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ABSTRACT Nonlinear blind source separation (BSS) is one of the unsolved problems in unsupervised
learning, because the solutions are highly non-unique when there is no prior information for the mixing
functions. In this paper, we present a novel approach to tackle the ill-posedness of the nonlinear BSS problem
with a few assumptions. The derivation of our algorithm is inspired by the idea of an efficient layer-by-layer
representation to approximate the nonlinearity. Once such a representation is built, a final output layer is
constructed by solving a convex optimization problem. Relying on the multi-layer architecture, the algorithm
transforms a time-invariant nonlinear BSS to the local linear problem with a tolerable computational cost.
Then, the projected data can break the nonlinear problem down into the version of a generalized joint
diagonalization problem in the feature space. Importantly, the parameters and forms of polynomials depend
solely on the input data, which guarantee the robustness of the structure.We thus address the general problem
without being restricted to any specific mixture or parametric model. Experiments show that the proposed
algorithm has a higher estimation accuracy on audio data sets from the real world for separating various
nonlinear mixtures.

INDEX TERMS Nonlinear BSS, vanishing component analysis, temporal structure, statistical independent.

I. INTRODUCTION
The problems of independent component analysis (ICA),
blind separation of source signals have received wide atten-
tion in various fields such as speech enhancement [1], image
recognition [2], wireless communication [3], and thus have
been thoroughly studied in the signal processing community.
Usually, the original sources are linearly or nonlinearlymixed
in some ways to produce a number of observations. BSS aims
at recovering independent sources from their mixtures having
access only to the observations without any prior knowledge,
i.e., neither the sources nor the mixing matrix is known. The
foundation assumption for linear blind source separation is
that the statistical independence of the sources is usually
sufficient to constrain the demixing functions up to the trivial
transformations such as permutation and scaling.

An obvious extension for the task of BSS is that the
observations are assumed to be generated from a set of
sources by a nonlinear, instantaneous and invertible function.
Roughly, the blind source separation seeks to find the mixing

function or its inverse, solely based on the assumption that
the sources are statistically independent. However, the inde-
terminacies imposed by the nonlinear model are difficult to
handle [4]. Without extra constraints, the solutions are non-
unique and then it suffers from the inability to recover the
sources such as scaling and permutation [5]. In fact, there
is an infinite number of possible nonlinear decompositions
of a random vector into independent components, and those
decompositions are not similar to each other in any trivial
way [4]. The recovery inconsistency has been tackled by
adding further prior information directly in the model or as a
regularization term in the optimization processing procedure.

Various attempts [6]–[8] have been proposed to provide a
theoretical understanding for solving the nonlinear mixing.
Despite such progress, there are still many important open
problems and unexplored areas, particularly in the nonlinear
spaces and systems. The captured nonlinear features are in
fact growing at an enormous rate. That necessitates higher
advancement of algorithms and methods to extract models,
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patterns, and knowledge from nonlinear mixing. For instance,
the approach that captures the topology of the space from
data points is represented in [9] and [10]. Studying of various
aspects of data geometry including manifold learning have
been proposed in [11].

One way relies on such a flexible approximation, includ-
ing multi-layer perceptron (MLP) neural network [12], [13],
which is employed for estimating the nonlinear separation
transform function. By restricting the smoothness of the tar-
get transforming,1 MLP provides the regularized solutions
to ensure that nonlinear ICA leads to the sources separa-
ble. However, the example presented in [14] shows that the
smoothness property is not a sufficient condition for this pur-
pose. Hyvärinen and Pajunen [5] show conformal mapping2

may helpful. Nonlinear ICA is able to estimate a separation
mapping up to the rotation when the mapping functions are
restricted to the set of conformal mapping. Unfortunately,
the angle preservation conditions seem very restrictive [15].
In particular, it is not realistic in the framework of the nonlin-
ear mappings associated with the nonlinear sensor array.

