
Received June 14, 2018, accepted July 23, 2018, date of publication July 31, 2018, date of current version August 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2861467

An Algorithm of Recognizing Unbounded Petri
Nets With Semilinear Reachability Sets and
Constructing Their Reachability Trees
DAN YOU 1,2, SHOUGUANG WANG 1, (Senior Member, IEEE), AND WENHUI WU 1
1School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
2Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy

Corresponding author: Shouguang Wang (wsg5000@hotmail.com)

This work was supported in part by the Zhejiang Natural Science Foundation under Grant LY15F030003 and in part by the National
Natural Science Foundation of China under Grant 61472361.

ABSTRACT Reachability is one of the significant properties of Petri nets (PNs). For unbounded PNs, how to
determine their reachability is an open issue. In this paper, we propose an algorithm that determines whether
the reachability set of an unbounded PN is semilinear. Moreover, in the case that the unbounded PN has
semilinear reachability set, the proposed algorithm can construct a new reachability tree (NRT) that exactly
characterizes its reachability set. In addition, it can be decided based on NRT whether an unbounded PN
suffers from deadlocks. The results are illustrated via examples.

INDEX TERMS Discrete-event systems, Petri nets, reachability trees, unbounded nets.

I. INTRODUCTION
Petri nets (PNs), thanks to their compact graphical represen-
tation and powerful mathematical foundation, are viewed as
an appropriate modelling tool to analyze and control discrete-
event systems (DESs) like computer networks, workflow
systems, automated manufacturing systems, and urban traffic
systems. The analysis on reachability sets is of fundamental
importance for PNs since a variety of properties such as live-
ness, boundedness, coverability and reversibility all can be
checked via analyzing reachability sets [27]. The reachability
set can be represented by a tree named the reachability tree
(RT) that is a powerful tool to check properties of PNs intu-
itively and thus its construction is very important. However,
it is challenging to construct a reachability tree that exactly
characterizes the reachability set for unbounded PNs. This
is because their reachability sets are infinite. Over the past
fifty years, many works [4], [8]–[11], [14], [17], [19]–[25],
[30], [31], [33] study the finite representation of the reacha-
bility tree for PNs with infinite reachability sets.

The work [11] done by Karp and Miller firstly proposes
a finite reachability tree (FRT) where a special symbol ω is
introduced that denotes an infinite component of a marking
due to some transition firing loops. It is proved that FRT
can be utilized to decide such properties as boundedness
and safeness [15], [16]. Unfortunately, the introduction of
symbol ω in FRT leads to information loss, which as a result

invalidates its determination on whether a specific marking is
reachable, as well as the property of deadlock-freedom of an
unbounded PN. For a subclass of unbounded PNs, Hiraishi [8]
uses Periodic vectors instead of symbol ω to develop reduced
representation of vector state spaces with infinite states. How-
ever, the method is not very efficient since most of the time is
spent on checking the inclusion of regions [8]. Hence there is
still much work [4], [9], [10], [14], [17], [19]–[25] utilizing
symbol ω to find finite representation of reachability trees for
PNs with infinite reachability sets.

An augmented reachability tree (ART) is developed by
Jeng and Peng [9], [10], which extends the ability of FRT
of analyzing qualitative properties of unbounded PNs, e.g.,
liveness. Its basic idea is computing the minimal marking
for every node of the tree. However, the complexity of
such a computation is NP-hard and the construction of ART
essentially relies on enumeration technique. Besides, ART is
unfortunately applicable to one-place-unbounded nets only,
i.e., nets containing only one unbounded place.

To avoid information loss, Wang [19] proposes a modi-
fied reachability tree (MRT), where the expression kωn + q
rather than ω is adopted to denote infinite components of
a marking. The work in [21] develops a computer program
that can generate an MRT of a net automatically. Later,
Wang et al. [20] prove that an MRT is a finite tree and verify
its capability on deciding such properties as the reachability,

43732
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-9088-9672
https://orcid.org/0000-0002-8998-0433
https://orcid.org/0000-0003-3346-8796


D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

deadlock-freedom and liveness. Counterexamples in [4]
and [17], however, indicate that the marking set represented
by an MRT is not necessarily equal to the reachability set.
Due to the existence of spurious reachable markings, MRT
fails to correctly decide the deadlock and liveness of some
unbounded nets. Thereafter, for one-place-unbounded nets,
Wang et al. [25] develop an improved reachability tree (IRT)
whose marking set is exactly the same as the reachability set.

In [24], ω-independent unbounded nets are proposed by
Wang et al., which are a subclass of unbounded nets more
general than one-place-unbounded nets. For such unbounded
PNs, Li [14] and Wang et al. [24] construct a new modified
reachability tree (NMRT) that exactly represents the reacha-
bility set of a net and thus can correctly determine deadlocks
and liveness [22]. Note that themodified next-state function is
adopted during the construction of NMRT, by which spurious
reachable markings in [20] are avoided.

To our best knowledge, almost all the reachability trees
in the literature, which exactly characterize reachability sets
of unbounded PNs, are only applicable to a limited subclass
of PNs whose reachability sets are semilinear. Motivated
by this fact, a method is proposed in our recent work [43]
that can construct a reachability tree for any unbounded PN
whose reachability set is semilinear. In this paper, we develop
a new algorithm that is capable of recognizing whether an
unbounded PN is a net with a semilinear reachability set. In
addition, for an unbounded PN with a semilinear reachability
set, the proposed algorithm constructs a new reachability
tree (NRT) that exactly characterizes the infinite reachability
set of the PN.

The remainder of this paper is organized as follows.
Section II provides related notions used in this paper.
Section III introduces modified expressions of ω-numbers
andω-markings. Section IV proposes an algorithm that deter-
mines whether an unbounded PN has the semilinear reach-
ability set and constructs an NRT for the unbounded PN
with the semilinear reachability set. Section V concludes this
paper.

II. PRELIMINARIES
A. PETRI NETS
A Petri net (PN) is a four-tuple N = (P,T ,F,W ) where P
and T are the sets of places and transitions, respectively and
they are finite, non-empty, and disjoint sets. F ⊆ (P × T ) ∪
(T × P) is the set of flow relation that are graphically
denoted by directed arcs connecting places to transitions. The
function W : (P × T ) ∪ (T × P) → N assigns each arc a
weight. Given x, y ∈ P ∪ T , W (x, y) > 0 if (x, y) ∈ F ,
and W (x, y) = 0 otherwise. The preset of a node x ∈ P ∪ T
is •x = {y ∈ P ∪ T |(y, x) ∈ F} and the post-set of a
node x ∈ P ∪ T is x• = {y ∈ P ∪ T |(x, y) ∈ F}. The
incidence matrix of N is a matrix [N ]: P× T → Z such that
[N ](p, t) = W (t, p) −W (p, t). [N ](p, •) ([N ](•, t)) denotes
the incidence vector with respect to a place p (transition t),
i.e., a row (column) in [N ].

An ordinary marking µ of N is a mapping from P to N.
t ∈ T is enabled at µ if ∀p ∈ •t , µ(p) ≥ W (p, t).
An enabled transition t at marking µ can fire. µ[t〉µ′ denotes
that the firing of t at µ leads to a new marking µ′, where
µ′(p) = µ(p) + [N ](p, t), ∀p ∈ P. Note that T ∗ denotes the
set of all finite sequences of transitions in T , including the
empty sequence ε, where the operation ‘‘∗’’ is called Kleene-
closure. A transition sequence σ = t1t2 . . . tk ∈ T ∗ is feasible
from a marking µ1 if there exist µ1, µ2, . . . , µk+1 such that
µi[ti〉µi+1, ∀i ∈ Nk = {1, 2, . . . , k}. We use µ1[σ 〉µk+1
to denote that µk+1 is reachable from µ1 by firing σ . The
set of all reachable markings of N from the initial marking
µ0 is denoted by R(N , µ0). The Parikh vector of a transition
sequence σ is vσ : T → N, which maps t in T to the number
of occurrences of t in σ . For instance, suppose that T = {t1,
t2, t3, t4}. Then, the Parikh vector of the transition sequence
σ = t12t3 is vσ = [1, 0, 2, 0]T .

A PN (N , µ0) is bounded if the token count of each place
p does not exceed a finite number B ∈ Z+ for any marking
µ reachable from µ0, i.e., µ(p) ≤ B. Otherwise, the net is
unbounded.

B. ω–NUMBERS
In this subsection, we review the related notations of
ω–numbers defined in [4], [17], [19]–[21], [24], and [25] .

A subset of integers S is called an ω-number if ∃k ∈ Z+,
n, q ∈ Z such that S = {ik + q|i ≥ n}. S can be uniquely
expressed as S = ω(k , n, q) ≡ kωn + q ≡ {ik + q|k ∈ Z+,
n ∈ Z, 0 ≤ q < k , i ≥ n}, where ω(k , n, q) or kωn + q is
called a canonical ω-number with k as its base, n as theleast
bound, and q as the remainder.

A vector x ∈ Znω is called an ω-vector if at least one of its
components is an ω-number, where Zω is the set of integers
andω-numbers. Clearly, anω-vector can be viewed as a set of
ordinary integer vectors. A marking µ is called an ω-marking
if it can be represented by an ω-vector. An ω-marking can be
viewed as a set of ordinary markings.

At an ω-marking µ, t ∈ T is enabled if t is enabled at all
ordinarymarkings ofµ; t is not enabled atµ if t is not enabled
at any ordinary marking of µ; t is conditionally enabled at µ
if it is not enabled at some ordinarymarkings ofµ but enabled
at any other ordinary markings of µ. Note that if t is enabled
at µ and µ′ ≥ µ, it holds that t is enabled at µ′.

