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ABSTRACT Data security and privacy concerns are important issues in cloud storage. In this paper,
we propose a verifiable public key encryption with keyword search based on homomorphic encryption in
multi-user setting. By employing van Dijk, Gentry, Halevi, and Vaikuntanathan homomorphic encryption,
the proposed scheme enables the cloud server to generate an inverted encryption index structurewithout using
a query trapdoor, which significantly improves the efficiency of search. On the other hand, the proposed
scheme presents a new authenticated data structure based on the inverted encryption index structure, and
shows how to apply it to verify the correctness and completeness of search results. Moreover, the proposed
scheme allowsmultiple users to perform encrypted keyword search over encrypted data. Finally the proposed
scheme is proved secure based on the approximate-GCD problem. The experiment results demonstrate the
proposed scheme has less computation overhead than the existing schemes.

INDEX TERMS Searchable encryption, homomorphic encryption, verification, multi-user setting.

I. INTRODUCTION
Cloud has been widely used not only by individuals but also
by entrepreneurs because it allows people to manage their
data conveniently and at low cost. But meanwhile it incurs
some problems in security. The outsourced data have strong
privacy and business value, while cloud service provider
is semi-trusted. To protect data from leakage, data owners
encrypt the data and then store them in cloud. However,
the encryption greatly restricts the ability of cloud servers
to handle users’ requests, such as searching over encrypted
data.

To resolve this problem, the notion of the public key
encryption with keyword search (PEKS) was proposed by
Boneh et al. [1]. In the PEKS scheme, a sender uploads an
encrypted email to an email server along with an encrypted
list of keywords. The receiver sends the desired keyword
(denoted as a trapdoor) to the email server, which then tests
the encrypted emails for the presence of this trapdoor. Soon
afterwards, many intuitions have been proposed to improve
upon this construction, and expanded it to the cloud environ-
ment (e.g., [2]–[12]). However, most of the existing PEKS

schemes cannot guarantee the completeness of the search
results done by the cloud server. If no verification for the
completeness of search results is guaranteed, the cloud server
might return incomplete search results to save computational
resources. The consequence of making decisions based on
incompleteness search results could be very serious or even
catastrophic.

Because the files and indexes with keywords are encrypted,
the cloud server can simply store the encrypted files and
indexes in the order as they are received. Considering that a
file hasmore than one keyword, data owners typically encrypt
each keyword for each file and upload it.When a user submits
a query trapdoor, the cloud server needs to traverse the entire
indexes to find the target files, thus its time complexity is
O(n ∗ m), where n represent the number of files, m represent
the number of keywords for all files in the system. As a result,
the efficiency of search is quite low, and it may incur the cloud
server not to traverse the entire indexes and return the incom-
plete search results to save computational cost. Therefore,
the index structure should be optimized at the cloud server
to improve the efficiency of search. However, in the PEKS
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schemes, the user must give the server a query trapdoor,
the server can test whether the one of the encrypted indexes
associated with the files is equal to the query trapdoor. In the
absence of a trapdoor, the server is unable to test whether the
keywords contained in the two encrypted index are consis-
tent, so that the server cannot rearrange the encrypted index
structure.

In the environment of cloud storage, the data owner is eager
to share his data with multiple users. In this case, the search-
able encryption works for multiple users. However, the most
existing PEKS schemes are constructed in single-user set-
ting. It is very clear that the schemes proposed for using in
single-user setting cannot be directly and effectively used in
multi-user setting because of the increased requirements of
the latter. In PEKS schemes that are constructed in single-user
setting, data owner can only shares his data with a single
user and also only permits a single user to perform encrypted
keyword search over encrypted data. While in multi-user
setting, such as cloud storage, data owners hope to share
their data with multiple users and also permit the multiple
users to perform encrypted keyword search over encrypted
data.

To tackle above problems, we propose a verifiable public
key encryption with keyword search based on homomorphic
encryption in multi-user setting. Specifically, our main con-
tribution can be summarized as follows:

(1) We optimize the encryption index structure by employ-
ing DGHV(van Dijk, Gentry, Halevi and Vaikuntanathan)
homomorphic encryption. In our scheme, the cloud server can
generate an inverted encryption index structure without using
a query trapdoor, which significantly improves the efficiency
of search.

(2) We propose a new authenticated data structure for
verifying the completeness of search results based on the
inverted encryption index structure, and apply it to generate
verification proof for verifying the correctness and complete-
ness of search results.