A. OUR CONTRIBUTION
We present a novel separation model that relies on the tem-
poral structure and a novel mathematical construction with
a multi-layer architecture. The approach pre-processes the
data using a flexible approximation that projects the data into
a high dimensional feature space. Then, by considering the
temporal decorrelation as the separation criterion, we can
break a nonlinear problem down into a version of the gen-
eralized joint diagonalization problem in the feature space.

The derivation of our algorithm is inspired by the idea
of an efficient layer-by-layer representation to approximate
such nonlinearity, which is referred to as Vanishing Ideal-
based NonLinear SEparation Model (ViNLisem). By using
vanishing component analysis (VCA) in [16], a prominent
work in machine learning, we generate a set of polynomial
functions that transform a time-invariant nonlinear BSS to
the local linear problem. Such transformed components are
used to extract the nonlinear mixture as the flexible approx-
imation. Similar to a well-known principle in modern deep
learning [17]–[19], the layers of our architectures are built
one-by-one, creating higher-and-higher level representations
of the data. Once such a representation is built, a final output
layer is constructed by solving a convex optimization prob-
lem [20]. Based on the multi-layered architecture, the nonlin-
earity of the mixing model is depicted by such polynomials.
Importantly, the parameters and forms of polynomials depend
solely on the input data, which guarantee the robustness of the
structure. We thus address the general problem without being
restricted to any specific mixture or parametric model.

1The function f is a smooth transformation if its derivatives of any order
always exist and they are continuous.

2The conformal mapping is defined as a mapping which preserves
orientated angles. It is often considered in the framework of func-
tions of complex-valued variables that are restricted to plane mapping.
e.g., Joukovski mapping.

In particular, the layer-by-layer representation is adap-
tively generated solely on the observations. As the number of
spanned spaces goes up, the computational complexity grows
exponentially. To overcome this obstacle, relying on the prop-
erties of vanishing components, we provide a feasible way
to narrow the size of the candidate polynomial set. We thus
generate the polynomial in the current layer only from the
spanned space of the last layer and that of the first layer, such
as g(t)(S) is generated from the span of Ft−1×F1 rather than
considering all the extended spaces, i.e., F1,F2, · · · ,Ft−1.
The details are shown in Theorem 2 and Theorem 3.

In addition, using the frameworks in [21], the local tempo-
ral structure of the transformations is taken into account. The
contrast function is discriminative to be designed by empha-
sizing the difference from the temporally i.i.d. data. On the
other hand, the criterion is formulated by minimizing the
second-order statistics in which the transformed components
and their time lags are statistically as independent as possible.
Therefore, we can break a nonlinear problem down into the
version of generalized joint diagonalization problem in the
feature space.

The rest of the paper is structured as follows. In Section II,
we introduce some related works. The preliminary and prob-
lem formulation are given in Section III. In Section IV,
we present a novel approach used for nonlinear BSS algo-
rithm and its analysis of properties. In Section V, we discuss
the computational cost of the proposed algorithm. Section VI
provides experimental results to illustrate the effectiveness
of the proposed algorithm. We conclude the paper briefly
in Section VII.

II. THE RELATIVE WORK
One of the earliest frameworks based on temporal structures
is Temporal Decorrelation source SEParation method, which
is abbreviated as TDSEP in [21]. It works on the tempo-
ral structure that the separated signal and its time lags are
jointly taken into account for the independence of the sources.
However, for most temporal blind source separation (TBSS)
methods, how to select the optimal time lags is an important
problem. In this paper, we are going to show how this frame-
work can be extended to the nonlinear case rather than solving
the problem of searching the optimal time lags.

A related but different idea is exploited in approxima-
tion using multi-kernel space. Harmeling et al. [22]–[24],
a kernelized TDSEP (KTDSEP) method was proposed for
nonlinear blind source separation that the kernel functions
are used for mapping the observations into the kernel spaces.
They show how kernel functions are employed to linear
BSS methods to solve nonlinear source separation prob-
lems. These functions, however, do not have any optimiz-
ing property in terms of the contrast function that allows
them to be ranked and evaluated. In addition, the method
assumes the number of kernel spaces is chosen enough
to approximate the nonlinearity without technical reasons.
Sprekeler et al. [25] claim that temporal slowness comple-
ments statistical independence well, and a combination of
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these principles leads to unique solutions of the nonlinear
BSS problem.