C. SEMILINEAR SETS [5], [6], [12]
Let C and D be two subsets of Nn, and L(C , D) be the set of
all x ∈ Nn in the form x = c+ k1 · d1 + k2 · d2 . . .+ km · dm,
where c ∈ C , {d1, d2, . . . , dm} = D, and k1, k2, . . . , km ∈ N.
L(C , D) is said to be a linear set if C consists of exactly one
element and D is finite (possibly empty). A subset of Nn is
said to be semilinear if it is a finite union of linear sets.

We can see that the set consisting of a single ordinary
marking is a linear set and thus the reachability set of a
bounded PN is definitely semilinear. However, for unbounded
PNs, their reachability sets may not be semilinear.

VOLUME 6, 2018 43733



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

III. MODIFIED ω-NUMBERS AND ω-MARKINGS
In this section, we introduce modified ω-numbers and
ω-markings, which are firstly proposed in our previous
work [43]. In this work, we still use them to construct
reachability trees. We present the motivation of making such
modifications in the following.

It is clear that infinite marking sets have to be repre-
sented by ω-markings when we construct reachability trees
for unbounded nets. However, the previous work [4], [17],
[19]–[21], [24], [25] does not explicitly define an ω-marking.
Consider the following two infinite marking sets:

A = {(x, y)|x ∈ {1, 2, 3, . . .}, y ∈ {1, 2, 3, . . .}}

= {(1, 1), (1, 2), (1, 3), . . . , (2, 1), (2, 2), (2, 3), . . . ,

(3, 1), (3, 2), (3, 3), . . .}; and

B = {(x, x)|x ∈ {1, 2, 3, . . .}}

= {(1, 1), (2, 2), (3, 3), (4, 4), . . .}.

According to the work in [4], [17], [19]–[21], [24],
and [25], A and B are represented by a same ω-marking,
i.e., µ = (ω1, ω1).
From the above example, we can see that, given an

ω-marking, we cannot determine which marking set the ω-
marking represents if no further information is provided.
In order to solve this problem, we introduce superscripts
for ω-numbers. Particularly, the expression of an ω-number
S = ω(k , n, q) ≡ kωn + q ≡ {ik + q|i ≥ n} [4], [17],
[19]–[21], [24], [25] is modified as S = ω(a)(k , n, q) ≡
kω(a)

n + q ≡ {(i(a)+ n)k + q|i(a) ∈ N}, where a ∈ Z+. Based
on the modified ω-numbers, the set A can be represented by
µ1 = (ω(1)

1 , ω(2)
1 ) ≡ {(i(1) + 1, i(2) + 1)|i(1), i(2) ∈ N},

while B represented by µ2 = (ω(1)
1 , ω(1)

1 ) ≡{(i(1)+1, i(1) +
1)|i(1) ∈ N}. Note thatω-numbers in a marking are associated
with each other if they have the same superscript. In addition,
an ω-number is generalized in this work into the following
expression:

S = ω(a1)(k1, n1, q1)+ ω(a2)(k2, n2, q2)

+ . . .+ ω(am)(km, nm, qm)

≡ (k1ω
(a1)
n1 + q1)+ (k2ω

(a2)
n2 +q2)+ . . .+ (kmω(am)

nm + qm)

≡ {((i(a1) + n1)k1 + q1)+ ((i(a2) + n2)k2 + q2)

+ . . .+ (i(am)+nm)km + qm)|i(a1), i(a2), . . . , i(am) ∈ N},

where a1, a2, . . . , am ∈ Z+.

For example, the numbers listed below are all ω-numbers.

S1 = ω(1)(2, 0, 1) ≡ 2ω(1)
0 + 1

≡ {2i(1) + 1|i(1) ∈ N} = {1, 3, 5, 7, . . .};

S2 = ω(2)(3, 1, 1) ≡ 3ω(2)
1 + 1

≡ {3(i(2) + 1)+ 1|i(2) ∈ N} = {4, 7, 10, 13, . . .};

S3 = ω(1)(2, 0, 1)+ω(2)(3, 1, 1) ≡ (2ω(1)
0 + 1)+(3ω(2)

1 + 1)

≡ {(2i(1) + 1)+ (3(i(2) + 1)+ 1)|i(1), i(2) ∈ N}

= {5, 7, 8, 9, 10, 11, . . .};

S4 = ω(2)(3, 1, 0)+ ω(3)(4, 2, 1) ≡ (3ω(2)
1 )+ (4ω(3)

2 + 1)

≡ {(3(i(2) + 1))+ (4(i(3) + 2)+ 1)|i(2), i(3) ∈ N}

= {12, 15, 16, 18, 19, 20, . . .};

S5 =ω(2)(3, 0, 2)+ ω(3)(4, 2, 2) ≡ (3ω(2)
0 + 2)+(4ω(3)

2 + 2)

≡ {(3i(2) + 2)+ (4(i(3) + 2)+ 2)|i(2), i(3) ∈ N}

= {12, 15, 16, 18, 19, 20, . . .}.

Note that S4 and S5 differ in form but represent a same
set. Actually, both of them can be transformed into a form:
S4 = S5 = 3ω(2)

0 +4ω
(3)
0 +12. Consequently, the least bounds

of any ω-number, in this work, are all set as zero and they are
thereby omitted for simplicity. The modified expression of
ω-numbers is defined formally as follows.
Definition 1: A subset of integer S is called an ω-number

if ∃q ∈ Z, k1, k2, . . . km ∈ N and k1+ k2+ . . .+ km 6= 0 such
that

S = ω(k (1)1 , k (2)2 , . . . , k (m)m ; q)

≡ k1ω(1)
+ k2ω(2)

+ . . .+ kmω(m)
+ q

≡ {i(1)k1+i(2)k2 + . . .+ i(m)km + q|i(1), i(2), . . . , i(m)∈N}.

ω (k (1)1 , k (2)2 , . . . , k (m)m ; q) or k1ω(1)
+k2ω(2)

+. . .+kmω(m)
+

q is called a canonical ω-number, in which ω(j) is called
an ω-element with superscript j, kj the base related to ω(j),
j ∈ {1, 2, . . . ,m} and q the starting-value. Moreover, we call
an ω-number is one with z-dimension if there are z non-zero
bases in it.
According to Definition 1, some ω-number examples are

listed below.

S1 = ω(2(1); 1) ≡ 2ω(1)
+ 1 ≡ {2i(1) + 1|i(1) ∈ N}

= {1, 3, 5, 7, . . .};

S2 = ω(0(1), 3(2); 4) ≡ 3ω(2)
+ 4 ≡ {3i(2) + 4|i(2) ∈ N}

= {4, 7, 10, 13, . . .};

S3 = ω(2(1), 3(2); 5) ≡ 2ω(1)
+ 3ω(2)

+ 5

≡ {2i(1) + 3i(2) + 5|i(1), i(2) ∈ N}

= {5, 7, 8, 9, 10, 11, . . .};

S4 = ω(0(1), 3(2), 4(3); 12) ≡ 3ω(2)
+ 4ω(3)

+ 12

≡ {3i(2) + 4i(3) + 12|i(2), i(3) ∈ N}

= {12, 15, 16, 18, 19, 20, . . .}.

Clearly, S1 and S2 are ω-numbers with one-dimension, and
S3 and S4 with two-dimension.
Definition 2: Given an ω-number S = ω (k (1)1 ,

k (2)2 , . . . , k (m)m ; q) ≡ k1ω(1)
+ k2ω(2)

+ . . . + kmω(m)
+ q,

it is called a simple ω-number if its dimension is one, and
otherwise a compound ω-number.

For instance, ω(2(1); 1)≡ 2ω(1)
+ 1 and ω(0(1), 3(2);

4)≡3ω(2)
+ 4 are both simple ω-numbers while ω(2(1), 3(2);

5)≡2ω(1)
+3ω(2)

+5 andω(0(1), 3(2), 4(3); 12)≡3ω(2)
+4ω(3)

+

12 are compound ω-numbers.
Remark 1: The simple ω-numbers are essentially the same

as ω-numbers defined in [4], [17], [19]–[21], [24], and [25]
when we consider the sets that they represent. As for com-
pound ω-numbers, the sets represented by them can not

43734 VOLUME 6, 2018



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

necessarily be represented by an ω-number defined in [4],
[17], [19]–[21], [24], and [25]. For example, ω(0(1), 3(2), 4(3);
12)≡3ω(2)

+4ω(3)
+12 is a compoundω-number representing

the set {12, 15, 16, 18, 19, 20, . . .}. However, we cannot find
an ω-number defined in [4], [17], [19]–[21], [24], and [25],
which can represent such a set. In a word, the ω-number
defined in this work is an extension to that in [4], [17],
[19]–[21], [24], and [25] in terms of the set it represents.
Definition 3: Let S1 = ω(k (1)11 , k

(2)
12 , . . . , k

(m)
1m ; q1) and

S2 = ω(k (1)21 , k
(2)
22 , . . . , k

(m)
2m ; q2) be two ω-numbers. We say

S1 and S2 are ω-numbers with the same form if k1i = k2i,
∀i ∈ {1, 2, . . . ,m}.