(3) Our scheme is constructed in multi-user setting, and
allows multiple users to perform encrypted keyword search
over encrypted data.

(4) Our scheme is proved to be secure based on the
Approximate-GCD problem.

(5) We evaluate the performance of our scheme and com-
pare our scheme with the previous schemes in terms of time
complexity and functions. The time complexity of single key-
word search is reduced to O(m) in our scheme. Experiment
results demonstrate the efficiency of search in our scheme is
higher than the existing schemes.

The following sections are described briefly as follows.
We introduce some important prior works in this domain in
Section 2. After that, we introduce some preliminaries used
in the paper in Section 3. In the Section 4, we give the formal
model of our scheme and a security model as well as the
specific construction about our scheme. Then in Section 5,
we prove our scheme is secure under the security model.

The scheme performance is evaluated in Section 6. Finally,
we conclude this paper in Section 7.

II. PRIOR WORKS
To enable users search over encrypted outsourced data
through keywords without decrypting the data at first,
the notion of public key encryption with keyword
search (PEKS) was first put forth by Boneh et al. [1] and its
construction makes use of the construction of identity-based
encryption (IBE). Subsequently Boneh et al. [2] presented a
more practical scheme which supported arbitrary conjunctive
queries (such as comparison search, subset search, etc.).
Baek et al. [3] proposed a PEKS scheme with a designated
server to remove a secure channel. Camenisch et al. [4] pro-
posed oblivious generation of the keyword search trapdoor
to maintain the privacy of the keyword against a curious trap-
door generator. Cao et al. [5] presented ranked searches using
multi-keyword over encrypted cloud data and established a
variety of privacy requirements. So far, a lot of work has
been done to enhance the security and the efficiency of PEKS
scheme (e.g. [6]–[13]).

With the development of encryption search technology,
the risk of privacy leakage in the outsourced data has been
improved. However the problem of providing secure inquiry
service has become another new challenge. Due to the system
may occur malfunction or the cloud server might return an
incomplete search results to save computational resources,
the receiver may receive some incorrect and incomplete
search results, so that the receiver may make a wrong deci-
sion based on the incorrect and incomplete search results.
It could be very serious or even catastrophic. Therefore,
we should consider the verifiability of search result. So far,
there are many schemes to address this issue, such as the
schemes [14]–[22]. However, most of the existing schemes
mainly focus on the integrity verification of plaintext data,
while there are few verifiable search schemes over encrypted
data. When the schemes are migrated to the ciphertext,
the schemes are no longer applicable since the ciphertext
contains the data owner’s private key and the random number.
To the best of our knowledge, there are not many verifiable
search schemes over encrypted data, and these schemes are
devised to verify the correction of search results in single-user
setting, and do not consider the completeness verification
of search result in multi-user setting. Chai and Gong [23]
gave the first verifiable keyword search in symmetric set-
ting. Schemes [24], [25] presented the fine-grained keyword
search schemes through utilizing attribute-based encryp-
tion. Sun et al. [26] presented a search result verifica-
tion scheme in the multi-keyword text search scenario by
turning the proposed secure index tree into an authenti-
cated one. Guo et al. [27] put forward a multi-phrase ranked
search scheme over encrypted data, which can verify the
ranked results and support dynamic update operations. Spe-
cially, the aforementioned works are devised in single-user
setting.

42446 VOLUME 6, 2018



D. N. Wu et al.: Verifiable PEKS Based on Homomorphic Encryption in Multi-User Setting

III. PRELIMINARIES
A. APPROXIMATE-GCD PROBLEM
Let λ be a security parameter, ρ = λ, η = O(λ2), and
γ = O(λ5). The (ρ, η, γ )-Approximate-GCD problem is
defined as follows [28]:
• The (ρ, η, γ )-Approximate-GCD problem: Given poly-
nomially many samples from Dγ,ρ(p) for a randomly
chosen η-bit odd integer p, output p, where

Dγ,ρ(p) = {choose q
R
← Z ∩ [0, 2γ /p),

r
R
← Z ∩ (−2ρ, 2ρ) :

output x = pq+ r}. (1)

B. DGHV HOMOMORPHIC ENCRYPTION
The DGHV homomorphic encryption algorithm is described
as follows [28]:
• ParamGen(λ): Input λ as a security parameter,
the parameter generation algorithm sets ρ = λ, ρ′ = 2λ,
η = O(λ2), γ = O(λ5), τ = γ + λ, and outputs public
parameters as params = 〈ρ, ρ′, η, γ, τ 〉.

