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ABSTRACT Truthful resource request from users is the premise to achieve the maximum social welfare
in an enterprise private cloud. To stimulate the truthfulness of users, most previous works mainly rely on
introducing the payment, which however, might not be applicable in enterprise private clouds, where there
is a lack of money transfer. To address this issue, this paper proposes non-payment but efficient mechanisms
in private clouds to stimulate the truthfulness of the users and meanwhile maximize the social welfare.
Moreover, different from previous works that allow only one job request from one user, this paper studies a
more general model, where multiple jobs can be submitted by each user. Specifically, we consider two task
models: themigration-admissiblemodel and non-migrationmodel. In the formermodel, jobs can be executed
at different servers, and may undergo migration if necessary. Alternatively, in the latter model, jobs can
only be executed at one server without migration. For both models, we design incentive resource allocation
mechanisms to maximize the social welfare. Theoretically analysis shows that the proposed mechanisms
are truthful for general monotonic profit functions and the worst-case performance on the social welfare are
well-bounded within a constant factor of the optimal solution for linear profit functions. Simulation results
also demonstrate that the performances of the proposed mechanisms are very close to the optimal solution,
in terms of maximizing the social welfare.

INDEX TERMS Cloud computing, resource allocation, mechanism design non-payment, incentives,
approximation.

I. INTRODUCTION
Private clouds, with lower cost and better security con-
trol, have attracted more and more enterprises in recent
years [1], [6]. However, it is hard to ensure the user truth-
fulness because there is no payment from the users for
resource consumption in a private cloud.Without payment for
resources consumption, users may behave selfishly in order
to get more resources or earlier task completion time, which
would lead to a waste of system resources and reduce overall
efficiency.

We use the following example, possibly a counter-intuitive
one, to demonstrate that an incentive mechanism is necessary
to stimulate users’ truthfulness. Suppose that a private cloud
accepts resource requirements from users periodically and

allocates resource to users in the coming round according
to its resource scheduler strategy. In each round, a user can
submit her resource requirements for multiple jobs. The util-
ity of each user is the total completion time of her jobs.
As shown in Fig. 1, a provider collects the requests/bids at
the beginning, allocates the resource in period [1,T ], and
then starts a new round. Suppose that the total resource
is 10 units in the system. The three jobs of the first user
are ready to be executed in the first round and need 2, 4, 3
units of resource respectively. The three jobs of the second
user require 5, 6, 7 units of resource respectively. Suppose
that the provider allocates the resource according to RR-rule
(Round Robin) or WSPT-rule (weighted shortest processing
time first). When the first user truthfully reveals all her jobs
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FIGURE 1. An example of the untruthful bidding of multi-job request.
(a) When user 1 truthfully reveals all her jobs (grey), only the job that
needs 2 units of resource is finished by time t1 due to resource capacity
Q = 10. (b) When user 1 unreveals/delays the request of the job that
needs 4 units of resource, the jobs that need 2 and 3 units of
resource are finished by time t1.

at the beginning, one of her jobs is finished within [1, t1]
while other jobs are finished later. If the first user strate-
gically unreveals the job with 3 required units of resource
at the first round of bidding and postpones the revealing
in later rounds, then the first user finishes one more job
in interval [1, t1] and gains more utility from the selfish
bidding by under-reporting her job. The intuition behind such
a phenomena lies in the fact that, through hiding/delaying
behaviors, the users successfully manipulate the system and
change the processing priority (determined by the system)
of her jobs, and hence improves her own utility. Moreover,
the untruthful behavior of the first user may hinder the
profit of other users. For example, when one job of the first
user is postponed to be revealed, the third user finishes less
jobs in [1, t2] in the coming round. To avoid the untruthful
reporting of job list, an incentive mechanism, which adopts
the concept of Nash Equilibrium (NE) [14], [4], [24] to
regulate the untruthful behaviors of the users, is strongly
necessary.

In the literature, lots of research efforts have been con-
ducted on designing truthful mechanisms in cloud sys-
tems [13], [18], [20]–[23]. Nevertheless, most of them rely on
introducing the payment function or money transfer between
users and the cloud provider. Specifically, the payment func-
tion effectively helps in stimulating the truthfulness, since
technically it is equivalent to introduce powerful and flexible
complementary functions for each user to compensate for
the user’s utility function. However, the implementation of
payment function resorts to the support of money transfer
between the users and the provider, and a virtual payment
scheme is not that effective to attract the users in practice.
Thus, a natural and practical concern arises that, how should
the cloud provider design mechanisms to incentivize the

truthful participation of users without resorting to payment,
especially in scenarios without money transfer, e.g. in the
private clouds inside the enterprises.

Different from the existing work, this paper conducts the
first theoretical work on the non-payment truthful mech-
anism design for resource allocation in cloud computing.
Actually, without payment, it is quite challenging to achieve
the local objectives of truthfulness for all users and the sys-
tem objective of good social welfare in general domains,
as stated in the impossibility results of Gibbard-Satterthwaite
theorem [14]. Existing works on non-payment mechanism
design are restricted in limited fields, like facility loca-
tion [17], social choices [5], assignment problem on bipartite
graphs [7]. To the best of our knowledge, no prior works
have addressed the non-payment mechanism design resource
allocation in cloud computing. What is more, existing works
for the truthful mechanism design are mainly restricted to
the scenario that users request their resource for only one
job [12], [21], [25], [26]. However, as we mentioned earlier,
a user who has multiple jobs can under-report his jobs in
one round/bid in order to get more utility, which could offer
a new way for users to manipulate the resource allocation
scheduler and calls for truthful mechanism design against
such untruthful behaviors.

Our main contributions are summarized as follows.
• This paper considers the non-payment incentive mech-
anism design on resource allocation in cloud comput-
ing. We propose randomized mechanisms to stimulate
users’ truthfulness (i.e, to enforce the users to report
truthfully while optimizing their utilities) and maximize
the social welfare (the overall profit gained from the
users). The proposed mechanisms generally follow a
two-step framework, consisting of a virtual allocation
and correspondingly a randomized rounding procedure,
where the allocation strategies and rounding methods
can be adaptive to the allocation constraints in different
models. In general, the virtual allocation aims to achieve
a good social welfare at the first step, and the rounding
procedure aims to incentivize the truthfulness for every
user while preserving the performance on social wel-
fare. Our work moves a step forward towards the non-
payment incentive mechanism design in cloud resource
allocation.

• We first consider the migration-admissible model where
jobs can be executed on different servers simultaneously
and migrated to different servers over time. We greedily
allocate the resource over time to the jobs in the virtual
allocation while in the rounding procedure we match the
profit of the jobs to the profit of the partitioned jobs to
enforce the optimality of the users. Our proposed mech-
anism achieves the truthfulness for general monotonic
profit functions, i.e. the users maximize their utilities
when truthfully bidding their job lists. Moreover, the-
oretical analysis shows that the mechanism guarantees a
constant approximation to the optimal social welfare for
linear profit functions, i.e. the social welfare achieved by
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the mechanism is always within a constant ratio of the
optimal solution.

• We further consider the non-migration model where
jobs can only be executed at one server at a time
and over time. To deal with the non-migration con-
straints, we adopt the traditional list scheduling as the
virtual allocation and develop a novel matching scheme
and a charging scheme to analyze the performance of
the mechanism. Our proposed mechanism achieves the
truthfulness for general monotonic profit functions and
meanwhile a constant approximation on the social wel-
fare for linear profit functions.

• We further perform simulations on our proposed mech-
anisms and validate that the average performances are
closer to the optimal solution than the constant ratios in
our theoretical analysis.

The organization of the paper proceeds as follows.
Section II presents the problem formulation. Section III pro-
poses a mechanism for the migration-admissible model. The
non-migration model is investigated in Section IV. The sim-
ulation results are presented in Section V. Finally, we dis-
cuss the related work in Section VI and conclude the paper
in Section VII.