Considerω-numbers S1 = ω(2(1), 1(2); 1)≡2ω(1)
+ω(2)

+1,
S2 = ω(2(1), 1(2); 4)≡2ω(1)

+ω(2)
+ 4, and S3 = ω(2(1), 3(2);

4)≡2ω(1)
+3ω(2)

+4. Clearly, S1 and S2 have the same form,
while S2 and S3 do not.
Definition 4 (Addition of an ω-Number and an Integer):

Let S = ω(k (1)1 , k (2)2 , . . . , k (m)m ; q) and a ∈ Z. S + a = ω(k (1)1 ,
k (2)2 , . . . , k (m)m ; q+ a).

For example, ω(100(1); 1)+2 = ω(100(1); 3).
Definition 5 (Addition of Two ω-Numbers): Let S1 =

ω(k (1)11 , k
(2)
12 , . . . , k

(m)
1m ; q1) and S2 = ω(k (1)21 , k

(2)
22 , . . . , k

(m)
2m ;

q2) be two ω-numbers. S1 + S2 = ω((k11 + k12)(1), (k12 +
k22)(2), . . . , (k1m + k2m)(m); q1 + q2).
Consider two ω-numbers S1 = ω(2(1); 1)≡2ω(1)

+ 1 and
S2 = ω(2(1); 2) ≡2ω(1)

+ 2. We have S1 + S2 = ω(4(1);
3)≡4ω(1)

+ 3. Consider another two ω-numbers S3 = ω(1(1);
1)≡ ω(1)

+ 1 and S4 = ω(0(1), 2(2); 0) ≡2ω(2). We have S3 +
S4 = ω(1(1), 2(2); 1) ≡ ω(1)

+ 2ω(2)
+ 1.

Definition 6(Comparison of Two ω-Numbers): Let S1 =
ω(k (1)1 , k (2)2 , . . . , k (m)m ; q1) and S2 = ω(k (1)1 , k (2)2 , . . . , k (m)m ; q2)
be two ω-numbers with the same form. We say S1 ≥ S2(S1 >
S2) if q1 ≥ q2(q1 > q2).

For instance, S1 = ω(1(1), 2(2); 2)≡ ω(1)
+ 2ω(2)

+ 2 and
S2 = ω(1(1), 2(2); 3)≡ ω(1)

+ 2ω(2)
+ 3 are two ω-numbers

with the same form. We have S2 > S1 since 3 > 2. Note
that the determination onwhichω-number is bigger is defined
on ω-numbers with the same form only. In other words, we
cannot compare two ω-numbers with different forms. For
example, ω(4(1); 2) and ω(2(1); 2) are not comparable.
Property 1: Let S1 = ω(k (1)1 , k (2)2 , . . . , k (m)m ; q1) and S2 =

ω(k (1)1 , k (2)2 , . . . , k (m)m ; q2) be two ω-numbers with the same
form. S1 ⊆ S2 if and only if q1-q2 = c1k1+c2k2+. . .+cmkm,
c1, c2, . . . , cm ∈ N.
Proof (Sufficiency): It is clear that S1 = ω(k (1)1 ,

k (2)2 , . . . , k (m)m ; q1) ≡ {i(1)k1 + i(2)k2 + . . .+ i(m)km + q1|i(1),
i(2), . . . , i(m) ∈ N} and S2 = ω(k (1)1 , k (2)2 , . . . , k (m)m ; q2) ≡
{i(1)k1 + i(2)k2 + . . . + i(m)km + q2|i(1), i(2), . . . , i(m) ∈ N}.
Since q1 − q2 = c1k1 + c2k2 + . . . + cmkm, we have S1 =
{(i(1) + c1)k1 + (i(2) + c2)k2 + . . .+ (i(m) + cm)km + q2|i(1),
i(2), . . . , i(m) ∈ N} = {i(1)k1 + i(2)k2 + . . . + i(m)km +
q2|i(1) ≥ c1, i(2) ≥ c2, . . . , i(m) ≥ cm}. Obviously, S1 ⊆ S2
holds.
(Necessity): Since S1 ⊆ S2 and q1 ∈ S1, we have q1 ∈

S2 = {i(1)k1+i(2)k2+. . .+i(m)km+q2|i(1), i(2), . . . , i(m) ∈ N}.

Clearly, ∃ c1, c2, . . . , cm ∈ N such that q1-q2 = c1k1+c2k2+
. . .+ cmkm. �
Property 1 provides a necessary and sufficient condition,

under which there exists an inclusion relation between two
ω-numbers with the same form. For instance, S1 = ω(2(1),
3(2); 2)≡2ω(1)

+ 3ω(2)
+ 2, S2 = ω(2(1), 3(2); 3)≡2ω(1)

+

3ω(2)
+ 3, and S3 = ω(2(1), 3(2); 4)≡2ω(1)

+ 3ω(2)
+ 4 are

three ω-numbers with the same form. We have S3 ⊆ S1 since
∃c1 = 1 and c2 = 0, such that 4-2=2c1 + 3c2, and we have
S2 6⊂ S1 since ∀c1, c2 ∈ N, 3-2 6=2c1 + 3c2. �
Definition 7: Let S1 = ω(k (1)11 , k

(2)
12 , . . . , k

(m)
1m ; q1) and

S2 = ω(k (1)21 , k
(2)
22 , . . . , k

(m)
2m ; q2) be two ω-numbers. We say

that S1 is independent of S2 if k1i • k2i = 0, ∀i ∈ Nm.
For example, S1 = ω(2(1), 0(2); 1)≡2ω(1)

+ 1 is inde-
pendent of S2 = ω(0(1), 3(2); 4)≡3ω(2)

+ 4, while S1 is not
independent of S3 = ω(2(1), 3(2); 5)≡ 2ω(1)

+ 3ω(2)
+ 5.

Based on the modified definition of ω-numbers, the
ω-vector (resp., ω-marking) exactly represents only one ordi-
nary vector set (resp., ordinary marking set).
Let µ = (S1, S2, . . . , Sn) be a vector, where ∀x ∈ Nn,

Sx = {i(1)kx1+ i(2)kx2+ . . .+ i(m)kxm+qx |i(1), i(2), . . . , i(m) ∈
N}, in which qx ∈ Z, kxy ∈ N, ∀y ∈ Nm. Note that Sx is an
integer, i.e., Sx = qx if kxy = 0, ∀y ∈ Nm, and otherwise an
ω-number. Then, the set represented by µ can be expressed
by matrixes, i.e.,

µ = (S1, S2, . . . , Sn)

≡ {I1×m • Km×n + Q1×n|I1×m ∈ Nm}, where

I1×m = (i(1), i(2), . . . , i(m)),

Km×n =


k11 k21 · · · kn1
k12 k22 · · · kn2
...

...
. . .

...

k1m k2m · · · knm

,
Q1×n = (q1, q2, . . . , qn), and

kxy ∈ N, qx ∈ Z,∀x ∈ Nn,∀y ∈ Nm.

Note that µ = (S1, S2, . . . , Sn) is an ordinary vector if
Km×n = 0, and otherwise an ω-vector defined before.
Remark 2: We should point out an ω-vector (resp.,

ω-marking) defined in this work is essentially a linear set.
Definition 8: Let µ = (S1, S2, . . . , Sn) be an ω-vector.

We say that µ is an independent ω-vector if ∀i, j ∈ {1, 2, . . . ,
n} and i 6= j, Si and Sj are independent of each other, and
otherwise µ is a dependent ω-vector.

For example, µ1 = (ω(1), ω(2)) is an independent
ω-vector since ω(1) is independent of ω(2), while µ2 = (ω(1),
ω(1)
+ ω(2)) is a dependent one since ω(1) is not independent

of ω(1)
+ ω(2).

Property 2: Let µ = (S1, S2, . . . , Sn) be an ω-vector.
We have µ = 1 if and only if µ is an independent ω-vector,
where 1 = {(a1, a2, . . . , an)|ag ∈ Sg (or ag = Sg if Sg is an
integer), ∀g ∈ {1, 2, . . . , n}}.
Proof (Sufficiency): The proof is trivial.
(Necessity): By contradiction, suppose that µ is not an

independent ω-vector. Hence, ∃x, y ∈ {1, 2, . . . , n} and

VOLUME 6, 2018 43735



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

x 6= y such that Sx is not independent of Sy. Let Sx =
{i(1)kx1+i(2)kx2+. . .+i(m)kxm+qx |i(1), i(2), . . . , i(m) ∈ N} and
Sy = {i(1)ky1+ i(2)ky2+ . . .+ i(m)kym+qy| i(1), i(2), . . . , i(m) ∈
N}. According to Definition 7, ∃j ∈ {1, 2, . . . ,m} such that
kxj•kyj 6= 0. Now, let i(j) = c ≥ 1 and ∀h 6= j, i(h) = 0. In this
case, ax = ckxj + qx and ay = ckyj + qy. This means when
ax = ckxj + qx ∈ Sx , ay cannot be equal to any number in Sy
except ckyj+qy. Hence, µ 6= 1, which obviously contradicts
the fact µ = 1. Therefore, µ is an independent ω-vector. �

Here, 1 is a set consisting of ordinary vectors, which
results from an arbitrary combination of n components
that are either an element in a set represented by an
ω-number or an integer.
Definition 9: Let µ1 = (S11, S12, . . . , S1n) and µ2 =

(S21, S22, . . . , S2n) be two ω-vectors. We say µ1 and µ2 are
ω-vectors with the same form if S1x and S2x are ω-numbers
with the same form or both integers, ∀x ∈ Nn.
For example, µ1 = (ω(1)

+ 3ω(2)
+ 7, ω(2)

+ 8, 3) and
µ2 = (ω(1)

+ 3ω(2)
+ 4, ω(2)