• KeyGen(λ): The key generation algorithmfirst chooses a
random odd η-bit integer pwhere p ∈ [2η−1, 2η]. Then it
draws (τ +1) samples x0, . . . , xτ fromDγ,ρ(p), relabels
so that x0 is the largest and restarts unless x0 is odd.
Finally the secret key is sk = p and the public key is
pk = 〈x0, x1, . . . , xτ 〉.

• Encrypt(pk,m): To encrypt a bit m ∈ {0, 1},
the encryption algorithm chooses a random subset S ⊆
{1, 2, . . . , τ } and a random integer r in (−2ρ

′

, 2ρ
′

), and
sets the ciphertext as c = [m+ 2r + 2

∑
i∈S xi]x0 .

• Evaluate(pk,C, c1, . . . , ct ): For a (binary) circuit Cε
with t inputs, and t ciphertexts ci, the evaluate algorithm
applies the (integer) addition and multiplication gates of
Cε to the ciphertexts, performs all the operations over
the integers, and outputs the resulting integer.

• Decrypt(sk, c): Input the secret key sk and ciphertext c,
the decryption algorithm outputs ((c mod p) mod 2).

C. HOMOMORPHIC HASH FUNCTION
Let G be a multiplicative cyclic group of order p,
and (g1, g2, . . . , gn) be generators. For a vector b =

(b1, b2, . . . bn), its homomorphic hash function is defined as
H (b) =

∏n
i=1 g

bi
i . Then H (b) satisfies the following proper-

ties [29]:
Homomorphic: For any two vectors b1, b2, and random

integers r1, r2, then H (r1b1 + r2b2) = H (b1)r1H (b2)r2 .
Collision Free: For any polynomial time algorithm, it is

hard to find b1, b2, b3, r1 and r2 (b3 6= r1b1 + r2b2), which
satisfies H (b3) = H (b1)r1H (b2)r2 .

IV. A VERIFIABLE PUBLIC KEY ENCRYPTION SCHEME
WITH KEYWORD SEARCH IN MULTI-USER SETTING
A. SYSTEM MODEL
The system model is depicted in Figure 1. There are four
major entities in this system: key-generation center, data
owners, cloud servers, and data users.

FIGURE 1. System model.

• Key-generation center. The key-generation cen-
ter (KGC) refers to a fully-trusted center who is respon-
sible for generating public/secret keys and then sending
them to data owners, cloud servers and users.

• Data owners. The data owners refer to a special type of
users who create the private/confidential data and then
outsource them to cloud servers in an encrypted form so
that it can be shared with authorized users.

• Cloud servers. The cloud servers have a huge storage
space and a strong computing power to handle andmain-
tain data owner’s data. The cloud servers are responsible
for producing search results over the encrypted data
according to the users’ search requirements and then
sending the search results to the users.

• Users. Users generally refer to thosewho have registered
to search for encrypted keywords in the encrypted data.
Note that every user in this paper has an identity belong-
ing to the public domain.

B. THREAT MODEL
We define that KGC and authorized users are hon-
est but regard the cloud server as ‘‘honest-but-curious,’’
which is adopted in related schemes on secure cloud data
search [5], [26]. ‘‘honest-but-curious’’ means that the cloud
server executes the scheme honestly, but it also tries to
analyze the receiving data to obtain extra information with
curiosity. According to the available information that the
cloud server can gain, we consider the threat model as
follows:
• Known Ciphertext Model. In this model, the cloud
server can only access the ciphertexts, which is intended
to protect the keywords against the cloud server. To be
specific, cloud server achieve keyword search on cipher-
texts for data users. As for our scheme, the server uses
the ciphertexts to build a Z -index structure based on
the inverted encryption index structure, which can be
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employed for keyword search and verification. How-
ever, the server do not know the user’s secret key so
that the server cannot obtain the keywords from the
ciphertexts.

C. DEFINITION
When a data owner wants to outsource his data to cloud
server, he will first encrypt his file (E(file)) using a standard
proxy re-encryption public key algorithm. After appending to
the ciphertext PEKS(wi, pk) of each keyword, the data owner
will send the following message to cloud server:

E(file)||PEKS(w1, pk)|| . . . ||PEKS(wm, pk),

Where PEKS is an encrypted algorithm with properties dis-
cussed below. This paper focuses on addressing how the cloud
server searches all files containing a keyword-search query
w = (w1,w2, . . . ,wt ), and user verifies the correctness and
completeness of the search result. We omit the discussion of
proxy re-encryption.
Definition 1: A verifiable public key encryption scheme

with keyword search in multi-user setting consists of the
following algorithms:

• Setup(1λ): After input a secure parameter λ, Setup(1λ)
algorithm outputs a pair of secret key sk and public
key pk .