II. PRELIMINARIES
In this section, we introduce the system model first, and then
define user utility and social welfare. We consider one cloud
service provider (e.g. a large data center) with Q units of
resource. The cloud service provider accepts the resource
requirements from the users periodically and allocates the
resource in the coming round according to its scheduler strat-
egy to the users.

A. INFORMATION REPORTED FROM THE USERS
Each cloud user holds multiple jobs and requests the resource
from the cloud service provider by reporting her request.
Let Sj be the set of jobs held by user j. Suppose that
a job i ∈ Sj needs si units of resource and has value/
weight wi.
As demonstrated in the example in introduction, a user

with multiple jobs can misreport her job list in one round
to gain unfair advantages. The job list/membership informa-
tion Sj, held by user j, is almost impossible to be detected
by the cloud service provider since unreported jobs cannot
be identified. While for a specific job, the actual resource
requirement is easier to be detected since the job would be
uploaded and executed in the cloud. Thus, we assume that the
job list of each user is private information while the size of
resource needed for a job si and the value/weightwi are public
information.

A user bids her jobs, denoted by Bj, to the cloud
service provider and may strategically bid Bj 6= Sj
to change the allocation of the cloud service provider.
The bidding strategy of users is a combinatorial struc-
ture and each user has an exponential number of bidding
strategies.

B. RESOURCE ALLOCATION OF THE CLOUD PROVIDER
The cloud service provider periodically collects the bids of
job requests from the users at the beginning of each round
and decides the allocation A(Bj,B−j) in time interval [1,T ] of
the coming round according to the reported requests (Bj,B−j),
where B−j represents the vector (B1, . . . ,Bj−1,Bj+1, . . . ,Bn)
of job sets reported from the users excluding j.

We consider twomodels, namely, themigration-admissible
model and the non-migration model, respectively, to formu-
late the constraints of resource allocation.

In the migration-admissible model, jobs can be executed at
different servers simultaneously andmigrated between differ-
ent servers over time (all Q units of resource at the same time
are indistinguishable and allowed to be assigned to the same
job over time with migration), as formulated in [23], [25]
for centralized resource pool. Assume that the allocation
A(Bj,B−j) assigns q(t, i) units of resource at time t to job i.
A feasible schedule should satisfy the capacity constraints
that the total units of resource assigned to the jobs at any
time t is at most Q. That is,∑

i

q(t, i) ≤ Q, t ∈ [1,T ].

A job i is completed at time ci(A(Bj,B−j)) (which will be
written as ci if there is no ambiguity) if it is assigned its
required si units of resource at time ci. That is,∑

1≤t≤ci−1

q(t, i) < si &
∑

1≤t≤ci

q(t, i) ≥ si.

In the non-migration model, jobs can only be executed at
one server at a time and over time. We consider m identical
servers, each of which has q units of resource and Q = mq
in total. Assume that the allocation assigns q(t, i, u) units of
the resource at time t from the same server u to job i. Cor-
respondingly, a feasible schedule should satisfy the capacity
constraints that∑

i

q(t, i, u) ≤ q, ∀u ∈ [1,m],∀t ∈ [1,T ]

and the non-migration constraints that any job i is not
assigned to more than two servers with q(t, i, u) > 0. A job
is completed at time ci if∑

1≤t≤ci−1

q(t, i, u) < si &
∑

1≤t≤ci

q(t, i, u) ≥ si.

C. UTILITY FUNCTIONS AND SOCIAL WELFARE
The profit of a job depends on how much time it is finished
by time T and the weight of the job. Thus, we define the
profit of job i to be F(ci,wi) = wif (T − ci). F(ci,wi) is
called monotonic profit function if wif (T − ci) is mono-
tonically decreasing with ci and linear profit function if
F(ci,wi) = wi(T − ci).
The utility uj(Bj,B−j) of a user j is the sum of the profit

obtained from her jobs,

uj(Bj,B−j) =
∑
i∈Sj

wif (T − ci(A(Bj,B−j))). (1)
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The social welfare is the total profit gained from the users,∑
j

uj(Bj,B−j) =
∑
j

∑
i∈Sj

wif (T − ci(A(Bj,B−j))). (2)

D. TRUTHFULNESS AND APPROXIMATIONS ON THE
SOCIAL WELFARE
We aim at designing a non-payment mechanism that is poly-
nomial time tractable to stimulate the users to behave truth-
fully and maximize the social welfare. The truthfulness of a
non-payment mechanism is defined as follows, which is an
outcome satisfying the equilibrium and economic incentives.
Definition 1 (Truthfulness Without Money Transfer): A

non-payment mechanism is truthful if every user maximizes
her utility by truthfully bidding her set, regardless of the bids
of other users. That is,

uj(Sj,B−j) ≥ uj(Bj,B−j), ∀j, ∀Bj 6= Sj, ∀B−j. (3)
Besides the truthful requirement for the users, the other

critical requirement is the performance on the social welfare
which is measured by the worst-case approximation ratio
defined as follows.
Definition 2 (Approximation): A mechanism A is

γ -approximation if the social welfare is at least 1
γ
of the

optimal solution for all possible inputs. That is,∑
j

uj(Bj,B−j) ≥
1
γ
OPT , ∀(Bj,B−j) (4)

where OPT is the profit of the optimal solution.

III. INCENTIVE MECHANISM FOR
MIGRATION-ADMISSIBLE MODEL
In this section, we consider the migration-admissible model
and design a non-payment truthful mechanism with a con-
stant approximation.Wewill first prepare a basic mechanism,
named Basic-Mech, for a simplified case in Section III-A
and then develop a mechanism for the migration-admissible
model in Section III-B by adopting Basic-Mech as a building
block.

A. A BASIC PROCEDURE
In this section, we consider the special case of Q = 1 where
only one unit of resource at each time can be allocated to a
job.We propose a basic procedure, referred to as Basic-Mech,
which would be adopted as a building block later.

The high level idea is as follows. On one hand, to ensure
the good approximation to the optimal solution, we design
a virtual allocation to assign the jobs by a greedy rule with
high weight-per-size first. However, such a greedy rule itself
would fail in eliciting the truthful behaviors. The reason
mainly lies in two facts: 1) a user gains her profit from her jobs
only when the resource requirements are integrally satisfied,
and 2) a user untruthfully reporting her jobs may advance the
jobs’ processing priority to make some jobs contribute more
profit. Observing this, on the other hand, we then perform
a randomized rounding/allocating procedure to stimulate the

truthfulness, while guaranteeing the feasibility and preserv-
ing the approximation performance on the social welfare.
To enforce the truthfulness, our key idea is to ensure that, even
when one unit or a part of the resource requirement of a job
is granted in the virtual allocation, the user gains an expected
profit from that job, which thus ensures the maximum utility
of each user when she bids her true information.

Note that the proposed mechanisms in later sections will
also follow such a two-step framework (consisting of a vir-
tual allocation and a rounding procedure). However, different
allocation/rounding methods should be derived to address
different allocation constraints in different models.

Mechanism 1 presents the detailed design of Basic-Mech.
The jobs reported from the users, denoted by S, are parti-
tioned into two sets X1 = {i : si ≤ τ } and X2 = S\X1.
Here, τ is a parameter to guide the allocation, which will be
carefully chosen to ensure the feasibility of the allocation,
the truthfulness, and also a good social welfare. Jobs in X1 are
then tackled by a virtual allocation and a rounding procedure.
In the virtual allocation, the resource in period [1, τ ] is
greedily allocated to the jobs according to the order of non-
increasing weight-per-size wi

si
. Note that the virtual allocation

is profit-maximum for the unit-jobs in the partitioned instance
where each job i is partitioned into si unit-jobs with size one
and weight wisi . The virtual allocation gains a good profit but
fails to be truthful. Thus, we perform a rounding procedure to
induce the truthfulness. When a unit of resource is assigned
to a job, we say that one piece of a job is satisfied. Let J (i, k)
be the time slot in which job i’s k-th piece is satisfied in
the virtual allocation. In the rounding procedure, each job
is finished with probability 1

si
at time slot J (i, k) + τ where

1 ≤ k ≤ si, J (i, k) ≤ τ . That is,

Pr(ci = J (i, k)+ τ ) =
1
si
.

