active warp is not eligible. The issue efficiency experiment
reports results for six issue stall reasons as described in
Section III. In case of AQ, the prominent issue stall reasons
are execution dependency, memory dependency, and instruc-
tion fetch. Two issue stall reasons, i.e. synchronization and
memory throttle, are only reported for AQ. On the other
hand, the prominent issue stall reasons in case of BM are
alsomemory dependency and execution dependency but other
issue stall reasons are negligible. Figure 6 shows that for
dataset 512M elements, memory throttle has 48% contribu-
tion in stalling instructions in case of AQ, which occur due
to a large number of incomplete memory operations that
obstruct further forward progress. Figure 6 also shows that
stalls due to synchronization only occurs in case of AQ, which
happens when a warp is blocked at a barrier (_syncthreads(
)call). The impact of issue efficiency on power and energy
consumption of the kernel is discussed as follows. The results
of issue efficiency experiment have a direct relation with
occupancy experiment, for instance, active warps per SM
metric is obtained in issue efficiency experiment that is used in
the calculation of achieved experiment as expressed in equa-
tion 1. Furthermore, the results of issue efficiency experiment
also suggest that BM has better execution of the workload on
the device as it has comparatively more eligible warps across
all the SMs than AQ, that efficiently hide warp latencies. This
means that unlike AQ, BM finishes the workload execution
in lower kernel runtime that leads to a lower increase in the

FIGURE 7. SM Activity for AQ: (a) 64M, (b) 128M, and (c) 256M.
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FIGURE 8. SM Activity for BM: (a) 64M, (b) 128M, and (c) 256M.

FIGURE 9. Warps launched for AQ: (a) 64M, (b) 128M, and (c) 256M.

FIGURE 10. Warps launched for BM: (a) 64M, (b) 128M, and (c) 256M.

operating temperature. As a result, there is a slight increase
in the static power consumption of the device, thus having
overall better power and energy efficiency. The increase in
dynamic power consumption of the GPU due to BM and AQ
execution is explained in instructions statistics and memory
statistics experiments.

In Figures 7 to 13, we show results of instruction statis-
tics experiment in which we obtained results for all the
seven datasets for SM activity, instruction per clock, warps
per instruction, and warps launched. For brevity, we only
show results of these metrics for 3 datasets (64M, 128M,
and 256M) in Figures 7 to 13. In Figure 13, we show
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FIGURE 11. Instructions per Warp for AQ: (a) 64M, (b) 128M, and (c) 256M.

FIGURE 12. Instructions per Warp for BM: (a) 64M, (b) 128M, and (c) 256M.

average results of all the metrics for all the seven datasets.
In Figures 7 and 8, results of SM activity show that BM has a
well-balanced SM activity while AQ has some variation in
the SM activity across each of the 15 SMs throughout the
kernel runtime. Variation in the SM activity across all the
SMs leads to tail effect, which occurs when some of the
SMs finished the workload execution and stay idle while
others still busy in executing the workload [18]. The Tail
effect is one of the reasons of limiting kernel’s performance
on the device. Though tail effect in case of AQ is not very
high, in comparison with BM, it is considerably high, which
suggests better execution of BM on the GPU.

Figures 9 and 10 show results of warps launched metric
for three datasets respectively. The results show that BM has
launched fewer warps and equal distribution of warps across
each SM of the GPUwhile executing the same workload. The
Large variation in the number of warps launched across each
SM occurs due to lack of enough parallelism in the kernel
grid, which is one of the reasons of limiting kernel’s per-
formance on the device. As AQ choose threadsPerBlock and
blockPerGrid dynamically at runtime, which may sometimes
cause result in the improper kernel configuration, and thus
causing variation inwarps launchedmetric across all the SMs

as shown in Figure 9. On the other hand, in case of BM, opti-
mum values are assigned to variables threadsPerBlock and
blockPerGrid based on the dataset in the source code, which
always results in the better kernel configuration, and thus
causing well-balanced warps launched across all the SMs as
shown in Figure 10. Results of warps launched also suggest
that BM has better execution on the device as variation in
warps launched.
Figures 11 and 12 provide a comparison of AQ and BM

for three datasets based on instructions per warp metric. The
results show that BMhas 31 instructions per warp across each
SM while AQ has varying and non-uniform instructions per
warp across each SM in case of all the datasets. As discussed
in Section I, BM is an example of data-independent sorting
algorithms while AQ is an example of data-dependent sorting
algorithms. In data-independent sorting algorithms (such as
BM), the algorithms do not change its execution path based
on the input but it always follows the same execution path in
order to sort the input dataset. On the other hand, in data-
dependent sorting algorithms (such as AQ), the algorithm
changes its execution path based on the input dataset. This
means that BMhas a constant set of instructions that it follows
in order to sort any dataset regardless of the input dataset size,
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FIGURE 13. AQ and BM instruction statistics: SM activity, IPW, issued IPC, and executed IPC.

while AQ always has a varying set of instructions depending
on the size of input dataset, which is depicted in results of
instructions per warp metric, as shown in Figures 11 and 12.
Finally, Figures 13 compares AQ and BM based on average
values of all the metrics obtained in instruction statistics
experiment for all the seven datasets.