• KeyGen(1λ, id): The KeyGen algorithm takes as input a
user identity id and 1λ, then generates a secret key skid
for the user.

• PEKS(wi, pk): The PEKS algorithm produces a search-
able ciphertext CTi with keyword wi by a pubic
key pk .

• Test(CTi,CTj): After input two searchable ciphertexts
CTi and CTj, the Test algorithm verifies whether the
keywords contained in the two ciphertexts are the
same. If they are the same, output 1; Otherwise,
output 0.

• Z-Index(CTi(i = 1, 2, . . . ,m)): After input a set of
searchable ciphertext CTi(i = 1, 2, . . . ,m), the Z-Index
algorithm outputs a Z -Index structure.

• Query(w1,w2, . . . ,wt , skid ): Given a keyword-search
query w = (w1,w2, . . . ,wt ), the Query algorithm calls
the PEKS algorithm to generate a ciphertext for each
keyword using the secret keys (skid ), and outputs the
ciphertext CTi(i = 1, 2, . . . , t).

• RPGen(CTi(i = 1, 2, . . . , t)): Given the ciphertexts
CTi(i = 1, 2, . . . , t) from a user, the server returns
a set of encrypted files Rf , where each encrypted file
E(filei)) ∈ Rf contains all keywords from w =

(w1,w2, . . . ,wt ). Afterwards, the server computes a
proof so that a user can verify that all encrypted files
included in Rf contain (w1,w2, . . . ,wt ) and ensure
that no encrypted files that satisfies query keywords
(w1,w2, . . . ,wt ) is omitted from Rf .

• Verify(Rf , proof ): The Verify algorithm takes as input
the Rf and proof , and checks the correction and

completeness of the search results. If the results are
correct and complete, output 1; Otherwise output 0.

D. SCHEME CONSTRUCTION
Let ParamGen′ and KeyGen′ be the parameter genera-
tion algorithm and the key generation algorithm from the
DGHV homomorphic encryption [28]. A verifiable public
key encryption scheme with keyword search in multi-user
setting is constructed as follows.
• Setup(1λ). The key-generation center (KGC) firstly runs
ParamGen′ to obtain the public parameters params′ =
〈ρ, ρ′, η, γ, τ 〉, and runs KeyGen′ to obtain sk ′ =
p, pk ′ = 〈x0, x1, . . . , xτ 〉. Then the KGC picks a homo-
morphic hash H and a collision-resistant hash H1 :

{0, 1}∗ → {0, 1}Q(Q � η). Finally the KGC sets the
public key pk = (params′, pk ′,H ,H1) and sends the
secret key sk = sk ′ = p to server through a secure
channel.

• KeyGen(1λ, id). When a user submit his identity id for
registration, KGC will choose a random number ki and
computer qid = H1(id ⊕ ki) and sends skid = qid to the
user through a secure channel.

• PEKS(wi, pk). Given a keyword wi of the W -bit file,
satisfying W � η, a user chooses a random subset
S ⊆ {1, 2, . . . , τ } and a random integer ri, and computes
a searchable ciphertexts of wi by using the public key pk
and the user’s secret key qid as follows.

Ci1 = [wi + riqid + riqid
∑
i∈S

xi]x0 ,

Ci2 = H (riqid ). (2)

Thus, the searchable ciphertexts of the keyword wi is
CTi = (Ci1,Ci2).

• Test(CTi,CTj). After receiving the two ciphertexs
(CTi,CTj), the server verifies whether the two cipher-
texts contain the same keyword by the following
way.

H (Ci1 mod p)× Cj2
H (Cj1 mod p)× Ci2

= 1. (3)

If wi = wj, it outputs 1; Otherwise it outputs 0.

FIGURE 2. An inverted encryption index structure.