This is achieved by granting the available resource in time
period [1, J (i, k) + τ ] to job i to satisfy the residual si − k
pieces of job i when the event ci = J (i, k) + τ happens.
By doing this, when job i is granted a unit of resource in the
virtual allocation (e.g. at time J (i, k)), the user can gain an
expected profit (e.g. Pr(ci = J (i, k)+τ ) ·F(J (i, k)+τ,wi) =
1
si
wif (T − J (i, k)+ τ )).
To ensure the feasibility and also a good approximation on

the social welfare, we set τ = bT3 c (which implies 3τ ≤ T ≤
3τ + 2). With the choice of τ , even when all the first i − 1
jobs together with job i aremoved earlier to be finished before
J (i, k) + τ , the total size

∑
j<i sj + si is at most J (i, k) + τ

for any job i since
∑

j<i sj ≤ J (i, k) and si ≤ τ . This verifies
the feasibility of the algorithm. Note that choosing a small
τ may affect the feasibility of the rounding procedure, while
choosing a large τ may reduce the social welfare since the
jobs are postponed and completed later in expectation.

Since the mechanism outputs a randomized allocation,
the utility of a user in Eq. 1 will be measured by the expected
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Algorithm 1 Basic-Mech
1: Partition the jobs into two sets, X1 = {i : si ≤ τ } and
X2 = S\X1 where τ = bT3 c. Jobs X1 are sorted so that
the ratio wi/si is non-increasing as the index i increases.
Let i∗ be the job with maximum value wif (T − si) for the
jobs in X2.

2: With probability 1/2, run the following procedure on
set X1.

3: (Virtual Allocation) While there is resource
remaining in time period [1, τ ], greedily allocate
the resource and satisfy the requirement of jobs
according to the order of non-increasing wi/si till
all resource/jobs are processed to get a virtual
allocation GA. Let J (i, k) be the time in which job
i’s k-th piece is satisfied where 1 ≤ k ≤ si, 1 ≤
J (i, k) ≤ τ .

4: (Rounding Procedure) Perform the rounding so
that each job i is finishedwith probability 1

si
at time

J (i, k) + τ where 1 ≤ k ≤ si, J (i, k) + τ ≤ T ,
by satisfying/moving the remaining si − k pieces
of job i in/to the available time before J (i, k) + τ
as early as possible.

5: With probability 1/2, run the following procedure on set
X2.

6: Finish job i∗ by assigning the resource in time
period [1, si∗ ].

FIGURE 2. An example that shows the virtual allocation GA and rounding
procedure in the mechanism Basic-Mech. J(i,k) (1 ≤ k ≤ si ) is the time in
which the k-th piece of job i is satisfied in virtual allocation GA. Job i is
rounded to complete at time J(i,1)+ τ with probability 1

si
by satisfying/

moving the residual si − 1 pieces of job i in advance using the available
resource in time period [1, J(i,1)+ τ ].

profit obtained from her jobs, which equals∑
i∈Sj

E(wif (T − ci))

=

∑
i∈Sj

∑
k:1≤k≤si,J (i,k)≤τ

wi
si
f (T − J (i, k)+ τ ).

We prove the truthfulness of the proposed mechanism in
the following theorem. The detailed proof can be referred to
in Appendix.
Theorem 1: Mechanism Basic-Mech is truthful for mono-

tonic profit functions.
Note that the proposed mechanism is truthful for general

monotonic functions. Now we further verify its efficiency

on the performance of social welfare. We will focus on the
linear profit function, which is a more concrete but represen-
tative profit function. We show that the proposed mechanism
guarantees a constant approximation. The proof is moved
to Appendix.
Theorem 2: Mechanism Basic-Mech guarantees an

O(1)-approximation for linear profit functions.

B. MECHANISM FOR MIGRATION-ADMISSIBLE MODEL
Now we are ready to design an incentive mechanism for the
migration-admissible model where jobs could be executed
at different servers simultaneously and migrated to different
servers over time.

Even regardless of the truthfulness, computing the opti-
mal allocation to maximize the social welfare in this model
is NP-hard. This can be verified by setting T = 2 with linear
profit function where the social welfare in such a setting
equals the total weight of jobs that are satisfied in the first
time slot with resource capacity Q, which corresponds to the
well-known knapsack problem that is NP-hard [27]. There-
fore, we should derive a polynomial-time tractable algorithm
to simultaneously achieve a good social welfare and the
truthfulness.

One natural idea is to apply the following Greedy-Mech:
while there is resource remaining, greedily assign Q units of
resource at each time slot to the jobs according to the order
of non-increasing weight-per-sizewi/si. However, the greedy
strategy itself is not truthful, which can be easily seen from
an example similar to the one in the introduction.

Although the greedy strategy fails to be truthful, by devel-
oping a rounding procedure, we propose a mechanism
MGT-Mech that will be proved to be truthful. The high level
idea is as follows. We partition the jobs submitted to the
system into two sets, the ones with larger size and the ones
with smaller size. For the large-size jobs, we directly apply
the basic procedure Basic-Mech to enforce the truthfulness,
while for the small-size jobs, we follow the two-step frame-
work of Basic-Mech and design a new virtual allocation and a
corresponding rounding procedure to ensure that a user could
gain a (maximum) profit from each unit of resource required
by her jobs, which would guarantee the optimality of truthful
bidding and thus stimulates the truthfulness.

In detail, MGT-Mech works as follows. The set of jobs are
partitioned into two sets X1 = {i : si ≤ Q′} and X2 = {i :
si > Q′} where we set Q′ = max{bQ3 c, 1}. The choice of Q

′

will ensure the feasibility in the rounding procedure. First, for
the jobs in X1, as shown in Step 2-4, we apply Greedy-Mech
based on a modified capacity Q′ to obtain a virtual allocation
GA: while there is resource remaining in time period [1,T ],
we greedily assign Q′ units of resource at each time to the
jobs according to the order of non-increasing wi

si
utill all

resource/jobs are processed. Let job i gets s1i and s
2
i units of its

required resource respectively at the two adjacent time slots
c1i and c

2
i = c1i + 1. Then, we design a rounding procedure

to ensure that a user can gain a (maximum) profit from each
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Algorithm 2 MGT-Mech
1: Partition the jobs into two sets X1 = {i : si ≤ Q′} and
X2 = {i : si > Q′} where Q′ = max{bQ3 c, 1}. Jobs in set
X1 are sorted so that the ratio wi/si is non-increasing as
the index i increases.

2: With probability 1/2, run the following procedure on set
X1.

3: (Virtual Allocation) While there is resource
remaining in time period [1,T ], greedily assignQ′

units of resource at each time to the jobs accord-
ing to the order of non-increasing wi/si till all
resource/jobs are processed. Denote the resulting
virtual allocation to be GA. Let job i get its s1i units
of required resource at time c1i and s

2
i units at time

c2i = c1i + 1.

4: (Rounding Procedure) Perform the rounding so
that job i is completed at time c1i with probability
s1i
si
and completed at time c2i with probability

s2i
si
by

using the remaining Q − Q′ units of resource at
each time.

5: With probability 1/2, run the following procedure on X2.

6: Refine the size and weight of job i to be s̄i =
d
si
Qe, w̄i = wi. Reorder the index of the jobs in
X2 to be i′ = {1, 2, 3...} according to the order of
non-increasing value w̄i

s̄i
.