It is important to mention that each SM of NVIDIA Tesla
K40 GPU contains 4 warp schedulers that are able to execute
at least one instruction per cycle. At every instruction issue
time, each warp scheduler selects one warp that is able to
make forward progress from its assigned list of warps. For this
selected warp, the warp scheduler then issues either the next
single instruction or the next two instructions. A warp sched-
ulermight need to issue an instruction multiple times to actu-
ally complete the execution of all 32 threads of awarp. Issuing
an instruction multiple times is also referred to as instruction
replay. In addition, the compute resources required to process
the instruction are consumed for every instruction replay,
which takes away the ability to make forward progress by
issuing new instructions on that warp scheduler [18]. The
results suggest that in case of AQ, there is more instruction
replay due to which the warp scheduler issue instructions
multiple times and thus having larger instructions per warp,
more warps launched, and non-uniform SM activity across
all the SMs as compared to BM. This means that BM has
comparatively better execution of the workload across each
SM of the GPU as it has well-balanced SM activity, fewer
warps launched and lesser instructions per warp. The impact
of these metrics on kernel’s power and energy efficiency is
discussed below.

The Tail effect is one of the reasons of limiting kernel’s
performance on the device that leads to higher latencies that
result in higher kernel runtime. In case of AQ, tail effect
results increase in static power consumption as the operating
temperature rises due to higher kernel runtime, and the higher
number of warp launched across each SM results increase
in dynamic power consumption of the device due to higher
workload execution, thus, affecting the overall power and
energy consumption. The results of instructions per warp
metric in instruction statistics experiment show that BM has
31 instructions per warp across each SM while AQ has
varying and non-uniform instructions per warp across each
SM in case of all the datasets. BM is a data-independent
sorting algorithm; it does not change its execution path based
on the input but it always follows the same execution path in
order to sort the input dataset. On the other hand, AQ is data-
dependent sorting algorithm; it always changes its execution
path based on the input dataset. This means that BM has a
constant set of instructions that it follows in order to sort any
dataset regardless of the input dataset size, while AQ always
has a varying set of instructions depending on the size of
input dataset, which is depicted in results of instructions per
warp metric. Another reason of AQ higher and non-uniform
instructions per warp is instruction replay, due to which an
instruction is issued multiple times that results in taking away
the ability of a warp scheduler to make forward progress by
issuing new instructions [18]. The instruction per warp met-
ric has a significant effect on the dynamic power consumption
of the GPU. As modeled by equations 10 and 11, increase in
instructions per warp results in an increase in access rate,
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FIGURE 14. Memory statistics experiment overview for AQ: Dataset=512M elements.

FIGURE 15. Memory statistics experiment overview for BM: Dataset=512M elements.

which shows how often a component is accessed per unit of
time. Subsequently, increase in access rate has a linear effect
on dynamic power consumption of the device as shown in
[42] and [50]. The results of all the experiments discussed so
far are tabulated in Table 4.

Next, we discuss the performance of AQ and BM based
on memory statistics experiment. From the memory statistics
experiment, we only show the overview ofmemory subsystem
for AQ and BM while executing dataset 512M elements.
This highlights the usage of the memory subsystem of the
K40 GPU for both the algorithms. Figures 14 and 15 show
overview of the memory statistics experiment for AQ and
BM while executing on dataset 512M elements respectively.
The nodes in the diagram show various memory spaces and
the available caches. For the caches, the reported percentage
number indicates the cache hit rate; that is the ratio of requests
that could be served with data locally available to the cache
over all requests made [18]. Links between the nodes in the

diagram depict the data paths between the SMs to thememory
spaces. The results show that AQ uses most of the memory
subsystem that includes the global memory, local memory,
texture memory, global atomics, and shared memory spaces.
On the other hand, BM only uses the global memory space,
which suggests that BM performs less hard work than AQ
because it uses only the global memory space, having fewer
data movements between different memory spaces and thus
resulting in lower kernel runtime. The impact of memory
usage on power and energy consumption of kernel is dis-
cussed below.