+ 4, 1) are two ω-vectors with
the same form, while µ3 = (ω(1), 1) and µ4 = (ω(1), ω(2))
are not.
Definition 10 (Comparison of Two ω-Vectors): Let µ1 =

(S11, S12, . . . , S1n) and µ2 = (S21, S22, . . . , S2n) be two ω-
vectors with the same form. We say µ2 ≥ µ1, if S2i ≥ S1i,
∀i ∈ {1, 2, . . . , n}. Note that µ2 > µ1 is defined as µ2 ≥ µ1
but µ2 6= µ1.
For example, µ1 = (ω(1)3ω(2)

+ 7, ω(2)
+ 8, 1) and µ2 =

(ω(1)
+ 3ω(2)

+ 4, ω(2)
+ 4, 1) are two ω-vectors with the

same form. We have µ1 > µ2, since ω(1)
+ 3ω(2)

+ 7 >

ω(1)
+ 3ω(2)

+ 4, ω(2)
+ 8 > ω(2)

+ 4, and 1=1. Note that we
do not compare µ3 = (ω(1), 1) and µ4 = (ω(1), ω(2)) in this
work since they are two ω-vectors with different forms.
As mentioned before, an ω-vector is actually an infinite

set of ordinary vectors. Hence, it is necessary to explore the
condition under which there is an inclusion relation between
two ω-vectors.
First, consider two ω-vectors µ1 = (ω(1)

+ 2ω(2), ω(1))
and µ2 = (3ω(1)

+ 3ω(2), ω(1)). Since ω(1)
+ 2ω(2)

=

{0, 1, 2, 3, . . .} = N and 3ω(1)
+ 3ω(2)

= {0, 3, 6, 9, . . .},
we have 3ω(1)

+ 3ω(2)
⊆ ω(1)

+ 2ω(2). Besides, it is obvious
that ω(1)

⊆ ω(1). Surprisingly, however, there is no inclusion
relation between µ1 and µ2. In particular, we can see that µ1
contains ordinary vector (2, 0), which is not contained in µ2
and µ2 contains (3, 0), which is not contained in µ1.
From the above example, we know that, given two

ω-vectors µ1 and µ2, even if each component of µ1 is con-
tained in the corresponding component of µ2, it does not
necessarily hold that µ1 is contained in µ2. Fortunately, such
a conclusion can hold for two independent ω-vectors.
Property 3: Let µ1 = (S11, S12, . . . , S1n) and µ2 = (S21,

S22, . . . , S2n) be two independent ω-vectors. µ1 ⊆ µ2 if and
only if S1i ⊆ S2i or S1i = S2i or S1i ∈ S2i, ∀i ∈ {1, 2, . . . , n}.
Proof: Straightforward from Property 2. �
For example, µ1 = (2ω(1), 2, 1) and µ2 = (ω(1),

2ω(2), 1) are both independent ω-vectors. We have µ1 ⊆ µ2
since 2ω(1)

⊆ ω(1), 2∈2ω(2), and 1=1.

Property 4: Let µ1 = (S11, S12, . . . , S1x , . . . , S1n) and
µ2 = (S21, S22, . . . , S2x , . . . , S2n) be two ω-vectors with the
same form. µ1 ⊆ µ2 if and only if there exists C1×m = (c1,
c2, . . . , cm) ∈ Nm such that ∀x ∈ {1, 2, . . . , n},
1) qx − q′x = C1×m • (kx1, kx2, . . . , kxm)T if S1x = ω(k (1)x1 ,

k (2)x2 , . . . , k
(m)
xm ; qx) and S2x = ω(k (1)x1 , k

(2)
x2 , . . . , k

(m)
xm ; q′x) are

ω-numbers with the same form, and
2) S1x = S2x if S1x and S2x are both integers.
Proof: Clearly, the sets represented by µ1 and µ2are

accordingly as follows.

µ1 = (S11, S12, . . . , S1x , . . . , S1n)

≡ {I1×m • Km×n + Q1×n|I1×m ∈ Nm
}, and

µ2 = (S21, S22, . . . , S2x , . . . , S2n)

≡ {I1×m • Km×n + Q′1×n|I1×m ∈ Nm
},

where

I1×m = (i(1), i(2), . . . , i(m)),

Km×n =


k11 k21 · · · kn1
k12 k22 · · · kn2
...

...
. . .

...

k1m k2m · · · knm

 6= 0,

Q1×n = (q1, q2, . . . , qn),

Q′1×n = (q′1, q
′

2, . . . , q
′
n), and

kxy ∈ N, qx , q′x ∈ Z,

∀x ∈ {1, 2, . . . , n}, ∀y ∈ {1, 2, . . . ,m}.

(Sufficiency): We can know that there exists C1×m =

(c1, c2, . . . , cm) ∈ Nm, such that ∀x ∈ {1, 2, . . . , n}, qx −
q′x = C1×m • (kx1, kx2, . . . , kxm)T . Hence, we have

µ1 = (S11, S12, . . . , S1x , . . . , S1n)

≡ {I1×m • Km×n + Q1×n|I1×m ∈ Nm
}

= {(I1×m + C1×m) • Km×n + Q′1×n|I1×m ∈ Nm
}.

Obviously, µ1 ⊆ µ2 holds.
(Necessity): It is clear that Q1×n ∈ µ1. Since µ1 ⊆ µ2,

we have Q1×n ∈ µ2. Hence, ∃I1×m ∈ Nm, such that
Q1×n = I1×m• Km×n + Q′1×n. In more detail, there exists
I1×m ∈ Nm such that ∀x ∈ {1, 2, . . . , n}, qx-q′x = I1×m• (kx1,
kx2, . . . , kxm)T . That is to say, there exists C1×m = (c1, c2,
. . . , cm) ∈ Nm such that ∀x ∈ {1, 2, . . . , n}, qx-q′x = C1×m•

(kx1, kx2, . . . , kxm)T if S1x and S2x are two ω-numbers with
the same form and S1x = S2x if they are both integers. �
Property 4 provides a criterion for the determination

on whether there exists an inclusion relation between two
ω-vectors with the same form.

Consider two ω-vectors with the same form µ1 = (S11,
S12, S13) = (2ω(1)

+ω(2), ω(2), 1) and µ2 = (S21, S22, S23) =
(2ω(1)

+ ω(2)
+ 2, ω(2)

+ 1, 1).
For S11 and S21, 2 = C1×m • (2, 1)T => C1×m = (1, 0)

or (0, 2);
For S12 and S22, 1 = C1×m • (0, 1)T => C1×m = (c, 1),

where c can be any nonnegative integer; and S23 = S13.

43736 VOLUME 6, 2018



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

Clearly, there does not exist a same vector C1×m for the
first and second components of µ1 and µ2. Hence, µ2 6⊂ µ1.
Consider another pair of ω-vectors with the same form

µ3 = (S31, S32, S33) = (2ω(1)
+ω(2), ω(2), 1) and µ4 = (S41,

S42, S43) = (2ω(1)
+ ω(2)

+ 2, ω(2)
+ 2, 1).

For S41 and S31, 2= C1×m• (2, 1)T => C1×m = (1, 0)
or (0, 2);

For S42 and S32, 2= C1×m• (0, 1)T => C1×m = (c, 2),
where c can be any nonnegative integer; and S43 = S33.
Since there exists a same vector C1×m = (0, 2) for the first

and second components, and the third components are a same
integer, we have µ4 ⊆ µ3.

Note that whether there exists an inclusion relation
between two independent ω-vectors with the same form can
be determined by Properties 3 or 4. Obviously, such a deter-
mination via Property 3 is easier and thus is used.

IV. CONSTRUCTION OF NEW REACHABILITY TREES
A. ALGORITHM FOR NRT CONSTRUCTION
Based on modified ω-numbers and ω-vectors as well as their
related notions, the construction algorithm of new reacha-
bility trees (NRTs) for unbounded PNs is developed in this
section. Importantly, this algorithm is capable of checking
whether or not the reachability set of an unbounded PN is
semilinear. Before presenting the algorithm, some necessary
concepts are introduced as follows.
Definition 11: Given two markings µ1 and µ2 with

µ2 > µ1 and µ2 6⊂ µ1, and an ω-element ω(k), we define
µ′2 = 0(µ1, µ2, ω(k)) such that ∀p ∈ P, µ′2(p) = µ2(p) +
(µ2(p)− µ1(p)) · ω(k).
For example, there are two markings µ1 = (ω(1)

+ 1,
2, 0) and µ2 = (ω(1)

+ 3, 2, 1), and an ω-element ω(2).
Clearly, µ2 > µ1 and µ2 6⊂ µ1. We have µ′2 = 0(µ1, µ2,
ω(2)) = (ω(1)

+ 2ω(2)
+ 3, 2, ω(2)

+ 1).
Besides, in the NRT construction algorithm, given an

ω-marking µ, we also use an ω-element notation, e.g., ω(j),
to denote an ordinary vector where each entry is the base
kj related to ω(j) in each entry of µ. For example, given a
marking µ = (1, ω(1)

+ 2ω(2)
+ 4, 0, 0, ω(1)

+ ω(2)
+ 2),

we have ω(1)
= (0, 1 ,0, 0, 1) and ω(2)

= (0, 2, 0, 0, 1).
In addition, the next-state function δ(µ, t) is repeatedly

called in the NRT construction algorithm, which computes
the marking resulting from firing t once at the current mark-
ing µ. The detailed computation of δ(µ, t) proceeds as fol-
lows [24].
Case 1: t is enabled at µ, where µ is an ordinary marking

or ω-marking.
δ(µ, t) is computed according to the transition firing

rule for ordinary markings, during which the addition of an
ω-number and an integer is performed by Definition 4.
Case 2: t is conditionally enabled at µ, where µ is an

ω-marking.
First, remove all ordinary markings of µ at which t is not

enabled and denote the obtained ω-marking as µ′. Next, let
δ(µ, t) = δ(µ′, t), where δ(µ′, t) is computed as Case 1.