7: Run Basic-Mech on jobs in X2 with refined sizes
and weights.

unit of its source required by her jobs and achieve the optimal
profit when bidding truthfully. In the rounding procedure,

each job i is completed at time slot c1i with probability
s1i
si

and completed at time slot c2i with probability 1 −
s1i
si
. The

expected profit gained from job i after rounding would be

f (T−c1i )·wi
s1i
si
+f (T−c2i )·wi(1−

s1i
si
). For the remaining jobs

in X2, we refine the size (and accordingly the weight) of job i
to be an integer d siQe and apply Basic-Mech with the input of
refined sizes and weights.

The design of themechanism has the following advantages.
With size si ≤ Q′, every job in X1 gets all its required
resource from at most two time slots. This implies that in
the rounding procedure in Step 4, at most two extra jobs’
requirement has been fulfilled after rounding in each time
slot. Thus, by the choice of Q′ where 2Q′ + bQ3 c ≤ Q,
the rounding procedure always returns a feasible solution.
Moreover, the profit obtained from jobs in X2 after rounding
is close to the maximum achievable profit from that set with
capacity Q as the input.

For the remaining jobs in X2, since each job has a large size
si > Q′ and can be satisfiedQ units of resource each time slot,
it can be refined to be d siQe without losing much accuracy.
Then, we can apply Basic-Mech to the refined instance to

FIGURE 3. An example that shows the rounding procedure in the
migration-admissible model. The red (and blue) job is completed with
probability 1

6 (and 2
3 ) to be completed at time 3 (and time 2).

induce the truthfulness and gain a good profit. The feasibility
of Step 3 follows from the correctness of Basic-Mech.

Now we prove that the proposed mechanism is truthful for
general monotonic profit functions.
Theorem 3: Mechanism MGT-Mech is truthful for the

migration-admissible model with monotonic profit functions.
Proof: We need to examine the allocations for jobs in

X1 and X2 in MGT-Mech, respectively.
Consider the allocation for jobs in X1 first. The size of any

job in X1 is at most Q′ and job i gets its s1i units of resource
at time c1i and s

2
i units of resource at time c2i = c1i + 1.

We examine the following partitioned instance. We parti-
tion job i in GA into exactly si unit-jobs and each unit-job
has a weight wi

si
and size one. The profit from the unit-jobs

partitioned from job i in the allocation GA is f (T − c1i ) ·
s1i

wi
si
+ f (T − c2i ) · (si − s1i )

wi
si
, which exactly equals the

expected profit in the rounding procedure. Hence, to analyze
the truthfulness in the rounding procedure, it is sufficient to
verify the truthfulness of the users who hold unit-jobs in the
partitioned case.

Consider first that user j bids a subset Ŝj with Ŝj ⊂ Sj.
We examine two cases. In the first case, assume that all the
jobs are held by one user j. The total profit of the unit-jobs is

exactly
∑

i∈Sj,i∈X1 f (T − c
1
i ) · wi

s1i
si
+ f (T − c1i ) · wi(1 −

s2i
si
)

where a unit-job with a larger weight ratio is assigned earlier.
Such a profit in GA is the maximum profit to assign all unit-
jobs over time with capacityQ′ among all possible reordering
of the unit-jobs. Some jobs are not revealed in such a case.
When unrevealing the unit-jobs that are not assigned before
time T in GA, the allocation GA for both the true bid Sj and
the false bid Ŝj are the same and incurs the same profit. When
the unit-jobs completed before time T in GA are unrevealed,
the time assigned to the unit-job with weight ratio wi

si
in the

true bidding is occupied by another unit-job with a smaller
weight ratio in the false bidding. The total profit generated in
the true bidding is thus at least that of the false bidding. This
verifies the truthfulness in the first case. In the second case,
when the jobs are held by multiple users, the profit would
be further decreased, since the time slot may be occupied by
another unit-job which is not held by the user, making the
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user lose more profit. Therefore, the users have no incentives
to unreveal her jobs.

Then, consider that the user reports a job i that does not
belong to her. Since the virtual allocation assigns the resource
according to the order of non-increasing value wi

si
, unit-jobs

partitioned from other jobs either have the same completion
time or are postponed to be finished. Thus, the user gains no
more profit from unit-jobs that belong to her. She also gains
no profit from job i since the utility of user j is the total profit
of jobs listed in her true membership. This implies that the
users also have no incentives to report jobs that do not belong
to them.

Therefore, user j has no incentive to misreport for the input
of partitioned instance. Furthermore, the expected profit of
the user in the allocation matches the profit of the unit-jobs in
the partitioned instance. User jmaximizes her expected profit
when bidding truthfully, and hence the allocation for jobs X1
is truthful.

For jobs in X2, we apply Mechanism Basic-Mech with
the the input virtual sizes and weights. Recall that the users
have no incentive to lie by the truthfulness of Basic-Mech.
Accordingly, it is also truthful for the allocation for the jobs
in X2. Therefore, MGT-Mech guarantees the truthfulness.
Remark: The truthfulness relies on the virtual allocations

and rounding procedures respectively performed on jobs with
large sizes (X2) and small sizes (X1). The high level idea
to induce the truthfulness is that, 1) the virtual allocation
is the optimal allocation for the unit-jobs in the partitioned
instance, and 2) the rounding procedure preserves the fact
that users who behave truthfully would maximize their utility
gained from the unit-jobs in the partitioned instance after
rounding.

Furthermore, we prove that the combination of the two
steps in the proposed mechanism can guarantee good social
welfare.
Theorem 4: Mechanism MGT-Mech guarantees an

O(1)-approximation for the migration-admissible model with
linear profit functions.

Proof: Let ALG(X1) and ALG(X2) be the expected
profit obtained by the allocation of jobs X1 and X2. Let
OPT (X1,Q,T ) (and OPT (X2)) be the optimal profit to allo-
cate the jobs inX1 (andX2) in time period [1,T ] with capacity
Q each time.
Consider jobs in X1 first where all 1 ≤ si ≤ Q′. We take

as if job i is divided into si virtual unit-jobs with size one
and weight wi

si
. Denoted by wQ

′

t (G) the total weight of unit-
jobs that are assigned to time slot t with resource capac-
ity Q′ on an allocation G. Obviously, the expected profit
ALG(X1) =

∑
t w

Q′
t (GA) · (T − t). Let O be the optimal

allocation for the unit-jobs. Then,
∑

t w
Q
t (O) · (T − t) is the

optimal profit for the partitioned unit-jobs, which is an upper
bound of the optimal profit OPT (X1,Q,T ). Since the unit-
jobs are assigned according to the greedy rule in order of
non-increasing ratio wi

si
, we have wQ

′

t (GA) ≥ 1
6w

Q
t (O) by the

fact that the capacity Q′ at each time slot in GA is at lease

1
6Q (since 2bQ3 c ≥

Q
3 when Q ≥ 3 and Q′ ≥ 1). Therefore,

ALG(X1) ≥ 1
6OPT (X1,Q,T ).

Then, consider the jobs in X2. The jobs in X2 have size at
least dQ3 e and job i has its size si rounded to s̄i = d

si
Qe. Job i

occupies s̄i time slots when applying Basic-Mech in Step 7.
Let X ′2 be another set of jobs where each job i′ is generated
with size s′i = d

si
QeQ and weight w′i =

wi
si
ds′ie. We have

3si ≥ s′i (this can be verified by writing si = Qp + q where
q ≥ dQ3 e when p = 0 and q ≥ 1 when p ≥ 1). If we had
applied Basic-Mech to X ′2 with the same refinement process

as in Step 7, the rounded size s̄′i = d
s′i
Qe would also equal s̄i,

thus job i′ would be assigned to occupy s̄′i = s̄i time slots.
Denoted by A(S) the profit returned by applying Basic-Mech
to set S. Clearly, ALG(X2) = A(X2). When applying Basic-
Mech, the expected profit generated in Step 2-4 of Basic-
Mech corresponds to the total profit of the unit-jobs in the
partitioned instance in the algorithm; moreover, the jobs in
Step 5-6 have the same rounded size (s̄′i = s̄i). In addition,
each job i in X2 is expanded to size s′i ≤ 3si while keeping the

ratio unchanged (
w′i
s′i
=

wi
si
). Thus, we have A(X2) ≥ 1

3A(X
′

2).