• Z-IndexBuild (CTi(i = 1, 2, . . . ,m)). Given the
ciphertexts CTi(i = 1, 2, . . . ,m), the server calls
Test(CTi,CTj) algorithm to determine whether the key-
words in the two ciphertexs (CTi,CTj) are consistent,
where PEKS(wi) = CTi, so that the server can put
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FIGURE 3. A Z -Index structure.

the ciphertexts with the same keyword in one line,
and build an inverted encryption index structure (see
Figure 2). Based on the inverted encryption index struc-
ture, an authenticated data structure is constructed and
initially empty, shown as Figure 3. The row of the struc-
ture denotes the encrypted keyword PEKS(wi) (where
i ∈ [1,m],PEKS(wi) = CTi). The column of the
structure denotes the encrypted file E(filei)(i ∈ [1, n]).
Each row has a vector vwi = [vi1, vi2, . . . , vin] (i ∈
[1,m]) and a verification proof preproof (vwi ). If the
E(filej)(j ∈ [1, n]) contains the keyword wi, then set
vij = 1(j ∈ [1, n]). Otherwise, set vij = 0 (see Figure 3).
Namely, each ‘‘1’’ in the vwi is mapped to a encrypted
file that contains the keyword wi. And for a vector vwi ,
then preproof (vwi ) = H (value(vwi )), where value(x) is a
function that converts x to a decimal number. Finally the
authenticated data structure is formed, which is called
Z -IndexBuild , and published as shown in Figure 3.

• Query(w1,w2, . . . ,wt , skid ): Given a keyword-search
query w = (w1,w2, . . . ,wt ), a user executes the PEKS
algorithm to generate the ciphertexts CTi(i = 1, 2, .., t)
for each search keyword wi(i = 1, 2, . . . , t) by the
user’s secret key skid , and sends the ciphertexts CTi(i =
1, 2, .., t) to the server.

• RPGen(CTi(i = 1, 2, . . . , t)): After receiving the
ciphertexts CTi(i = 1, 2, . . . , t), the server tests
which PEKS(wj) in the Z -Index structure is equal to
CTi by running the Test(CTi,CTj) algorithm, where
PEKS(wj) = CTj. Once the server finds t correspondent
PEKS(wi) in the Z -Index structure, the server obtains
the subset vectors vwi (i = 1, 2, . . . , t), and uses the bit
operation & to compute completeness witnesses

vresult = vw1&vw2& . . .&vwt . (4)

According to the vresult , the server returns a set of
encrypted files Rf , where each encrypted file E(filei)) ∈
Rf is mapped to 1 in the vresult . Namely, each encrypted
file E(filei)) ∈ Rf contains all keywords w =

(w1,w2, . . . ,wt ). If Rf = {E(file1),E(file2), . . . ,
E(filel)}(l ≤ t), then the server returns a verification
proof = value(vw1 )||value(vw2 )|| . . . ||value(vwl ) to the
user.

• Verify(Rf , proof ). After receiving Rf and proof ,
the user finishes the following verification steps.

1) Check whether each subset vector value(vwi ) is
correct as follows.

H (value(vwi )) = preproof (wi)(i = 1, 2, . . . l). (5)

If the equation holds, move to next step. If not, abort.
2) Use Rf = E(filei)(i = 1, 2, . . . , l) to build a

vector v′. If i ∈ [1, l], vi = 1; otherwise, vi = 0.
3) Check the completeness of search result:

v′ = binary(value(vw1 )) & . . .& binary(value(vwl )).

(6)

If the equation holds, output 1. If not, output 0. Where
given a decimal number, binary(x) is a function to output
its binary format.

Example: A user sends the query ciphertexts (CT1,CT2)
of corresponding keywords (w1,w2) to the server, the server
finds the corresponding PEKS(w1), PEKS(w2) in the
Z -IndexBuild by running the Test(CTi,CTj) algorithm. Thus
the server obtains the corresponding vectors vw1 = 101 . . .
. . . 011 and vw2 = 110 . . . . . . 111, and uses the bit oper-
ation & to compute vresult = vw1&vw2 = 100 . . . ..011.
In the vresult , the first bit is 1, the last two bits are 1, so the
corresponding Rf = {E(file1),E(filen−1), E(filen)} and the
verification proof = value(vw1 )||value(vw2 ) are returned to
the user.

After receiving (Rf , poof ), the user can obtain value(vw1 )
and value(vw2 ) from proof , and preproof (w1) = H (value(101
. . . . . . 011)) and preproof (w2) = H (value(110 . . . . . . 111))
from the published Z -Index structure (see Figure 3). Thus the
user can check

H (value(vw1 )) = prepoof (w1),

H (value(vw2 )) = prepoof (w2).