To construct an NRT, we introduce four types of nodes,
which are originally used in [24] to construct an NMRT.
They are terminal, duplicate, ω-duplicate and common nodes
depicted by , , , and , respectively. A terminal node
is one that corresponds to a dead marking, i.e., a marking at
which none of transitions is enabled. A duplicate node is one
the same as a node that already appears in the tree along the
same path. An ω-duplicate node is one with an ω-marking
contained in the ω-marking of a node that appears already in
the tree along the same path.

Now, we show the construction algorithm (Algorithm 1) of
an NRT for unbounded nets.

Note that Algorithm 1 determines whether or not an
unbounded PN has semilinear reachability set and it con-
structs a tree called a new reachability tree (NRT) in the case
that the unbounded PN has semilinear reachability set. Now,
we explain Algorithm 1 in more detial. We can see that a
recursive function GenerateSonNodes is involved in Algo-
rithm 1. By recursively calling GenerateSonNodes, nodes of
the tree are created one after another according to the rule of
depth-first search. When the created node is determined to
be a terminal node, ω-duplicate node, or duplicate node, we
do not generate its son nodes any more. Now, let us focus on
howAlgorithm 1 computes the marking of each created node,
which is shown in Steps 3-17. In more detail, every time a
transition t is enabled or conditionally enabled at a marking
µx , we firstly create a new node z and compute the next-state
δ(µx , t). Next, we should determine if there exists a path in
the constructed tree from a node y to x such that δ(µx , t) > µy
and δ(µx , t) 6⊂ µy. Note that which ω-marking is bigger
and whether there exists an inclusion relation between two
ω-markings can be decided by Definition 10 and Properties
3 or 4, respectively. If such a path does not exist, the marking
of node z is exactly δ(µx , t). Otherwise, an ω-element with
a new superscript k should be introduced to the marking of
node z, resulting in µz:= 0(µy, δ(µx , t), ω(k)). It is worth
noting that every time we introduce a new ω-element ω(k),
we accordingly compute v(k) as shown in Step 11. In addition,
we determine whether the execution of Algorithm 1 should
be aborted as shown in Steps 12-14. If so, the reachability
set of the unbounded PN is determined to be not semilinear.
Note that in Step 12, each ω-element in condition 1) denotes
an ordinary vector as stated before. Here, we present the
following result.
Proposition 1: Suppose that Algorithm 1 never exits in

Step 13. Infinite ω-elements will be introduced in NRT if and
only if the condition in Step 12 holds during the execution of
Algorithm 1.
Proof (Sufficiency): Since ω(i), ω(j), ω(k) are introduced

in µz with i < j < k , the transition sequence σ =
α0σiα1σjα2σk ∈ T ∗ can fire from the initial marking µ0
of the input net, where σi, σj, σk are the corresponding
transition sequences that lead to the introduction of ω(i), ω(j),
ω(k), respectively. In other words, σi, σj, σk are transition
sequences correspond to Parikh vectors v(i), v(j), v(k) com-
puted in Step 11. Let µ1, µ2, . . . , µ6 be ordinary markings

VOLUME 6, 2018 43737



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

Algorithm 1 Semilinearity Checking of Reachability Sets
and NRT Construction

Input: An unbounded PN (N , µ0).
Output: 1) An NRT of (N , µ0) and ‘‘semilinearity’’; or 2) ‘‘non-
semilinearity’’.
1. Create a tree with only one node x0, let µ0 be the

marking of node x0 and label x0 the root node;
2. GenerateSonNodes(x0, µ0);
3. Output‘‘semilinearity’’.
Function GenerateSonNodes(x, µx )
Input: A node x and its corresponding marking µx .
1. for each t ∈ T do
2. if t is enabled or conditionally enabled at µx then
3. Create a new node z and compute the next-state

δ(µx , t);
4. if there exists a path in the constructed tree from

a node y to x such that δ(µx , t) > µy and δ(µx , t) 6⊂ µy
then

/∗Introduce a new superscript k that never appears
in δ(µx , t)∗/

5. if δ(µx , t) is an ordinary marking then
6. k:=1;
7. else
8. k:=1+g, where g is the maximal dimension

of all the ω-numbers in δ(µx , t);
9. end if
10. µz:= 0(µy, δ(µx , t), ω(k)) ;
11. Let v(k) be the Parikh vector of the transition

sequence σyx t , where σyx is the transition sequence
associated with the path from y to x;

12. if there exist ω(i) and ω(j) in µz with i < j < k
such that 1) ω(i) < ω(j) < ω(k); 2) v(i) < v(j) < v(k);
and 3) ∃b ∈ Z+ such that b · (v(j) − v(i)) = v(k) − v(j)

then
13. Exit and Output‘‘non-semilinearity’’;
14. end if
15. else
16. µz:= δ(µx , t);
17. end if

/∗ Add an arc from x to z∗/
18. if t is enabled at µx then
19. Add a solid arc labeled t from x to z;
20. else /∗ t is conditionally enabled at µx∗/
21. Add a dash arc labeled t from x to z;
22. end if
23. if z is a terminal node, ω-duplicate node, or

duplicate node then
24. Denote node z by the corresponding

filled circle;
25. else /∗ z is a common node∗/
26. GenerateSonNodes(z, µz);
27. end if
28. end if
29. end for

such that µ0[α0〉µ1[σi〉µ2[α1〉µ3[σj〉µ4[α2〉µ5[σk 〉µ6. Since
ω(i) < ω(j) < ω(k), we have µ2−µ1 < µ4−µ3 < µ6−µ5.
It is trivial to see that µ3 > µ1, µ5 > µ3, and there
exits α3 ∈ T ∗ such that µ6[α3〉µ7 and µ7 > µ5. Clearly,

µ2 − µ1 = [N ] · v(i), µ4 − µ3 = [N ] · v(j), and µ6 − µ5 =

[N ] ·v(k), where N is the input net. Since v(i) < v(j) < v(k) and
b·(v(j)−v(i)) = v(k)−v(j), it holds b·(ω(j)

−ω(i)) = ω(k)
−ω(j).

Let σl be a transition sequence with its Parikh vector v(l)

satisfying that v(k) < v(l) and b · (v(k) − v(j)) = v(l) − v(k).
Since σi is enabled at µ1, σj is enabled at µ3, σk is enabled at
µ5, we can see that σl is enabled at µ7, resulting in µ7[σl〉µ8.
Furthermore, theω-elementω(l)

= µ8−µ7 can be introduced
in NRT. Clearly, µ8 − µ7 = [N ] · v(l). Trivially, we have
ω(l) > ω(k) and it holds b · (ω(k)

− ω(j)) = ω(l)
− ω(k).

Now, since ω(j) < ω(k) < ω(l), v(j) < v(k) < v(l) and
b · (v(k) − v(j)) = v(l) − v(k), similarly, another ω-element
can be introduced in NRT. By repeating the above reason,
ω-elements with different superscripts are introduced
infinitely.
(Necessity): It is trivial to see that there exists an

infinitely long path in NRT where infinite ω-elements ω(1),
ω(2), . . . , ω(∞) are introduced one after another. Let σ1,
σ2, . . . , σ∞ be the corresponding transition sequences that
lead to the introduction of ω(1), ω(2), . . . , ω(∞), respectively.
In other words, σ1, σ2, . . . , σ∞ are transition sequences cor-
respond to v(1), v(2), . . . , v(∞) that are computed in Step 11.
Trivially, we can see that the infinitely long transition
sequence σ = α0σ1σ2 . . . σ∞, where α0 ∈ T ∗, can fire
from the initial marking µ0 of the input net. Since σ is
infinitely long, there exist i1, i2, . . . , i∞ ∈ {1, 2, . . . , ∞}
with i1 < i2 < . . . < i∞ such that ω(i1) < ω(i2) <

. . . < ω(i∞) and v(i1) < v(i2) < . . . < v(i∞), where v(i1),
v(i2), . . . , v(i∞) denote Parikh vectors of transition sequences
σi1, σi2, . . . , σi∞. Furthermore, due to the fact that transi-
tions in a PN are limited and the characteristics of marking
evolution with the firing of a transition sequence, it holds
that ∃b ∈ Z+ such that v(i(q+1)) − v(i(q)) = bq−1 · 1,
where q ∈ {1, 2, . . . ,∞} and 1 = v(i2) − v(i1). Hence,
the condition in Step 12 holds during the execution of
Algorithm 1. �
Remark 3: By Proposition 1, we actually determine in

Step 12 whether infinite ω-elements with different super-
scripts will be introduced in the future steps of Algorithm 1.
Indeed, if we ignore Steps 12-14, it could happen that
ω-elements with different superscripts are introduced
infinitely during the execution of Algorithm 1. As a result,
Algorithm 1 cannot terminate in finite steps and clearly a
finite NRT cannot be constructed. This is why Algorithm 1
includes Steps 12-14, by which the case of introducing
infinite ω-elements in NRT is removed. Moreover, note that
the marking of each node in NRT is actually a linear set.
Hence, introducing infinite ω-elements in NRT implies that
the reachability set of the handled PN is not semilinear since
a semilinear set is a finite union of linear sets. As a result,
Algorithm 1 is capable of determining whether the input
unbounded PN has the semilinear reachability set. Besides,
it constructs a finite NRT in the case that the reachability
set of the input net is semilinear. Indeed, a wide variety of
subclasses of PNs enjoy semilinear reachability sets. It is
proved in [28] that persistent PNs, weakly persistent PNs,

43738 VOLUME 6, 2018



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

FIGURE 1. (a) A simple unbounded PN and (b) its NRT.

almost persistent PNs, sinkless PNs, almost sinkless PNs, and
cyclic PNs all have semilinear reachability sets.