Let FOPT (X ′2) and FOPT (X2) respectively be the optimal
profit of the unit-jobs generated by partitioning the jobs in
X ′2 and X2. We have A(X ′2) ≥ O(1)FOPT (X ′2) by the approx-
imation of Basic-Mech. Clearly, FOPT (X ′2) ≥ FOPT (X2) ≥
OPT (X2) where the last inequality holds because the profit
gained from the partitioned unit-jobs is an upper bound of
the profit achievable for the original jobs. Thus, ALG(X2)) ≥
1
3A(X

′

2) ≥ O(1)OPT (X2).
Finally, by combining the results, we have ALG =

1
2 (ALG(X1) + ALG(X2)) ≥ O(1) · (OPT (X1,Q,T ) +
OPT (X2)) ≥ O(1) · OPT . This shows the constant approx-
imation of the mechanism.

IV. INCENTIVE MECHANISM FOR NON-MIGRATION
MODEL
We design a truthful mechanism for the non-migration model
in this section. The jobs have to be assignedwithoutmigration
to m servers where each server has q units of resource and
Q = mq in total. This new constraint brings us the difficulty
in maintaining the truthfulness.

A. MECHANISM DESIGN
Interestingly, we can adopt the traditional list scheduling [10]
in the scheduling literature as the virtual allocation and design
a rounding scheme to enforce the truthfulness. The original
list scheduling greedily allocates the jobs one by one to
the server that incurs the smallest completion time in the
current allocation. It was proposed to fairly allocate the jobs
with respective lengths of execution time and minimize the
maximum completion time of machines.

The general idea of our design is as follows. We observe
that the list scheduling can be applied to our setting to develop
a virtual allocation that guarantees a high total profit gained
from the jobs. Then, based on this, we propose a correspond-
ing rounding scheme to elicit the truthfulness.
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Algorithm 3 NMGT-Mech
1: Partition the jobs into two sets, X1 = {i : si ≤ τq},X2 =
S\X1. Jobs X1 are sorted so that the ratio wi

si
is non-

increasing.
2: With probability 1

2 , run the following allocation and
rounding procedure on set X1.

3: (Virtual Allocation) Run list scheduling (by
assigning job i according to the order of non-
increasing ratio wi

si
to the server that incurs the

smallest completion time for job i) to get a virtual
allocation LS(τ ) with total τ available time. Let
J (i, u, k) be the time slot to which job i’s k-th piece
is assigned on server u and be 0 if it is not assigned
to server u.

4: (Rounding Procedure) Perform the following
rounding scheme to the allocation LS. For every
job i, if J (i, u, k) > 0, then with probability 1

si
make job i be executed on the server u and finished
at time slot J (i, u, k)+ τ ).

5: With probability 1
2 , run the following allocation on set

X2.

6: Pick out the jobs that have the first m largest value
wif (T − si). Finish each of the m jobs at a server.

The detailed design of our proposed mechanism is pre-
sented in Mechanism NMGT-Mech. The jobs are partitioned
into two sets X1 = {i : si ≤ τq},X2 = S\X1 where τ will
be discussed later. We apply list scheduling for jobs in X1.
Let LS be the non-migration allocation returned by the list
scheduling algorithm in time period [1, τ ]. Let J (i, u, k) be
the time to which job i’s k-th piece is assigned on server u
and be 0 if it is not assigned to server u. For every job i,
if J (i, u, k) > 0, then the rounding procedure makes job i
be executed on server u and finish at time slot J (i, u, k) + τ
with probability 1

si
.

B. PERFORMANCE GUARANTEE
Now we show the theoretical performance guarantee of the
proposed mechanism.

To simplify the presentation, the following analysis will
focus on the case q = 1, and it can be directly generalized to
any value q. In the allocation LS, assume that job i is allocated
to the lowest available time slot ai (also called the starting
time of job i) on server ui and hence finishes at time bi.
Denoted by p(ui, ai, bi) the space/time slot that is occupied
by job i in LS. Fig. 5 shows an example for the allocation LS
and the rounding procedure.

We first prove the truthfulness of the proposed mechanism.
The rounding procedure achieves the following expected
profit function gi(LS) for the jobs in LS. Let LS(i) be the
allocation of jobs 1, 2, . . . , i in X1 in LS. In the rounding
procedure, job i is completed at time t + τ where t ∈
[ai,min{bi, τ }] with probability 1

si
. Thus the expected profit is

FIGURE 4. An example to show the virtual list scheduling LS and the
corresponding rounding procedure. The job assigned on server u is
rounded to get the resource on the same server.

gi(LS) =
∑

ai≤t≤min{bi,τ }
1
si
wif (T − t − τ ) =∑

ai≤t≤min{bi,τ }
wi
si
f (T − t − τ ). Let LS,LS ′ respectively be

the allocation when user j bids her true set Sj and false set Ŝj.
To show the truthfulness, we need to prove

∑
i∈Sj gi(LS) ≥∑

i∈Sj gi(LS
′) for any j and any set Ŝj 6= Sj. Our method is

to develop a matching scheme to characterize the movement
of the jobs in the truthful biding and false bidding so that we
can examine the profit change of the bidding. The result is
stated in the following theorem and the detailed proof can be
referred to in Appendix.
Theorem 5: Mechanism NMGT-Mech is truthful for the

non-migration model with monotonic profit functions.
Remark: The intuition of the truthfulness is that some of

the unit-jobs in the partitioned instance are moved in the
allocations LS,LS ′ before and after misreporting. We char-
acterize the movement from LS to LS ′ in terms of the unit-jobs
partitioned from a job (instead of that job itself) and average
the profit of the job over all the carefully chosen unit-jobs
in the movement. Based on these operations, we can find the
movements that form a chain and compare the profit change
of different bidding strategies on that chain.

Now we show the approximation of the mechanism.
Our method is to develop a marking/charging scheme

between our allocation and the optimal solution to compare
their outputs. In order to obtain a lower bound of the profit
obtained from the mechanism in the charging scheme, we set
τ = 1

4T and make the jobs after rounding be finished before
time T

2 by the fact J (i, u, k) + τ ≤ 2τ ≤ T
2 . For the ease of

presentation, we only consider the setting that τ is an integer
without examining the floor operation as introduced in the
previous sections. Note that with the choice of τ , the rounding
procedure always returns a feasible solution since at most
τq pieces of the jobs are moved to time period [1, τ ]. The
result is stated in the following theorem and the detailed proof
is presented in Appendix.
Theorem 6: Mechanism NMGT-Mech guarantees an

O(1)-approximation for the non-migration model with linear
profit functions.
Remark: The high level idea of the proof is to examine

the unit-jobs in the partitioned instance and observe the fact
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FIGURE 5. Performances of Mechanism MGT-Mech, which is measured by
the ratio between the total profit achievable in the upper bound of the
optimal solution and that of our mechanism. (a) Influence of resource
number in the migration-admissible model. (b) Influence of job number
in the non-migration model.

that unit-jobs not assigned in time period [0, τ ] have smaller
weights. These allow us to develop a charging scheme, which
properly matches the unit-jobs that are assigned in the opti-
mal solution but not in the proposed mechanism to the ones in
the proposed mechanism, and accordingly bound the profits
between the optimal solution and our proposed mechanism.

V. SIMULATION RESULTS
We have theoretically proved the performance guarantee of
the proposed mechanisms. The goal of this section is to
further validate the average performance of the mechanisms
on maximizing the social welfare. Considering the fairness,
we have not compared with other allocation algorithms since
no prior works have provided truthful mechanisms the same
as our non-payment setting. So we compare our proposed
mechanisms to the upper bounds of the optimal solutions,
which derived in our approximation analysis, considering that
computing the optimal solution is NP-hard.