If the above equations hold, then the user builds v′ =
100 . . . . . . 011 according Rf , and checks

v
′

= binary(value(vw1 )) & binary(value(vw2 )).

If the above equation holds, output 1. If not, output 0.

E. CORRECTNESS AND COMPLETENESS
According to the definition in [30]: For sets S1, S2, S3, . . . , Sl ,
if I = S1 ∩ S2 ∩ S3 ∩ . . . ∩ Sl is correct and complete, if and
only if the following two conditions hold.
• subset condition: I ⊆ S1 ∧ I ⊆ S2 ∧ . . . ∧ I ⊆ Sl ;
• completeness: (S1 − I )∩ (S2 − I )∩ . . .∩ (Sl − I ) = ∅.

Thus, the two conditions in our scheme can be described as
follows:
• subset condition: vresult ⊆ vw1 ∧ . . . ∧ vresult ⊆ vwt ;
• completeness: (vw1 −vresult )∩ . . .∩ (vw1 −vresult ) = ∅.
Subset Condition: In our scheme, the verification of the

equation (3) ensures the satisfaction of subset condition.
Because if the equation(3) is equal to 1, then the two cipher-
texts CTi and CTj contain the same keyword, so that the
number of ‘‘1’’ in the subset vector vwi is the number of
encrypted file with the same keyword wi. Meanwhile the
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number of ‘‘1’’ in vresult is the number of encrypted file with
all keywords from w = (w1,w2, . . . ,wt ).

Specially, assuming CTi and CTj are the ciphertexts for the
keywords wi and wj respectively. If wi = wj, then

H (Ci1 mod p)× Cj2
H (Cj1 mod p)× Ci2

=
H (wi + riqi)× H (qj)rj

H (wj + rjqj)× H (qi)ri

=
H (wi)× H (qi)ri × H (qj)rj

H (wj)× H (qj)rj × H (qi)ri

=
H (wi)
H (wj)

(7)

Obviously, the equation (3) is true.
Completeness: In our scheme, given a query keyword

w = (w1,w2, . . . ,wt ) from a user, the server returns a set
of encrypted files according to the vresult . Namely the server
returns all encrypted files whose corresponding positions in
the vresult are equal to 1, and does not return the encrypted
files whose corresponding positions in the vresult are equal
to 0. If the vresult is correct, then the completeness is satisfied.
The correction of the vresult is guaranteed by the equations
(3) and (4). Meanwhile, the verification of the equations (5)
and (6) ensures that a user can verify the completeness of
search results. Because if the equation (5) holds, it shows that
the returned value(vwi ) is correct since the preproof (wi) is
published in the Z -IndexBuild . Meanwhile according to the
Rf = E(filei)(i = 1, 2, . . . , l) returned by the server, the user
can reconstruct v

′

. If the equation (6) holds, it shows that
the reconstructed v

′

is correct, which is equal to the vresult .
Therefore, our scheme can verify the completeness of search
results.

V. SECURITY ANALYSIS
As for security aspect, we reduce our scheme from
Section 4 to the hardness of the Approximate-GCD prob-
lem. In other words, randomly chosen a set of integers
x0, x1, . . . , xτ , which are all close to multiples of a large
integer p, try to find this ‘‘common near divisor’’ p. In order
to get a reliable oracle for the least-significant bit through the
promised adversary, we describe a random-self-reduction and
accuracy-amplification step as in [28]. Therefore, a Binary-
GCD algorithm can employ the obtained reliable oracle to
find p.
Considering the technical details, our random self-

reduction implies a loss in parameters. In particular, the obvi-
ous advantage in guessing the encrypted bit in a random
‘‘high ρ′-bits noise ciphertext’’ can be transformed into the
ability to predict reliably the parity bit of the quotient in an
arbitrary ‘‘low ρ-bits noise integer’’. By adding extra noise
we can ‘‘wipe out the traces’’ of the non-random noise in
the arbitrary input integer. That means the security of our
scheme in ‘‘high-noise’’ can be reduced to the hardness of
Approximate-GCD problem in ‘‘low-noise,’’ where the dif-
ference between ‘‘high noise’’ and ‘‘low noise’’ is quite small.
Theorem 1: Fix the parameters (ρ, ρ′, η, γ, τ ) as in the

proposed scheme from Section 4 (all polynomial in the

security parameter λ). Any attack A with advantage ε on the
proposed scheme can be converted into an algorithm B for
solving (ρ, η, γ )-Approximate-GCD with success probabil-
ity at least ε/2. The running time of B is polynomial in the
running time of A, and in λ and 1/ε.