Our construction and algorithm rely on the representation
learning [26]. Heldt et al. [27] introduced a numerically
stable approximate vanishing ideal algorithm. Livni et al. [28]
defined a family of neural networks with polynomial acti-
vation functions that the polynomial features are learned as
nonlinear combinations of the original signals. Donini and
Aiolli [29], used a hierarchy of base kernel in the space of
polynomial. These approaches consist of using an implicit
map of the data, such as the Nyström method [30], random
features [31] and sketching [32], [33]. That is features inter-
actions in possibly high-dimensional data [34]. All of these
approaches have in common with the flexible approximation,
which emphasizes the representation learning as the key to the
challenging nonlinear problems.

III. PRELIMINARY AND PROBLEM FORMULATION
The nonlinear BSS problem is formally described as follows.
The observed signals x(t) = {x1(t), x2(t), · · · , xn(t)}> are
assumed to be generated from a set of statistically indepen-
dent sources s(t) = {s1(t), s2(t), · · · , sm(t)}> by a nonlinear,
instantaneous and invertible function

x(t) = F(s(t)), t = 1, 2, · · · ,T , (1)

where {·}> denotes the transpose, and t is the sample (time)
index. Here, T is the total number of time points. n andm refer
to the number of observed signals and sources, respectively.
In this paper, we set n = m in general. Since we are going to
exploit only the statistical independence of the sources to be
retrieved, a suitable approximation of the inverse nonlinear
transformation could better reproduce the independence of
the sources. Then some basic definitions are introduced for
problem setup. Let f ◦h denotes the Hadamard product, such
as f ◦ h = [f1h1, · · · , fkhk ]>, where f = {f1, · · · , fk} and
h = {h1, · · · , hk} are two arbitrary vectors.
Definition 1 (Polynomial): A function g: Rn

→ R is
called as polynomial if the linear combination is g(x) =∑

j βjx
α(j), where the coefficient βj ∈ R, x = [x1, · · · , xn]>,

xα(j) =
∏n

i=1 x
αi(j)
i and α(j) = [α1(j), · · · , αn(j)]>. �

Definition 2 (Polynomial Ring): The polynomial ring
with n variables over R is denoted as R[x1, · · · , xn] that
the addition and multiplication operators over the polyno-
mial ring are equivalent to addition and multiplication of
functions. �
Definition 3 (Ideal): Let I be a set of polynomials in

R[x1, · · · , xn], whereR[x1, · · · , xn] is a polynomial ringwith
n variables. For ∀f ∈ I and g ∈ R[x1, · · · , xn]. If fg ∈ I
holds, then I is defined as an ideal. �
Definition 4 (Set of Generators): Let I be an ideal.

If ∀f ∈ I there exist h1, · · · , hk ∈ R[x1, · · · , xn] and a set
of polynomials {g1, · · · , gk} ⊆ I such that f =

∑
i gihi, then

{g1, · · · , gk} is said to generate I . �
Definition 5 (Vanishing Ideal): Given a dataset S ⊂ Rn,

for all x ∈ S, the vanishing ideal ofS is the set of polynomials
that vanish on S. i.e. g ∈ I (S) iff g(x) = 0 for ∀x ∈ S. �

The problem can be set up as follows. We have a set of
observed signals S = {x(t)}Tt=1 that are generated from (1).
The objective is to estimate the original sources s(t) and the
mixing functions F (or it’s inverse function G = F−1) by
using the observed signals x(t) only.