We first examine the performance of Mechanism
MGT-Mech for the migration-admissible model. The perfor-
mance will be measured by the ratio between the total profit
achievable in the upper bound of the optimal solution and that
of our mechanism. Each job size is uniformly sampled from
100 to 1500, and correspondingly its weight is sampled from
1 to 2000. The number of time slots T is set to be 100.
Each point in the figures is a mean value of 1500 random

FIGURE 6. Performances of Mechanism NMGT-Mech. (a) Influence of
resource number in the migration-admissible model. (b) Influence
of job number in the non-migration model.

instances. We start by examining the influence of the number
of resourceQ to the performance. The number of jobs is set to
be 500. It can be seen in Fig. 5(a) that the performance ratio
varies between 2.6 and 3.6, indicating that the total profit
achieved by our mechanism is close to the optimal soltion.
Then we examine the influence of the number of jobs to
the performance ratio. The number of resource is set to be
Q = 1000. It can be seen in Fig. 5(b) that the performance
ratio is decreasing and then stabilizes at around 2.57 as the
number of jobs increases.

The average performance of the mechanism is even better
than the theoretical guarantee derived in analysis.

Then we examine the performance of Mechanism
NMGT-Mech for the non-migration model. Each job size is
uniformly sampled from 1 to 1500, and correspondingly its
weight is uniformly distributed from 1 to 2000. The number
of time slots T is set to be 100 and the number of servers is
m = 20. We first examine the influence of the number of
resource to the performance ratio. The number of jobs is set
to be 1000. It can be seen in Fig. 6(a) that the performance
is slowly increasing at the beginning and then stabilizes
at around 3.6. The intuitive explanation is that the profit
contribution of the jobs in the algorithm increases slower than
the optimal solution with non-migration constraints at the
beginning. Then we examine the influence of the number of
jobs to the performance ratio. The number of resource is set to
be Q = 1000. It can be seen that in Fig. 6(b) the performance
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ratio stably varies between 2.59 to 2.6, which is even better
than the theoretical performance guarantee derived in our
analysis.

Summarizing our results, the average performances of the
mechanisms are close to the optimal solution, which validates
the efficiency of our proposed mechanisms.

VI. RELATED WORK
Much research attention has been invested on optimizing the
resource allocation in cloud computing. Since it is impossible
to summarize all the work, we just review the related ones
from the perspective of mechanism design that regulates the
strategic behaviours of cloud requests.

The first research direction is to study the pricing mech-
anisms by fixing the price of the resources and making the
cloud users compete for the resource [3], [13]. For example,
Abhishek et al. [2] investigate the pricing policies to maxi-
mize the revenue. Zhao et al. [28] develop an efficient online
pricing algorithm of VM resource across data centers in a
geo-distributed cloud to maximize the profit.

The second research direction is to adopt the equilib-
rium concepts in the game theory to study the competition
behaviors between users and the provider [19]. For example,
Pal and Hui [15] examines what price and QoS should be
set for multiple cloud providers, showing that a unique pure
strategy Nash equilibrium (NE) exists in a cloud market.
Tsakalozos et al. [19] Guo et al. [9] model the fair bandwidth
allocation in cloud computing as a Nash bargaining game and
design a distributed algorithm to achieve the fairness.

The third research direction is to adopt the paradigm
of incentive mechanism design to stimulate the truth-
ful behaviours of the cloud users in competing for the
resources [23], [25], [26], which has received more attention.
For example, [8], [18], [26] study the truthful combinatorial
auction of heterogeneous VMs. Prasad et al. [16] address
the problem of selecting different bundles of resources from
cloud vendors by developing a combinatorial auction mecha-
nism for multiple resource procurement. Jain et al. [12] study
the truthful mechinism for deadline-sensitive jobs and a user
pays according to the value function associated to the com-
pletion time of her job. The works in [11] and [21] consider
the resource in the centralized pool where the resource is
indistinguishable and allowed to be assigned to the same job
over time with migration. Zhang et al. [25] address the truth-
ful online auctions when users have heterogeneous demands.
Wang et al. [20], [22] address the task assignment in mobile
device clouds by designing truthful auction mechanisms to
match the demands and supplies of mobile devices.

Despite the research efforts above, all these mechanisms
rely on money transfer/payment function to induce the truth-
fulness of user behaviours. Such mechanisms, however, fail
to be applied in scenarios where money transfer is not
realistic, e.g, private clouds with internal enterprises users.
In this paper, we examine the non-payment truthful
mechanism design problem in cloud computing. What is
more challenging, we consider requests from users with

multiple jobs. To the best of our knowledge, no prior works
have addressed similar problems, and we attempt to shed
some light on the non-payment incentive mechanism design
in cloud computing.

VII. CONCLUSION
In this paper we conduct the first theoretical work of
non-payment truthful mechanism design on the cloud
resource allocation. We study both the migration-admissible
resource allocation and the non-migration resource alloca-
tion. To escape the impossibility results known for non-
payment mechanism design in game theory, we develop a
two-step framework and propose different virtual allocations
and rounding methods to deal with the allocation constraints
in different models. The theoretical analysis verifies that
our proposed mechanisms achieve the truthfulness of the
users for general monotonic profit functions and constant
approximation ratios on the social welfare for linear profit
functions. Simulation results further validate that the average
performances of the mechanisms are close to the optimal
solution. Our work has shed some light on the design of non-
payment incentive mechanisms in cloud computing.

APPENDIX
A. PROOF OF THEOREM 1

Proof: Consider the allocation for jobs in X1 first. The
expected profit generated from rounding job 1 ≤ i ≤ il
is

∑
k:1≤k≤si,J (i,k)≤τ wif (T − J (i, k) − τ ) 1si . To prove the

truthfulness, we consider the case that job i is partitioned
into si virtual unit-jobs that have size one and weight wi

si
.

The unit-jobs are assigned according to the order of non-
increasing value wi

si
in GA. When the unit-job is assigned

to time slot J (i, k) + τ , the profit gained from the unit-job
is wi

si
f (T − J (i, k) − τ ), and hence the total profit of the

unit-jobs partitioned from job i is exactly
∑

k:1≤k≤si,J (i,k)≤τ f
(T − J (i, k) − τ )wisi . Therefore, to show the truthfulness for
the users, it is sufficient to show the truthfulness for the case
that the users hold the unit-jobs in the partitioned instance.

When a user j bids her true type Sj, the profit gained
from the unit-jobs equals

∑
i≤il ,i∈Sj

∑
k:1≤k≤si,J (i,k)≤τ f (T −

J (i, k)− τ )wisi , where the unit-job with larger weight ratio
wi
si

is finished earlier.
Consider that the user bids a subset Ŝj with Ŝj ⊂ Sj

first. Some jobs, and correspondingly their unit-jobs, are not
revealed in such a case. When the unit-job with J (i, k) > τ

in GA is not revealed by the user, the profit gained by the
user would keep the same since the allocation GA keeps the
same which makes the rounding procedure the same. When
the unit-job with J (i, k) ≤ τ in GA is unrevealed by the
user, the time slot J (i, k) would be released; another unit-job,
that has a weight ratio at most wi

si
and originally occupies a

time slot after J (i, k), say J (i′, k ′), would occupy the time
slot J (i, k). If the user holds i′, the change of profit gained
from i′ is positive and at most wisi (f (T − J (i, k)− τ )− f (T −
J (i′, k ′) − τ )). Note that J (i′, k ′) then would be occupied by
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another unit-job with larger time, say J (i′′, k ′′), which incurs
a change of profit at most wi

si
(f (T − J (i′, k ′) − τ ) − f (T −

J (i′′, k ′′) − τ )). Similar induction would produce a series of
change of the profit. The sum of these values would be an
upper bound of the total change gained from the user, which
is at most wi

si
f (T − J (i, k) − τ ). However, the user loses a

profit wisi f (T−J (i, k)−τ ) from the unrevealed job. Therefore,
under-reporting the jobs gains no more profit than revealing
all her unit-jobs.