In the following, we present two examples to illustrate
Algorithm 1.
Example 1:Consider the unbounded PN in Fig. 1(a) whose

reachability set is semilinear. According to Algorithm 1,
we construct its NRT as follows. First, creat the root node
x0 and let µ0 = (0, 0) be the marking of x0. Next,
GenerateSonNodes(x0, µ0) is called to generate all son nodes
of x0 according to the rule of depth-first search: It can be
seen that t1 is enabled at µ0. Hence, we create a new node
x1 and compute δ(µ0, t1) = (1, 0). Clearly, δ(µ0, t1) > µ0
and δ(µ0, t1) 6⊂ µ0. Hence, the ω-element ω(1) is introduced,
resulting in the marking of node x1 being µ1 = 0(µ0, δ(µ0,
t1), ω(1)) = (ω(1)

+ 1, 0). Note that v(1) should be computed,
that is, v(1) = [1, 0]T . Since t1 is enabled at µ0, a solid arc
labeled t1 is added from x0 to x1. We can see x1 is a common
node. Hence,GenerateSonNodes(x1,µ1) is called to generate
all its son nodes. Similarly, since t1 is enabled atµ1, we create
a new node x2 and compute δ(µ1,t1) = (ω(1)

+2, 0). Note that
condition in Step 4 does not hold now and thus the marking
of x2 is exactly δ(µ1, t1), i.e., µ2 = (ω(1)

+ 2, 0). Node x2
is an ω-duplicate node since µ2 ⊂ µ1. Now, we consider
another transition t2 that is enabled atµ1. Similarly, a node x3
is created with the marking µ3 = (ω(1)

+ω(2)
+ 2, ω(2)

+ 1).
Note that v(2) = [0, 1]T and the condition in Step 12 does
not hold. Since x3 is a common node, GenerateSonNodes(x3,
µ3) is called to generate all its son nodes. By repeating the
simliar way, other nodes with markingsµ4 = (ω(1)

+ω(2)
+3,

ω(2)
+ 1), µ5 = (ω(1)

+ ω(2)
+ 3, ω(2)

+ 2), µ6 = (ω(1)
+ 1,

ω(1)
+1),µ7 = (ω(1)

+ω(2)
+2,ω(1)

+1),µ8 = (ω(1)
+ω(2)

+3,
ω(1)
+1),µ9 = (ω(1)

+ω(2)
+3,ω(1)

+2) andµ10 = (ω(1)
+2,

ω(1)
+ 2) are generated one after another. Finally, we obtain

the NRT, as depicted in Fig. 1(b). Note that the condition in
Step 12 never holds during the execution of Algorithm 1 and
Algorithm 1 also outputs ‘‘semilinearity’’ finally.
Example 2: Consider the unbounded PN in Fig. 2 whose

reachability set is not semilinear [7]. Suppose that we apply
a modified Algorithm 1 to the PN with Steps 12-14 removed.
We can see that the modified Algorithm 1 cannot termi-
nate since infinite ω-elements with different superscripts are

FIGURE 2. An unbounded PN introduced in [7].

introduced during the construction of the reachability tree.
In more detail, it could happen that after firing t1t3t2t4 from
the initial marking µ0 = (1, 1, 0, 0, 0), a node with an ω-
marking µ1 = (1, ω(1)

+ 2, 0, 0, ω(1)
+ 1) is created in the

reachability tree. Next, after firing 2t1t32t2t4 from µ1, a node
with an ω-marking µ2 = (1, ω(1)

+ 2ω(2)
+ 4, 0, 0, ω(1)

+

ω(2)
+2) is created. By repeating the above procedure, we can

know that after firing t1t3t2t42t1t32t2t4 . . . 2n−1t1t32n−1t2t4
from µ0, a node with an ω-marking µn = (1, ω(1)

+ 2ω(2)
+

. . .+2n−1ω(n)
+2n, 0, 0,ω(1)

+ω(2)
+. . .+ω(n)

+n) is created.
Clearly, infiniteω-elements with different superscripts can be
introduced since n can be infinite. Now, consider applying
Algorithm 1 to the PN. We note that when the node with the
ω-markingµ1 = (1,ω(1)

+2, 0, 0,ω(1)
+1) is created, we have

v(1) = [1 1 1 1]T ; when the nodewith theω-markingµ2 = (1,
ω(1)
+ 2ω(2)

+ 4, 0, 0, ω(1)
+ ω(2)

+ 2) is created, we have
v(2) = [2 2 1 1]T ; and when the node with the ω-marking
µ3 = (1, ω(1)

+2ω(2)
+4ω(3)

+8, 0, 0, ω(1)
+ω(2)

+ω(3)
+3)

is created, we have v(3) = [4 4 1 1]T . We can see that
v(1) < v(2) < v(3) and 2(v(2)−v(1)) = v(3)−v(2). Besides, note
that ω(1)

= [0 1 0 0 1]T , ω(2)
= [0 2 0 0 1]T , and ω(3)

= [0
4 0 0 1]T . Clearly, ω(1) < ω(2) < ω(3). Hence, Algorithm 1
exits and outputs ‘‘non-semilinearity’’.

B. RESULTS RELATED TO NRT
In this section, we formally prove that Algorithm 1 outputs
a finite NRT in the case that the input unbound PN has
semilinear reachability set and NRTs exactly characterize

VOLUME 6, 2018 43739



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

FIGURE 3. An unbounded net.

the reachability sets of unbounded PNs. Moreover, we show
that whether unbounded PNs suffer from deadlocks can be
checked based on NRTs.

Before showing that Algorithm 1 outputs finite NRTs,
some lemmas about NRTs are revealed.
Lemma 1: Let µ0, µ1, µ2, . . . , µn be a sequence of mark-

ings corresponding to a path starting from the root node of
NRT. ω-numbers with the same dimension in each coordinate
of µ0, µ1, µ2, . . . , and µn have the same form.
Proof: By Algorithm 1, once a new ω-element ω(j) is

introduced into a component of a marking, the base related
to ω(j) can never be changed in the corresponding component
of any marking that is generated subsequently in the same
path. Hence, the conclusion holds. �

For example, there is a sequence of markings µ0, µ1, µ3,
µ5 corresponds to a path in Fig. 1(b), whose first coordinate is
0,ω(1)

+1,ω(1)
+ω(2)

+2,ω(1)
+ω(2)

+3. Clearly,ω(1)
+ω(2)

+2
and ω(1)

+ ω(2)
+ 3 are ω-numbers with two-dimension and

they have the same form.
Lemma 2: Let µ0, µ1, µ2, . . . , µn be a sequence of mark-

ings corresponding to a path starting from the root node of
NRT. uj ⊆ ui if uj > ui, where i, j ∈ {0, 1, 2, . . . , n}
and j > i.
Proof: Since uj > ui, we know that uj and ui are

ω-markings with the same form or both ordinary markings.
According to the construction of NRT, it can be concluded
that uj ⊆ ui since otherwise a new superscript has to be
introduced into uj. �
Lemma 3 [26]: In any infinite directed tree where each

node has only a finite number of direct successors, there exists
an infinite path leading from the root.
Theorem 1 (Finiteness): The NRT output by Algorithm 1 is

finite.
Proof: By contradiction, suppose that there exists an infi-

nite NRT. Due to Lemma 3, there exists an infinite path x0, x1,
x2, . . . from the root node x0. Accordingly, we have an infinite
sequence of makings, denoted as u[x0], u[x1], u[x2], . . ..
Consider the first coordinate of u[x0], u[x1], u[x2], . . . ,

denoted as u[x0](p1), u[x1](p1), u[x2](p1), . . .. By Proposi-
tion 1, it is impossible to introduce infinite superscripts during
constructing NRT. Hence, there exists u[xa](p1) in u[x0](p1),
u[x1](p1), u[x2](p1), . . . , which is an ω-number with the
maximal dimension. Besides, it is easy to know that u[xa](p1),

u[xa+1](p1), u[xa+2](p1), . . . is an infinite sequence of
ω-numbers with the same dimension. According to
Lemma 1, u[xa](p1), u[xa+1](p1), u[xa+2](p1), . . . is an infi-
nite sequence of ω-numbers with the same form. Hence, an
infinite nondecreasing subsequence can be definitely found
in u[xa](p1), u[xa+1](p1), u[xa+2](p1), . . .. In other words,
we can find an infinite node subsequence of x0, x1, x2, . . . ,
denoted as x ′0, x

′

1, x
′

2, . . . such that u[x ′0](p1) ≤ u[x ′1](p1) ≤
u[x ′2](p1) ≤ . . .. Now, consider the second coordinate
of u[x ′0], u[x

′

1], u[x
′

2], . . . , denoted as u[x ′0](p2), u[x
′

1](p2),
u[x ′2](p2), . . .. Similarly, we can also find an infinite node
subsequence of x ′0, x

′

1, x
′

2, . . . , denoted as x ′′0 , x
′′

1 , x
′′

2 , . . . ,

such that u[x ′′0 ](p2) ≤ u[x ′′1 ](p2) ≤ u[x ′′2 ](p2) ≤ . . .. Finally,
we can definitely find an infinite node subsequence of x0, x1,
x2, . . . , denoted as x∗0 , x