However, without any extra constraints, the solutions of
blind source separation are non-unique [5]. In this paper,
a novel approach is proposed by utilizing a flexible approx-
imation to estimate the nonlinearity of the mixing func-
tion. First, let us focus on the representation learning [26]:
how can we construct a structure that provides a good
approximation basis for the values attained by vanishing
polynomials.
Problem 1: Given an input dataset S = {x(t)}Tt=1, where

x(t) = [x1(t), · · · , xn(t)]> and S ⊂ Rn. The problem is to
learn a set of vanishing polynomials, which is formulated as
the following optimization problem

min
V

dim(V )

subject to V = {gi(x) = 0 | x ∈ S}, (2)

for i = 1, · · · , k , where dim(·) represents the dimension
of variables and V denotes the set of vanishing polynomial.
Since the real data are noisy that allow us to consider a
tolerate value ε, such that the polynomials almost vanish
on S, i.e., ‖gi(x)‖ ≤ ε for ∀x ∈ S is satisfied, where ‖ · ‖
denotes the Euclidean norm. �

In Problem 1, we prefer to seek a set of polynomials such
that gi(x) ≈ 0 for all i and x ∈ S. These polynomials may
provide a sufficient characterization of elements in S. By uti-
lizing the generators of vanishing polynomials, any nonlinear
mixture can be approximated with the combination of coef-
ficients and the monomials. However, such polynomials did
not achieve the inversion of the F function directly. They
provide more features with a different selection of vanishing
polynomials. Finally, the sources are recovered by solving a
joint diagonalization problem in the feature space.

The procedure is implemented by finding a set of polyno-
mials g1(x), · · · , gk (x) that satisfy ‖gi(x)‖ ≤ ε for all i = 1,
· · · , k and x ∈ S. Given a dataset S, the vanishing ideal
is denoted as I (S), which is a set of polynomials vanished
on S, i.e., g ∈ I (S) iff ‖g(x)‖ ≤ ε for ∀x ∈ S. If a set of
polynomials can generate I (S), then this set of polynomials
is referred to as a set of generators for I (S). Hilbert basis
theorem in [35] told us that a finite set of generators exists for
any ideal. A finite set of generators of the ideal is an attractive
mechanism for describing I (S), since all the elements in I (S)
can be derived from this set of generators. Thus, the mixing
function F can be approximated by finding such a finite
set of generators, whose elements are named as vanishing
polynomials.

Using the vanishing polynomials, the projected signals
take the form of φ(x(t)) that is the projection of x(t) in the
high-dimensional feature space. The demixing process can be
expressed by a linear combination of these projected signals
in the following formulation.
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Problem 2: Let {x(t)}Tt=1 be a set of observed signals.
There is a set of polynomials gi such that {gi(x(t))}ki=1
form a basis of Rn. By using such polynomials gi, the pro-
jected data of x(t) in feature space denoted as φ(x(t)) =
{φ1(x(t)), · · · , φk (x(t))}. Since the original sources s(t) are
mutually independent, there exist a coefficient matrix W so
as to

argmin
W

∑
i 6=j

Wi,:6φW>j,: +
∑
i 6=j

N∑
l=1

Wi,:6τ lW
>
j,:, (3)

where Wi,: and Wj,: are the i-th and j-th row of matrix W,
respectively. The matrices 6φ = E[φ(x(t))φ(x(t))>] and
6τ i = E[φ(x(t))φ(x(t + τi))>] are defined as the covariance
matrix of φ(x(t)) and the covariance matrix with time lags τi,
respectively. Thus, the signal is defined by

s̃j(t) =
k∑
i=1

Wjiφi(x(t)), (4)

for j = 1, · · · , k , where Wji denotes the (j, i)-th element of
the coefficient matrix W. �

Problem 2 implies that if we build a set of vanishing com-
ponents, which computes such k polynomials g1, · · · , gk ,
then we can recover the signals s̃(t) with k dimensions. Due to
k > n, we need to select n sources from s̃(t), which construct
the estimation of the original sources s(t).
Problem 3: Let s̃(t) = [s̃1(t), · · · , s̃k (t)]> be a set of

recovered signals. Since the original sources s(t) are mutually
independent, it is also independent if the separation process
in (3) is applied again to the signal s̃(t). i.e., s̃′(t) = W′s̃(t),
where W′ is another coefficient matrix if joint diagonal-
ization approach is applied to the signal s̃(t) again. Then,
the recovered sources ŝ(t) corresponds to the first nmaximum
correlations (corr) in s̃(t)

ŝ(t) = s̃π ,:(t), t = 1, · · · ,T ,

subject to π = ϒ(θ; n),

θ = 4max
{
corr

(
s̃(t), s̃′(t)

)}
, (5)

where s̃π ,:(t) is the vector composed of elements from s̃(t)
indicated with the index π . π is the index number of output of
ϒ(θ; n) that is the function to choose the maximum n values
of vector θ . 4max{corr

(
s̃(t), s̃′(t)

)
} is a function to output a

vector θ with each element being as the maximum value of
each row of the matrix corr

(
s̃(t), s̃′(t)

)
.