On the other hand, for the case of bidding a superset Ŝj
with Sj ⊂ Ŝj, the allocation of unit-jobs of user j may be
proposed when reporting the jobs that do not belong to her.
She gains no profit from those jobs since her utility is the
total profit

∑
i∈Sj uj(A(Ŝj,−Sj)) of the jobs listed in her true

membership.1 This implies that reporting jobs that do not
belong to the user can only decrease the profit for the user
herself. Thus, users also have no incentives to report jobs that
do not belong to them.

Therefore, the untruthful behavior cannot increase the
profit for any user and the allocation for jobs X1 is truthful.
Finally, for the allocation of jobs X2 that selects the job with
maximum value wif (T − si), we can use similar discussions
to verify that untruthfully reporting the jobs cannot increase
the profit. This completes the proof.

B. PROOF OF THEOREM 2
Proof: Let ALG(X1),ALG(X2) respectively be the profit

returned on set X1 and X2. Let OPT (X1,T ) and OPT (X2,T )
be the optimal profit to allocate the jobs in X1 and X2 in T
time slots. Consider the allocation of X2 first. Job i in X2 has
size at least bT3 c. OPT (X2,T ) can pack at most three jobs in
time period [1, τ ]. Since the mechanism packs the job i∗ with
maximum value wi∗ (T −si∗ ) to the first s∗i time slots, we have
ALG(X2) = wi∗ (T − si∗ ) ≥ 1

3OPT (X2,T ).
It remains to prove ALG(X1) ≥ O(1)OPT (X1,T ) for jobs

in X1 where si ≤ τ . The expected profit of ALG(X1) could be
taken as if every job i is partitioned into si unit-jobs and each
unit-job has size one and weight wi

si
. Denoted by weight w̄t

the ratio wi
si

if job i is assigned to the time slot t in GA. For
the partitioned unit-jobs, the value w̄t is non-increasing when
index t increases, since these unit-jobs are greedily allocated
in the virtual allocation. The expected profit gained from
the rounding is ALG(X1) =

∑
i≤il

∑
k:1≤k≤si,J (i,k)≤τ (T −

J (i, k) − τ )wisi =
∑

t∈[1,τ ](T − t − τ )w̄t . On the other hand,
the maximum profit among all possible reordering of virtual
unit-jobs in time period [1,T ], denoted asFOPT (X1,T ), is an
upper bound of the optimal solution OPT (X1,T ). For the
unit-jobs, we have FOPT (X1,T ) =

∑
t∈[1,T ](T − t)w̄t since

w̄t is non-increasing as t increases. Note that
∑

t∈[1,τ ](T −
t − τ )w̄t ≥

∑
t∈[τ+1,2τ ](T − t)w̄t and 2

∑
t∈[1,τ ](T − t −

τ )w̄t ≥
∑

t∈[1,τ ](T − t)w̄t . Moreover, since T ≤ 3τ + 2,

1On the other hand, bidding a superset with jobs that are not held by the
user is also risky since the user cannot provide those jobs to be consistent
with her request and may be further punished.

∑
t∈[1,τ ](T − t − τ )w̄t ≥

∑
t∈[2τ+1,T ](T − t)w̄t . Hence we

have 4ALG(X1) ≥ FOPT (X1,T ) ≥ OPT (X1,T ).
Combining the results, we have ALG = 1

2 (ALG(X1) +
ALG(X2)) ≥ 1

8 (OPT (X1,T ) + OPT (X2,T )) ≥ O(1) · OPT .

C. PROOF OF THEOREM 5
Proof: We consider the non-trivial procedure for jobs

in X1 and tackle the case with all bi ≤ τ first. For any two
rounding procedures that are applied on the virtual allocations
LS and LS’ respectively, we first derive the following two
basic properties.

P1: If only one job i is moved from time slot t in LS to
t ′ with t ′ < t in LS ′ then the expected profit

∑
i gi(·)

increases by wi(f (T − t ′)− f (T − t)).
P2: If only one job is moved from its current server u to

another server u′, which makes the lowest available
server change from u′ to u but keeps the lowest avail-
able time still the same, then the allocation for the
remaining jobs would incur the same expected profit
since the algorithm only cares about the lowest avail-
able time instead of the index of the server.

We start by analyzing a simple case that there is only one
user in the input. We first focus on the case that the user bids
a subset Ŝj ⊂ Sj and only one job i is unreported. The order
of the jobs being assigned in the algorithm excluding i is still
the same. For jobs 1, 2, . . . , i − 1 that are assigned before i,
clearly their allocation are the same in LS and LS ′ and hence
LS(i−1) = LS ′(i−1). For the true bidding, all jobs i+1, . . . , n
are assigned one by one and would have starting time at least
ai. When job i is unreported in LS ′, the space p(ui, ai, ai +
si − 1) is released and ai is the lowest available time for
job i+ 1.
Let us examine the effect of the release of space

p(ui, ai, ai+si−1) and investigate the interval [ai, ai+si−1].
Job i + 1 is moved from p(ui+1, ai+1, ai+1 + si+1 − 1)
in LS to the empty space p(ui, ai, ai + si+1 − 1) in LS ′.
According the basic properties (P1) and (P2), the profit is
increased by wi+1(f (T −ai)− f (T −ai+1)) by the movement
of job i + 1. We make a marking from each piece of the
resource requirement of job i + 1, denoted by p(i + 1), in
p(ui+1, ai+1 + k, ai+1 + k) in LS to p(ui, ai + k, ai + k) in
LS ′, and each marking is associated with an average profit
rp(i+1) =

wi+1(f (T−ai)−f (T−ai+1))
si+1

in the movement for all 0 ≤
k ≤ si+1−1. Note that in LS(i+1)′, the lowest available time
on server ui+1 is ai+1 and the space p(ui+1, ai+1+k, ai+1+k)
in LS is released for all 0 ≤ k ≤ si+1 − 1 which may be
occupied by one of the remaining job j with j > i+ 1.
Assume that i′ is the next job with i′ > i + 1 in LS ′ that

occupies the released space p(ui+1, ai+1, ai+1) in LS(i+ 1)′.
Note that wi′si′ ≤

wi+1
si+1
≤

wi
si
. Apply the same marking scheme

to mark from the earliest piece p(i′) of job i′ with space
p(ui′ , ai′ , ai′ ) in LS to p(ui+1, ai+1, ai+1) in LS ′ and asso-
ciate a profit rp(i′) =

wi′ (f (T−ai+1)−f (T−ai′ ))
si′

to the marking.
Together with the previous marking from p(ui+1, ai+1, at+1)
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to p(ui, ai, ai), they compose amarking chainwith length two.
In general, every marking starts from the space on which the
piece is in LS to a lowest available space it is moved to in LS ′.
Therefore, by applying the marking rule to all the remaining
pieces, we have a chain that ends in p(ui+1, ai, ai). Denoted
by C0 the pieces on the chain. We have

wî
sî
≤

wi
si

for all

p(î) ∈ C0. For every two adjacent markings on the same
chain, the former one starts from a released space while the
latter one points to the released space of the former one. Thus
the total profit marked on the same chain would be at most∑

p(î)∈C0
rp(î) ≤

wi
si
f (T −ai). There are at most si such chains

where chain k (0 ≤ k ≤ si−1) ends in p(ui+1, ai+k, ai+k).
We could denote by Ck the pieces on chain k . Then in general
chain k has a total profit at most wisi f (T − ai+ k). Hence, LS

′

gains a profit at most
∑

0≤k≤si−1
wi
si
f (T − ai + k) more than

LS from jobs i+ 1, i+ 2, . . . , n. However, LS ′ loses a profit
at least

∑
0≤k≤si−1

wi
si
f (T − ai + k) due to unrevealing job i.