The memory statistics experiment provides a very clear
explanation of the power and energy efficiency advantage
of BM over AQ. The results of memory statistics experi-
ments show that AQ uses most of the memory subsystem that
includes the global memory, local memory, texture memory,
global atomics, register file, and shared memory spaces.
On the other hand, BM only uses the global memory space.

VOLUME 6, 2018 42771



O. A. Abulnaja et al.: Analyzing Power and Energy Efficiency of BM-Based on Performance Evaluation

Equations 7 and 8 suggest that dynamic power consump-
tion of SMs is dependent on the number of components
used in the SMs. As AQ uses more components of the SM
than BM, thus it has higher power and energy consumption.
On the other hand, equation 9 models the dynamic power
consumption of the memory subsystem, which is dependent
on the usage of global and local memory spaces. Since BM
uses only the global memory space, thus it consumes less
power and energy than AQ because AQ uses both global and
local memory spaces of the device memory. Using different
memory spaces of the device memory in case of AQ means
that there will be more data-movements between different
components of the device, which is an expensive process in
terms of power consumption as has been demonstrated in sev-
eral studies [52]–[55]. For example in [53], it demonstrated
that data-movement of three 64-bit inputs operand between
registers and execution unit consumes as much energy as
doing a double precision floating point operation. In the
same context, it is stated in [46] that ‘‘Dynamic power is
reduced by decreasing the access count to each register bank
by compressing the operand data into fewer physical register
banks. Furthermore, dynamic power is reduced because the
compressed register read and write operations activate fewer
bitlines in the register file and fewer bits are moved across the
wires between register file and execution unit where the data
is processed.’’ In addition, Connors andQasem [47] identified
that reducing traffic in device memory leads to improvements
in both performance and power consumption. Furthermore,
the US Department of Energy (DOE) report Architectures
and Technology for Extreme Scale Computing [55] states that
‘‘The primary design constraint for future HPC systems will
be power consumption.

. . . Data movement will be a bigger factor for system
energy consumption and cost than FLOP/s. . . .

Energy and performance costs should be reflected in
abstract machine model.’’

V. CONCLUSIONS AND FUTURE WORK
Excessive power consumption is one of the major obstacles to
achieve exascale performance in a reasonable power budget.
Existing techniques are not appropriate for exascale comput-
ing. New techniques and solutions are required to reduce the
high power requirements of the prospective exascale systems.

In a recent research, we found that evaluating power and
energy consumption of fundamental algorithms can offer a
reasonable amount of power and energy saving. The hypothe-
sis was that some algorithms can have an inherent algorithmic
power and energy consumption advantage depending on the
algorithm’s fundamental design. We expected BM to be more
power and energy efficient because of its fundamental design
that is logically suitable for parallel platforms such as GPUs.

In this research, we further investigate BM under vari-
ous experiments offered by NVIDIA Nsight Visual Studio
to explore its inherent algorithmic power and energy effi-
ciency. Results of each experiment show how efficiently the
algorithm got executed on the GPU while sorting a dataset.

It is revealed in the results that a simple in-place BM exe-
cutes more efficiently than an optimized AQ because BM is
logically suitable for the parallel architecture of the GPU.
Furthermore, in our results analysis, we discuss the factors
that lead to higher power and energy consumption of GPU
that include data movement, larger access rate, using more
components of the SM and the device memory, imbalance SM
activity across all the streaming multiprocessors (SMs) that
causes tail effect, lower and imbalance achieved occupancy
across all the SMs, lower percentage of eligible warps, and
larger and imbalance instructions per warp across all the
SMs that may cause instruction replay. It should be noted
that some of the factors discussed above depend explicitly on
the algorithm’s fundamental design, the workload (dataset)
executing on the GPU, and the kernel size. For instance,
warps launched metric in instruction statistics experiment
depends on the workload, i.e. higher workload results in
higher warps launched and vice versa, but it also depends on
the algorithm’s design (AQ or BM will have different warps
launched for a Dataset).

The study open insights for further investigating other
fundamental software building blocks such as minimal span-
ning tree algorithms and binary search algorithms, to identify
the algorithmic power and energy consumption advantage in
order to provide better recommendations for the upcoming
exascale systems.

For future work, the work can be extended to other het-
erogeneous architectures and some other fundamental algo-
rithms can be investigated for power and energy efficiency.
It would also be interesting to develop some analytical
methodology for representing power and energy complexities
of algorithms.
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