Figure 1 shows an intuitive example for nonlinear sep-
aration using the mapping functions. Since the observa-
tions are nonlinearly mixed in the input space, we need
to resort to a flexible approximation that can extract the
nonlinear characteristics in the manifold G. Here, vanish-
ing components allow us to construct the nonlinear variants
by some polynomials, such as g1(x(t)), · · · , gk (x(t)) ∈ G.
i.e., the data x(t) are mapped implicitly into the feature
space that denoted as φ(x(t)) = [φ1(x(t)), · · · , φk (x(t))]> =
[g1(x(t)), · · · , gk (x(t))]>. The feature space is spanned from
such polynomials that enable us to work on G. Then BSS

FIGURE 1. Input data x(t) are mapped to the manifold of G ∈ Rk , which is
a feature space constructed by some polynomials {g1, · · · ,gk } ⊂ G.
Therefore, the projected points φ(x(t)) in feature space can make the
problem linearly separable. The linear coefficient matrices in the feature
space correspond to nonlinear coefficient matrices in the input space.

approaches can be applied to the projected data in the feature
space, which corresponds to the nonlinear BSS approaches
in the input space. Finally, due to k > n, we need to select
n sources, which construct the estimation of the original
sources s(t) in the estimated space. Since the parameters of
the polynomials depend solely on the input data, it guarantees
the robustness of the structure.

IV. NONLINEAR SEPARATION MODEL
We now turn to develop our nonlinear separation model as
well as the accompanying analysis. We do the algorithm in
the following stages. First, we derive a flexible approximation
with multi-layer architecture, which runs in a set of poly-
nomials that approximately equal to the value of zero. Thus
the projected data in the feature space can make the problem
linearly separable. Then, by taking into account the temporal
structure served as a separation criterion, we can break the
nonlinear problem down into a joint diagonalization problem
in the feature space.

A. STRUCTURE OF MULTI-LAYER ARCHITECTURE
In order to perform a simple linear separation problem
in feature space that corresponds to the nonlinear prob-
lem in input space, we need to specify how to map
inputs x(1), · · · , x(T ) ∈ Rn into the feature space Rk .
A similar way is the kernel-based TDSEP presented by
Harmeling et al. [24]. The difference is that our proposed
method adapts to generate the polynomials, rather than
assuming the number of approximate functions is chosen
enough to represent the nonlinearity.

To ensure that a set of generators of I (S) carry significant
information about the input, we require the generators to be
uncorrelated and the coefficients being in the null space of the
matrix, which is composed of the monomials with different
degree. Mathematically, this can be stated as follows.
Proposition 1: Denote the set of monomials over n vari-

ables with total degree up to d by T n
d . Consider the set of

monomials T n
d and the matrix A of size T × |T n

d | as follows:
Aij = tj(x(i)), where tj(x(i)) is the jth monomials in T n

d ,
which is composed of elements from x(i). Let β1, · · · ,βk
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be a basis of the null space of matrix A. Namely, for all
i = 1, · · · , k , we haveAβ i = 0 and any vectorβ that satisfies
Aβ = 0 can be written as a linear combination of β i. Then
the polynomials fi(x) =

∑|T n
d |

j=1 βijtj(x), i = 1, · · · , k form a
set of generators of I (S), where βij is the coefficient for the
i-th polynomial function and j-th monomial. �

Proof: Since Aβ i = 0 is satisfied for all i = 1, · · · , k ,

we have fi(x) =
∑|T n

d |

j=1 βijtj(x) = 0. Thus, fi(x) ∈ I (S).
Consider any polynomial g(x) in the set of I (S). Denote
the coefficients for the polynomial g(x) by z ∈ R|T n

d | such
that the coefficients satisfy Az = 0. Then we have g(x) =∑|T n

d |

j=1 zjtj(x) = 0. Since β1, · · · ,βk is a basis of the null
space of matrix A, the coefficient vector z can be written
as a linear combination of β i as z =

∑k
i=1 αiβ i, which we

also have zj =
∑k

i=1 αiβ ij. Then the polynomial g(x) can be

written by g(x) =
∑|T n

d |

j=1 zjtj(x) =
∑|T n

d |

j=1
∑k

i=1 αiβ ijtj(x) =∑k
i=1 αifi(x). Thus, the polynomials fi(x) form a set of gener-

ators of I (S). �
The above procedure achieves the goal of finding a set of

generators of I (S). Since the real data are noisy that allow
us to consider a tolerate value ε, such that the polynomials
almost vanish on S if g(x) ≤ ε is satisfied.

1) POLYNOMIALS OF DEGREE 1
If the vanishing polynomial is applied to the whole data S,
we have

g(1)(S) =
[
g(1)(x(1)), · · · , g(1)(x(T ))

]>
= 0T×1, (6)

where S = {x(1), · · · , x(T )}. Firstly, the linear polynomial
can be expressed as the combination of vector x(t) with the
coefficient β ∈ Rn+1 such that

g(1)(x(t)) = β0 +
n∑
i=1

βixi(t) =
n∑
i=0

βiρi(x(t)), (7)

where xi(t) is the i-th element for the observations x(t) and
ρi(x(t)) = xi(t) for convenience. Thus, ρ0(x(t)) = 1 for
all x(t). It follows that for any such polynomial we have

g(1)(S) =

g
(1)(x(1))
...

g(1)(x(T ))

 =

∑n

i=0 βiρi(x(1))
...∑n

i=0 βiρi(x(T ))


=

n∑
i=0

βiρi(S), (8)

where ρi(S) = [ρi(x(1)), · · · , ρi(x(T ))]>.
Theorem 1: The polynomial g(1)(S) vanishes on dataset S

if and only if g(1)(S) = 0T×1, which requires the vector
β would be in the null space of the T × (n + 1) matrix
A1 = [ρ0(S), · · · , ρn(S)] as

A1β = [ρ0(S), · · · , ρn(S)]β = 0T×1. (9)
Then the vanishing polynomials can be obtained by search-

ing the null space of A1. We maintain two sets for poly-
nomials of degree 1: V1 for the vanishing polynomials and

F1 for the non-vanishing polynomials. We use the notation
F1 = {ρ(S) : ρ ∈ F1} ⊂ RT to denote the vectors in Rn.
Wewill constructF1 such thatF1 is a set of orthogonal vectors
in RT . Algorithm 1 describes the procedure to generate the
vanishing and non-vanishing polynomials of degree 1 by the
Gram-Schmidt procedure.

Algorithm 1 Generate Polynomials of Degree 1 by
Gram-Schmidt Procedure
Initialization:
1: F1 = {ρ0(S)}, where ρ0(S) = [1/

√
n, · · · , 1/

√
n]>;

2: V1 = ∅;
3: C1 = {ρ1(S), ρ2(S), · · · , ρn(S)}, where ρi(S) =

[ρi(x(1)), · · · , ρi(x(T ))]>.

1: for i = 1 to n do
2: g(1)i (S) = ρi(S)−

∑
ρ∈F1〈ρi(S), ρ(S)〉ρ(S)

3: if ‖g(1)i (S)‖ ≤ ε then
4: V1← V1

⋃
{g(1)i (S)}

5: else
6: F1← F1

⋃
{g(1)i (S)/‖g(1)i (S)‖}

7: end if
8: end for

Output:
1: Vanishing polynomial set V1;
2: Non-vanishing polynomials set F1.