Proof: Now we use the same way as [28] to show how
the challenger B to recover p with the success probability.
We use qp(z) and rp(z) to denote the quotient and remainder
of z with respect to p, hence z = qp(z)p+ rp(z).
• Step 1. First the challenger B draws (τ + 1) samples
x0, . . . , xτ from Dγ,ρ(p). It relabels so that x0 is the
largest. It restarts unless x0 is odd. B outputs a public
key pk =< x0, x1, . . . , xτ > to the adversary A.

• Step 2. B produces a sequence of integers, and attempts
to recover p by utilizing A to learn the least significant
bit of the quotients of these integers with respect to p.
For this, B uses the following Subroutine Learn-LSB
Algorithm:

Algorithm 1 Subroutine Learn-LSB(z, pk)

Input: z∈ (0, 2λ) with |rp(z)|<2ρ and pk=<x0, x1, . . . , xτ >
Output: The least-significant-bit of qp(z)

1. For j = 1 to ploy(λ)/ε do:

2. choose noise rj
R
← (−2ρ

′

, 2ρ
′

), a bit wj
R
← {0, 1}

and a random subset Sj ⊆R {1, 2, . . . , τ }
3. set CTj← [z+ wj + rj + rj6k∈Sjxk ]x0
4. aj← A(pk,CTj)
5. set bj← aj ⊕ parity(z)⊕ wj
6. Output the majority vote among the bj’s

• Step 3. Once we turned A into an oracle for the
least-significant bit of qp(z), recovering p is rather
straightforward. Perhaps the simplest way of doing it
is using the Binary GCD Algorithm: Given any two
integers z1 = qp(z1)·p+rp(z1) and z2 = qp(z2)·p+rp(z2),
B uses the following Binary GCD Algorithm:

Algorithm 2 Binary GCD(z1, z2)
Input: z1 = qp(z1) · p+ rp(z1) and z2 = qp(z2) · p+ rp(z2)
Output: The odd part of GCD(qp(z1), qp(z2))

1. If z2 > z1 then z1 ↔ z2
2. call Learn-LSB( ) output b1 = [qp(z1)]2 and b2 = [qp(z2)]2
3. If both qp(z1) and qp(z2) are odd then replace z1 by (z1−z2)
and set b1← 0

4. For each zi with bi = 0, replace zi by zi ← (zi −
parity(zi))/2

• Step 4. To recover p,B draws a pair of elements z∗1, z
∗

2
R
←

Dγ,ρ(p). According to [28], with probability at least
Pr[GCD(qp(z∗1), qp(z

∗

2)) = 1] = π2/6 ≈ 0.6. That is,
B will get a element z̃ = 1 · p + r . Finally, B recovers
p = bz∗1/qp(z

∗

1)e.
This is contradictory to the condition that the approximate-
gcd problem is difficult.
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Although the server has the secret key p, it can learn
nothing else about the keyword. For the ciphertexts {Ci1 =
[wi + riqid + riqid

∑
i∈S xi]x0 , Ci2 = H (riqid )}, since the

server does not know the secret key skid = qid , it cannot
obtain any information about the keyword wi. Furthermore,
ri is uniformly random and independent over Z∗p from server’s
view, which can ensure the ciphertexts’ indistinguishability
and enhance the keywords’ privacy one step further. There-
fore, the server learns nothing more about the keyword wi.

VI. PERFORMANCE ANALYSIS
This section mainly evaluates the performance of our scheme
inculding the functions, computational cost, index-based
searchable encryption schemes comparison and experiment
results. Suppose |DO| represent the number of the authorized
data owners, n represent the number of data files, and m
represent the number of search keywords, t represent the
number of queried keywords, d denote the number of search
results.

Firstly, we show the functions and computational complex-
ity of our scheme through comparing with other analogous
schemes [31]–[33] in Table 1 and Table 2.

TABLE 1. Functionality comparison.

TABLE 2. Computational cost comparison.

Obviously, our scheme enriches the search functionali-
ties over encrypted data. As illustrated in Table 1, it can
achieve aforementioned functionalities simultaneously, while
the other three cannot. Our scheme allows the cloud server
to generate an inverted encryption index structure without a
query trapdoor, which significantly improves the efficiency
of searching.