Therefore, the user gains no benefit by unrevealing a job.
Now consider the general case that there are multiple users.

Excluding the job reported by user j, all other jobs are con-
sidered in the same order in LS and LS ′. The marking scheme
stated above does not rely on to which user the job belongs.
With more users as the input, the benefit gained by j could
only be reduced or keep the same compared to the case that
all jobs are held by j, since if otherwise some job is held by
another user, then the profit counted in the marking chain
would be reduced. Hence, any user has no incentive to lie
in a multi-user system. For the case that multiple jobs are
unreported by a user, all the chains in the marking scheme just
terminate in the released space of the unreported jobs. The
total profit is the cumulated profit of all the chains that end
in the space released by the unreported jobs. Therefore, there
is no benefit for each user to bid any subset Ŝj with Ŝj ⊂ Sj
of her jobs. On the other hand, by biding a superset Ŝj with
Ŝj ⊃ Sj or a job that does not belong to her, the allocation
can only postpone the allocation of other jobs due to the
occupation of space. Thus the user cannot gain more profit
from the jobs that do not belong to her since the utility is the
total profit of her jobs or jobs that are in her true job list but
postponed in the allocation. Thus she also has no incentive
to report any job that does not belong to her. This shows the
truthfulness of the users and completes the proof.

To tackle the case that allows bi > τ in LS, the analysis
can be extended by modifying the jobs and values ai, bi as
follows. Take time τ + 1 as a virtual time that can be placed
multiple pieces instead of one. For any job with bi ≤ τ , keep
ai, bi the same. For jobs with ai > τ , partition job i into si
unit-jobs with size one where every unit-job p has ap = bp =
τ + 1. For any job with ai ≤ τ and bi > τ , partition job i
into bi − τ unit-jobs with size one and another sub-job with
size τ − ai + 1 where we assume that each unit-job p has
weight wisi and ap = bp = τ + 1 and the sub-job q with size
τ − ai + 1 has weight τ−ai+1si

wi and aq = ai, bq = τ + 1.
Applying the above analysis to the modified jobs could show
the truthfulness of the allocation for X1. The allocation for X2

is truthful by simply picking the first Q jobs with the largest
value wif (T − si) and assigning them to each server. This
completes the proof.

D. PROOF OF THEOREM 6
Proof: Consider the allocation for jobs X1 first. Let

ALG(X1) be the expected profit obtained from jobs X1.
Denoted by LS the allocation of jobs in X1 by the list schedul-
ing algorithm. Take as if each job i is partitioned into si
virtual unit-jobs with size one and weight wi

si
. Write the set

of all the partitioned unit-jobs to be X̂ and let ŵk̂ be wi
si

if
unit-job k̂ is partitioned from job i. Denoted by OPT (X̂ ) the
optimal profit to assign the partitioned unit-jobs X̂ with the
constraint that the non-migration property of the original jobs
X still holds. Clearly we have OPT (X1) ≤ OPT (X̂ ). Let
LS(τ ) be the allocation of the unit-jobs in time period [1, τ ]
of LS and correspondingly X̂ (LS, τ ) be the partitioned unit-
jobs allocated in LS(τ ). Let k̂ ∈ X̂ (LS, τ ) be assigned to
time ck̂ in LS(τ ). Then the expected profit ALG(X1) equals∑

k̂∈X̂ (LS,τ ) ŵk̂ (T − ck̂ − τ ), since job i in LS(τ ) incurs an
expected profit 1

si
wi(T − ck̂ − τ ) when the piece k̂ is finished

at time ĉk + τ . For k̂ ∈ X̂ (LS, τ ), we have ck̂ ≤ τ and
ALG(X1) ≥

∑
k̂∈X̂ (LS,τ ) ŵk̂ (T − ck̂ − τ ) ≥

∑
k̂∈X̂ (LS,τ ) 2τ ŵk̂ .

Denoted by O(τ ) the optimal allocation to assign the par-
titioned unit-jobs X̂ in interval [1, τ ] in order to maximize
the profit in that interval with the constraint that the non-
migration property of the original jobs X1 still holds, and
correspondingly let X̂ (O, τ ) be the unit-jobs assigned
in the interval. Obviously, we have

∑
k̂∈X̂ (O,T ) ŵk̂ ≤

4
∑

k̂∈X̂ (O,τ ) ŵk̂ since the input jobs X1 are the same while
the time is enlarged 4 times when T = 4τ . OPT (X̂ ) ≤∑

k̂∈X̂ (O,T ) ŵk̂T ≤ 4
∑

k̂∈X̂ (O,τ ) ŵk̂T . Hence, to show the
desrired approximation that OPT (X1) ≤ 16ALG(X1),
we only need to prove that

∑
k̂∈X̂ (LS,τ ) wk̂ ≥

1
2

∑
k̂∈X̂ (O,τ ) ŵk̂

which bounds the profit of unit-jobs in interval [1, τ ] between
the allocations LS(τ ) and O(τ ).
To show

∑
k̂∈X̂ (LS,τ ) wk̂ ≥

1
2

∑
k̂∈X̂ (O,τ ) ŵk̂ , we will exam-

ine the unit-jobs in X̂ (O, τ )\X̂ (LS, τ ) by introducing a one-
to-one matching from X̂ (O, τ )\X̂ (LS, τ ) to X̂ (LS, τ ). These
unit-jobs are executed at time later than τ in X̂ (LS, τ ) and
will be divided into two sets. Denoted by set A(u) the unit-
jobs in X̂ (O, τ )\X̂ (LS, τ ) that are partitioned from the jobs
that start at time earlier than time τ and hence finished later
than time τ on the same server u. The first set is then A =
∪uA(u). The second set B = X̂ (O, τ )\X̂ (LS, τ )\A contains
the unit-jobs partitioned from the jobs that start later than
time τ in X̂ (LS, τ ). For the unit-jobs in A(u), we match
each of them to the unit-job that is the earliest executed on
server u in X̂ (LS, τ ) and is not matched yet. The one-to-one
matching always exists since such server u is full-assigned
with T unit-jobs in X̂ (LS, τ ). When |B| = 0, we already have∑

k̂∈X̂ (O,τ )\X̂ (LS,τ ) ŵk̂ ≤
∑

k̂∈X̂ (LS,τ ) ŵk̂ , since each matching
starts from a unit-job with a smaller weight to some unit-
job with a larger weight. For the case that |B| > 0, any
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unit-job in B is partitioned from a job that is assigned to the
earliest available time larger than τ . According to the strategy
of list scheduling, all unit-jobs in B have smaller weight
than any unit-job in X̂ (LS, τ ). Thus it is sufficient to match
the unit-job in B to an arbitrary unit-job in X̂ (LS, τ ) that is
not matched yet. Such a one-to-one matching exists since
|A ∪ B| ≤ |X̂ (LS, τ )| = Qτ when |B| > 0. Each matching
is from a unit-job with a smaller weight to some unit-job
with a larger weight, hence we have

∑
k̂∈X̂ (O,τ )\X̂ (LS,τ ) ŵk̂ ≤∑

k̂∈X̂ (LS,τ ) ŵk̂ . Therefore, 2
∑

k̂∈X̂ (LS,τ ) wk̂ ≥
∑

k̂∈X̂ (O,τ ) ŵk̂
and this completes the approximation analysis for jobs X1.

It remains to consider the allocation forX2. LetALG(X2) be
the expected profit obtained from jobs X2 in the mechanism
andOPT (X2) be the optimal profit when assigning jobs in X2.
All jobs inX2 have size at least τ and each server is assigned at
most four jobs in X2 in the optimal allocation. The allocation
just assigns each server one such job among the jobs that have
the first m largest value wi(T − si). Therefore, this procedure
ensures ALG(X2) ≥ 1

4OPT (X2).
Combining both the analysis for jobs X1 and X2, the algo-

rithm is O(1)-approximation.
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