∗

1 , x
∗

2 , . . . such that u[x∗0 ]≤ u[x∗1 ]≤
u[x∗2 ]≤ . . .. But by construction, it must be an infinite strictly
increasing subsequence, i.e., u[x∗0 ]< u[x∗1 ]< u[x∗2 ] < . . . ,

since otherwise a node would be a duplicate one with no
successors. Besides, ∀u[x∗j ]> u[x∗i ], u[x

∗
j ]6⊂ u[x∗i ], since

otherwise a node would be a ω-duplicate one with no succes-
sors. However, this contradicts Lemma 2. Therefore, the NRT
output by Algorithm 1 is finite. �
Theorem 2 (Reachability): The NRT of an unbounded PN

contains only but all reachable markings of the PN.
Proof: According to the construction algorithm of NRT,

it is easy to conclude that the reachable marking set is con-
tained in NRT. In what follows, we prove that any marking in
NRT belongs to the reachable marking set. Firstly, consider
the direct successors of the root node. Obviously, the marking
sets corresponding to these direct successors are contained
in the reachable marking set. Next, consider the director
successors of a node whose marking set is contained in the
reachable marking set. Similarly, it is easy to see that the
marking sets of these director successors are also contained in
the reachable marking set. As a result, we can conclude that
any marking in NRT belongs to the reachable marking set.�
Theorem 3 (Semilinear-Reachability-Set Checking):Given

an unbounded PN, its reachability set is semilinear if and only
if Algorithm 1 outputs an NRT with the net as the input.
Proof : Straightforward from Proposition 1, Theo-

rems 1 and 2, as well as the definition of semilinear sets. �
Here we introduce that a full conditional node is a node in

an NRT with all its direct successors connected by dash arcs.
Theorem 4 (Deadlock Checking): An unbounded PN with

semilinear reachability set has deadlocks if and only if its
NRT contains terminal nodes or full conditional nodes.
Proof (Sufficiency): It is clear that a terminal node or a

full conditional node definitely contains a dead marking.
Hence, we can see that there is a dead marking in the
NRT. By Theorem 2, the dead marking is reachable in
the unbounded PN. As a result, the unbounded PN has
deadlocks.
(Necessity): Since the unbounded PN has deadlocks,

we can see that there is a dead marking in the NRT according
to Theorem 2. Clearly, dead markings are only contained in
terminal nodes or full conditional nodes in the NRT. As a

43740 VOLUME 6, 2018



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

FIGURE 4. The NRT of the net in Figure 3.

result, the NRT contains terminal nodes or full conditional
nodes. �
For example, it is easy to decide that the unbounded PN

in Fig. 1(a) suffers from no deadlocks due to Theorem 4.
Remark 4: For unbounded PNs with semilinear reachabil-

ity sets, it is feasible to check their liveness based on NRTs.
The basic idea of their liveness checking is similar to that
in [22]. The specific checking procedure will be treated as
our future work topic.
Example 3: Consider the unbounded PN in Fig. 3. Accord-

ing to Algorithm 1, its NRT is constructed as depicted
in Fig. 4, which is clear a finite tree. Since Algorithm 1 out-
puts an NRT, the reachability set of the PN is semilinear.
Besides, it can be checked that the NRT contains only but
all reachable markings of the PN. According to Theorem 4,
it can be determined that the PN in Fig. 3 suffers from
deadlocks, which however cannot be decided via MRT or
NMRT.

Finally, we point out that the computational complexity of
Algorithm 1 is exponential with repsect to the size of the input
PN [41],[42].

V. CONCLUSIONS AND FUTURE WORK
Finding a finite reachability tree to exactly represent the
reachability set of an unbounded net is a rather complicated
task. Only limited progress has been made in this respect
since it was studied over half a century ago. This work
presents an algorithm that is capable of determing whether
an unbounded PN has the semilinear reachability set. More-
over, for unbounded PNs with semilinear reachability sets,
the algorithm constructs finite new reachability trees (NRTs)
where ω-numbers ω(k (1)1 , k (2)2 , . . . , k (m)m ; q) are used to rep-
resent infinite components of an ω-marking rather than the
symbol ω or the expression kωn+q. NRTs thus provide more
useful information than FRTs, MRTs, and NMRTs. Besides,
it is proved that an NRT exactly characterizes the reachabil-
ity set of the corresponding unbounded PN and whether an
unbounded PN contains a deadlock can be correctly checked
based on its NRT.

The future research include 1) proposing a specific live-
ness checking method based on NRTs; 2) simplifying the
structure of NRTs while keeping their abilities of detect-
ing deadlocks; and 3) developing CAD tools to facilitate
the applications of NRTs in various fields [1]–[3], [13],
[18], [29], [32], [34]–[40], [44]–[46].

VI. ACKNOWLEDGMENT
This work is an extended version of the conference paper
‘‘S. G. Wang, M. C. Zhou, M. D. Gan, D. You, and
Y. Li, ‘‘New reachability trees for unbounded Petri nets,’’
2015 IEEE International Conference on Robotics and
Automation, Seattle, USA, pp. 3862-3867, 2015.’’

REFERENCES
[1] Y. Chen and Z. Li, ‘‘On structural minimality of optimal supervi-

sors for flexible manufacturing systems,’’ Automatica, vol. 48, no. 10,
pp. 2647–2656, 2012.

[2] Y. Chen, Z. Li, and K. Barkaoui, ‘‘Maximally permissive liveness-
enforcing supervisor with lowest implementation cost for flexible manu-
facturing systems,’’ Inf. Sci., vol. 256, pp. 74–90, Jan. 2014.

[3] Y. Chen, Z. Li, K. Barkaoui, and A. Giua, ‘‘On the enforcement of a class
of nonlinear constraints on Petri nets,’’ Automatica, vol. 55, pp. 116–124,
May 2015.

[4] Z. Ding, C. Jiang, and M. Zhou, ‘‘Deadlock checking for one-place
unbounded Petri nets based on modified reachability trees,’’ IEEE Trans.
Syst., Man, Cybern. B. Cybern., vol. 38, no. 3, pp. 881–883, Jun. 2008.

[5] S. Ginsburg and E. H. Spanier, ‘‘Semigroups, Presburger formulas, and
languages,’’ Pacific J. Math., vol. 16, no. 2, pp. 285–296, 1966.

[6] D. Hauschildt, ‘‘Semilinearity of the reachability set is decidable for Petri
nets,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Hamburg, Hamburg,
Germany, 1990.

[7] J. E. Hopcroft and J.-J. Pansiot, ‘‘On the reachability problem for 5-
dimensional vector addition systems,’’ Theor. Comput. Sci., vol. 8, no. 2,
pp. 135–159, 1979.

[8] K. Hiraishi, ‘‘Reduced state space representation for unbounded vector
state spaces,’’ in Proc. Int. Conf. Appl. Theory Petri Nets. Berlin, Germany:
Springer, 1996. 230-248.

[9] M. D. Jeng and M. Y. Peng, ‘‘On the liveness problem of 1-place-
unbounded Petri nets,’’ in Proc. Int. Conf. Syst., Man, Cybern., Comput.
Cybern. Simulation, Orlando, FL, USA, Oct. 1997, pp. 3221–3226.

[10] M. D. Jeng and M. Y. Peng, ‘‘Augmented reachability trees for 1-place-
unbounded generalized Petri nets,’’ IEEE Trans. Syst., Man, Cybern. A,
Syst. Humans, vol. 29, no. 2, pp. 173–183, Mar. 1999.

[11] R. M. Karp and R. E. Miller, ‘‘Parallel program schemata,’’ J. Comput.
Syst. Sci., vol. 3, no. 2, pp. 147–195, 1969.

[12] J. L. Lambert, ‘‘Vector addition systems and semi-linearity,’’ SIAM J.
Comput., 1994.

VOLUME 6, 2018 43741



D. You et al.: Algorithm of Recognizing Unbounded PNs With Semilinear Reachability Sets and Constructing Their RTs

[13] J. Li,M. Zhou, T. Guo, Y.Gan, andX.Dai, ‘‘Robust control reconfiguration
of resource allocation systems with Petri nets and integer programming,’’
Automatica, vol. 50, no. 3, pp. 915–923, Mar. 2014.

[14] Y. Li, ‘‘Reachability trees for unbounded Petri nets,’’ M.S. thesis, School
Inf. Electron. Eng., Zhejiang Gongshang Univ., Hangzhou, China, 2014.

[15] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[16] J. L. Peterson, Petri Net Theory and the Modeling of Systems.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1981.

[17] Y. Ru, W. Wu, and C. N. Hadjicostis, ‘‘Comments on ‘A modified reach-
ability tree approach to analysis of unbounded Petri nets,’’ IEEE Trans.
Syst., Man, Cybern. B. Cybern., vol. 36, no. 5, p. 1210, Oct. 2006.

[18] M. Uzam, G. Gelen, and T. L. Saleh, ‘‘Think-globally-act-locally approach
with weighted arcs to the synthesis of a liveness-enforcing supervisor for
generalized Petri nets modeling FMSs,’’ Inf. Sci., vol. 363, pp. 235–260,
Oct. 2016.

[19] F.-Y.Wang, ‘‘Amodified reachability tree for Petri nets,’’ inProc. Int. Conf.
Syst., Man, Cybern., Charlottesville, VA, USA, Oct. 1991, pp. 329–334.