From Table 2, we can see that KeyGen, PEKS, Test and
Verify algorithms in our scheme have lower computational
overhead than those of other schemes. Because our scheme
adopts a homomorphic encryption and some simple addi-
tion, multiplication and division operations, while other three

schemes used the cryptography technology, such as bilinear
pairing operations.

TABLE 3. Index-based searchable encryption schemes comparison.

To demonstrate the search efficiency with index structure,
wemake comparisons with several related searchable encryp-
tion schemes [9], [34]–[36] and the results are displayed
in Table 3. In general, the index structure can be divided into
two types: file-keyword and keyword-file, the latter one also
named the inverted index. FromTable 3, we can see the search
complexity in schemes [9], [36] and our scheme is smaller
than schemes [34], [35] due to the index structure. In our
scheme, we introduce an index structure named Z -Index,
which can support keyword search and results verification
to ensure correctness and completeness of search results.
By comparison, it shows that our scheme has better efficiency
when weighing all the factors in Table 3.

To access the actual performance of our scheme in compu-
tational time, we perform the comparison experiments with
VMKDO16 [33] over a real-world dataset named Enron
email dataset. The experiments are implemented on windows
10 with Inter Core i5 and Processor 2.6 GHz. We set E(Fq) :
y2 = x3+x andG1 is a subgroup of E(Fq), where q is a large
prime number. The group order of G1 is 160-bit, and the base
field is 512-bit. The experiment results are shown in Figure 4,
Figure 5 and Figure 6.

FIGURE 4. KeyGen algorithm comparison.

From Figure 4, we can see that the computational time of
KeyGen algorithm in two schemes almost linearly increases
with the number of DOs (Here we set |DO| ∈ [1, 5000]).
We also see that our scheme needs less computational time
than the scheme VMKDO16 since our scheme only needs a
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Hash operation to generate the private key, while the scheme
VMKDO16 needs to select 2 random numbers for each data
owner and do 2 exponentiation operations to obtain a pair of
public-private key of the data owner.

In the PEKS phase, the schemeVMKDO16 firstly needs to
encrypt file set F through the traditional public key encryp-
tion algorithm, and generate the signatures for the encrypted
file set(Here we set m ∈ [1, 1000]). The computational cost
of generating the signature for each encrypted file block is
an exponential operation. Following the index is built for file
set according to the given keyword set. The process mainly
involves multiple bilinear pairing and exponential operations.
However, our scheme only needs 2 multiplications, 2 addi-
tions and a Hash operation to finish PEKS algorithm. There-
fore, the computational burden of PEKS algorithm in the
scheme VMKDO16 is much heavier than our schemes. The
experiment result showed in Figure 5 is consistent with our
analysis. Actually, the PEKS algorithm is affected by the
keyword number m, and its computational burden becomes
heavier with increasing m. However, the performance of our
scheme is almost unaffected because the computation burden
of addition and multiplication is negligible.

FIGURE 5. PEKS algorithm comparison.

FIGURE 6. Test algorithm comparison.

In Test phase, Figure 6 shows that our scheme has
much less computational overhead than the scheme
VMKDO16 when there are fewer search keywords(Here we

set t ∈ [150, 750]). But the computational time in our scheme
linearly increases with the number of t , while that of the
scheme VMKDO16 is almost constant. This is because the
scheme VMKDO16 is constructed based on attribute encryp-
tion algorithm, so that the number of searching keywords
mainly affects the time of trapdoor generation. In the Test
phase, no matter the number of keywords, the Test algorithm
only needs 3 power exponential operations and 2 bilin-
ear pairing operations. Our scheme is constructed based
on Homomorphic encryption algorithm, and the encrypted
indexes include keywords, so it will increase linearly with
the increase of the number of queried keywords. Therefore,
when t is large enough, the scheme VMKDO16 will perform
better than our scheme. Fortunately, users generally submit
the number of searching keyword is not big. Thus, our scheme
is still acceptable in practice, and perform better than the
scheme VMKDO16 when there are fewer search keywords.

VII. CONCLUSION
Averifiable public key encryptionwith keyword search based
on homomorphic encryption inmulti-user setting is proposed.
Our scheme allows the server to build an inverted encryption
index structure without a query trapdoor, so that the time
complexity of single keyword search is reduced to O(m).
Experiments demonstrate it has an obvious advantage than
others. Moreover, our scheme can verify the correctness and
completeness of searching results in multi-user setting and
allow multiple users to perform encrypted keyword queries
over encrypted data. Security analysis show it is secure based
on the Approximate-GCD problem under random oracle.
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