[20] F.-Y. Wang, Y. Gao, and M. Zhou, ‘‘A modified reachability tree
approach to analysis of unbounded Petri nets,’’ IEEE Trans. Syst., Man,
Cybern. B. Cybern., vol. 34, no. 1, pp. 303–308, Feb. 2004.

[21] H. M. Wong and M. C. Zhou, ‘‘Automated generation of modified reacha-
bility trees for Petri nets,’’ in Proc. Regional Control Conf., Brooklyn, NY,
USA, 1992, pp. 119–121.

[22] S. G. Wang, M. D. Gan, and M. C. Zhou, ‘‘Macro liveness graph and
liveness of ω-independent unbounded nets,’’ Sci. China Inf. Sci., vol. 58,
no. 3, pp. 1–10, 2015.

[23] S. Wang, M. Gan, M. Zhou, and D. You, ‘‘A reduced reachability tree for
a class of unbounded petri nets,’’ IEEE/CAA J. Automatica Sinica, vol. 2,
no. 4, pp. 345–352, Oct. 2015.

[24] S. G. Wang, M. Zhou, Z. Li, and C. Wang, ‘‘A new modified reachability
tree approach and its applications to unbounded Petri nets,’’ IEEE Trans.
Syst., Man, Cybern. A, Syst. Humans, vol. 43, no. 4, pp. 932–940, Jul. 2013.

[25] Y. Wang, B. Jiang, and L. Jiao, ‘‘Property checking for 1-place-unbounded
Petri nets,’’ in Proc. IEEE Int. Symp. Theor. Aspects Softw. Eng. (TASE),
Taipei, China, Aug. 2010, pp. 117–125.

[26] D. König, ‘‘Über eine Schlussweise aus dem Endlichen ins Unendliche,’’
Acta Sci. Math. (Szeged), (in German), vol. 3, nos. 2–3, pp. 121–130, 1927.

[27] J. Leroux, ‘‘Presburger vector addition systems,’’ in Proc. 28th Annu.
ACM/IEEE Symp. Logic Comput. Sci., Jun. 2013, pp. 23–32.

[28] H. Yen, ‘‘Path decomposition and semilinearity of Petri nets,’’ Int. J. Found.
Comput. Sci., vol. 20, no. 4, pp. 581–596, 2009.

[29] G. Liu and C. Jiang, ‘‘Observable liveness of Petri nets with control-
lable and observable transitions,’’ Sci. China Inf. Sci., vol. 60, p. 118102,
Nov. 2017.

[30] F. Lu et al., ‘‘Complex reachability trees and their application to deadlock
detection for unbounded Petri nets,’’ IEEE Trans. Syst., Man, Cybern.,
Syst., to be published, doi: 10.1109/TSMC.2017.2692262.

[31] R. Yang, Z. Ding, M. Pan, C. Jiang, and M. C. Zhou, ‘‘Liveness analysis of
ω-independent Petri nets based on new modified reachability trees,’’ IEEE
Trans. Syst., Man, Cybern., Syst., vol. 47, no. 9, pp. 2601–2612, Sep. 2017.

[32] Z. Ding, M. Jiang, H. Chen, Z. Jin and M. Zhou, ‘‘Petri net based test
case generation for evolved specification,’’ Sci. China Inf. Sci., vol. 59,
p. 080105, Aug. 2016.

[33] S. Wang, M. Zhou, M. Gan, D. You, and Y. Li ‘‘New reachability trees for
unbounded Petri nets,’’ in Proc. IEEE Int. Conf. Robot. Automat., Seattle,
WA, USA, May 2015, pp. 3862–3867.

[34] S. Wang, D. You, M. Zhou, and C. Seatzu, ‘‘Characterization of admissible
marking sets in Petri nets with uncontrollable transitions,’’ IEEE Trans.
Autom. Control, vol. 61, no. 7, pp. 1953–1958, Jul. 2016.

[35] S. Wang, D. You, andM. Zhou, ‘‘A necessary and sufficient condition for a
resource subset to generate a strict minimal siphon in S 4PR,’’ IEEE Trans.
Autom. Control, vol. 62, no. 8, pp. 4173–4179, Aug. 2017.

[36] S. Wang, D. You, and C. Seatzu, ‘‘A novel approach for constraint trans-
formation in Petri nets with uncontrollable transitions,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 48, no. 8, pp. 1403–1410, Aug. 2018.

[37] D. You, S. Wang, and M. Zhou, ‘‘Computation of strict minimal siphons
in a class of Petri nets based on problem decomposition,’’ Inf. Sci.,
vol. 409–410, pp. 87–100, Oct. 017.

[38] D. You, S. Wang, Z. Li, and C. Wang, ‘‘Computation of an optimal
transformed linear constraint in a class of Petri nets with uncontrollable
transitions,’’ IEEE Access, vol. 5, pp. 6780–6790, 2017.

[39] D. You, S. Wang, W. Dai, W. Wu, and Y. Jia, ‘‘An approach for enumer-
ating minimal siphons in a subclass of Petri nets,’’ IEEE Access, vol. 6,
pp. 4255–4265, 2018.

[40] X. Cong, M. P. Fanti, A. M. Mangini, and Z. Li, ‘‘Decentralized diagnosis
by Petri nets and integer linear programming,’’ IEEE Trans. Syst., Man,
Cybern., Syst., to be published, doi: 10.1109/TSMC.2017.2726108.

[41] G. Liu, ‘‘Complexity of the deadlock problem for Petri nets modeling
resource allocation systems,’’ Inf. Sci., vol. 363, pp. 190–197, Oct. 2016.

[42] G. Liu, ‘‘Some complexity results for the soundness problem of work-
flow nets,’’ IEEE Trans. Services Comput., vol. 7, no. 2, pp. 322–328,
Apr./Jun. 2014.

[43] S. G.Wang, D. You, andM. C. Zhou, ‘‘New reachability trees for analyzing
unbounded Petri nets with semilinear reachability sets,’’ Sci. China Inf.
Sci., to be published, doi: 10.1007/s11432-017-9446-3.

[44] H. Zhang, L. Feng, N. Wu, and Z. Li, ‘‘Integration of learning-based
testing and supervisory control for requirements conformance of black-box
reactive systems,’’ IEEE Trans. Autom. Sci. Eng., vol. 15, no. 1, pp. 2–15,
Jan. 2018.

[45] H. Zhang, L. Feng, and Z. Li, ‘‘A learning-based synthesis approach to the
supremal nonblocking supervisor of discrete-event systems,’’ IEEE Trans.
Autom. Control, to be published, doi: 10.1109/TAC.2018.2793662.

[46] G. Zhu, Z. Li, N. Wu, and A. Al-Ahmari, ‘‘Fault identification of
discrete event systems modeled by Petri nets with unobservable tran-
sitions,’’ IEEE Trans. Syst., Man, Cybern., Syst., to be published,
doi: 10.1109/TSMC.2017.2762823.

DAN YOU received the B.S. and M.S. degrees
from the School of Information and Electronic
Engineering, Zhejiang Gongshang University,
China, in 2014 and 2017, respectively. She is
currently a Member of the Discrete-Event Sys-
tem Group, School of Information and Electronic
Engineering, Zhejiang Gongshang University. Her
research interests include the supervisory control
of discrete event systems and Petri net theory and
application.

She is the author or coauthor of papers published in the IEEETRANSACTIONS

ON AUTOMATIC CONTROL, Information Sciences, the IEEE TRANSACTIONS ON

SYSTEMS, MAN, CYBERNETICS: SYSTEMS, the IEEE Conference on Decision
and Control, and the IEEE International Conference on Robotics and
Automation.

SHOUGUANG WANG (M’10–SM’12) received
the B.S. degree in computer science from the
Changsha University of Science and Technology,
Changsha, China, in 2000, and the Ph.D. degree
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2005. He joined Zhejiang
Gongshang University in 2005, where he is cur-
rently a Professor with the School of Information
and Electronic Engineering, the Director of the
Discrete-Event Systems Group and the Dean of

the System Modeling and Control Research Institute, Zhejiang Gongshang
University.

He was a Visiting Professor with the Department of Electrical and Com-
puter Engineering, New Jersey Institute of Technology, Newark, NJ, USA,
from 2011 to 2012. He was the Dean of the Department of Measuring &
Control Technology and Instrument from 2011 to 2014. He was a Visiting
Professor with the Electrical and Electronic Engineering Department, Uni-
versity of Cagliari, Cagliari, Italy, from 2014 to 2015.

WENHUI WU received the B.S. and M.S.
degrees from Zhejiang Normal University, China,
in 2003 and 2006, respectively. She is currently a
Senior Lab Master with the School of Information
and Electronic Engineering, Zhejiang Gongshang
University. Her main interests include Petri net
theory and application.

43742 VOLUME 6, 2018

http://dx.doi.org/10.1109/TSMC.2017.2692262
http://dx.doi.org/10.1109/TSMC.2017.2726108.2017
http://dx.doi.org/10.1007/s11432-017-9446-3
http://dx.doi.org/10.1109/TAC.2018.2793662.2018
http://dx.doi.org/10.1109/TSMC.2017.2762823.2018

	INTRODUCTION
	PRELIMINARIES
	PETRI NETS
	–NUMBERS
	SEMILINEAR SETS [5], [6], [12]

	MODIFIED -NUMBERS AND -MARKINGS
	CONSTRUCTION OF NEW REACHABILITY TREES
	ALGORITHM FOR NRT CONSTRUCTION
	RESULTS RELATED TO NRT

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	DAN YOU
	SHOUGUANG WANG
	WENHUI WU