Considering a polynomial of degree 0, ρ0(S) = 1T×1 is
clearly non-vanishing. We initialize F1 = {ρ0(S)/‖ρ0(S)‖},
where ‖ · ‖ denotes the norm of the vector. And set V1 = ∅
initially. Set C1 to be a candidate set of polynomials,
which is composed of polynomials of degree 1, such as
C1 = {ρ1(S), ρ2(S), · · · , ρn(S)}. To obtain the non-
vanishing polynomials orthogonal to each other, it requires

g(1)i (S) = ρi(S)−
∑
ρ∈F1

〈ρi(S), ρ(S)〉ρ(S). (10)

Since the non-vanishing polynomial set F1 only contains
one element ρ0(S) initially, the above equation can be simply
represented as

g(1)i (S) = ρi(S)− 〈ρi(S), ρ0(S)〉ρ0(S), (11)

where 〈ρi(S), ρ0(S)〉 is the coefficient for ρ0(S).We can now
reformulate (11) in terms of a dual representation as

g(1)i (S) = [ρ0(S), ρ1(S), · · · , ρi(S), · · · , ρn(S)] ·
× [−〈ρi(S), ρ0(S)〉, 0, · · · , 1, · · · , 0]>. (12)

Compared with (9) in Theorem 1, the vector β is given
in the form β = [−〈ρi(S), ρ0(S)〉, 0, · · · , 1, · · · , 0]>. If a
proper coefficient vector β can be searched so as to gi(S)
vanish on the data S, we update V1 ← V1

⋃
{g(1)i (S)}.

Otherwise,F1← F1
⋃
{g(1)i (S)/‖g(1)i (S)‖} is updated, where

the normalization ensures that all the vectors in F1 are
orthonormalization as the normalized vectors. At the end of
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this process, F1 contains a set of linear polynomials which
are non-vanishing on S and V1 contains a set of linear poly-
nomials that vanish on S.

2) POLYNOMIALS OF DEGREE 2
To exploit the polynomials of degree 2, we need to con-
struct a candidate set of polynomials C2 = {ρi,j(S)}ni,j=1,
where ρi,j(S) = [ρi,j(x(1)), · · · , ρi,j(x(T ))]> and ρi,j(x(t)) =
xi(t)xj(t) for all i, j. Each polynomial of degree 2 takes the
form

g(2)(x(t)) =
n∑
i=0

βiρi(x(t))+
n∑

i,j=1

βi,jρi,j(x(t)). (13)

By considering all the data points in S, we have

g(2)(S) =
[
g(2)(x(1)), · · · , g(2)(x(T ))

]>
=


∑n

i=0
βiρi(x(1))+

∑n

i,j=1
βi,jρi,j(x(1))

...∑n

i=0
βiρi(x(T ))+

∑n

i,j=1
βi,jρi,j(x(T ))


=

n∑
i=0

βiρi(S)+
n∑

i,j=1

βi,jρi,j(S). (14)

As before, we can find vanishing 2nd order poly-
nomials via the null space of the matrix: A2 =

[A1, ρ1,1(S), · · · , ρn,n(S)]. To find the null space of the
matrix A2, we could simply continue the Gram-Schmidt
procedure that we have already performed for the columns
of A1. However, we now need to consider n2 + n + 1
columns. As the degree goes up, the number of columns
increases exponentially. To overcome this obstacle, relying
on the properties of vanishing components, we provide an
effective iterative approach to narrow the size of the candidate
polynomial set.
Theorem 2: Let g(2)(S) be a set of polynomials of

degree 2. It can be constructed by two terms of degree 1 of
the form g(2)(S) =

∑
i1,i2 f

(1)
i1
◦ f (1)i2 . Without loss of gen-

erality, assume that for i1, i2 ≤ l, where l is index number
of polynomial of degree 1. We have that both f (1)i1 and f (1)i2
are non-vanishing on S. For i1, i2 > l, either f (1)i1 or f (1)i2
vanishes. It follows that for all i1, i2 > l we have that
the polynomial f (1)i1 ◦ f

(1)
i2
= 0T×1. Thus, the polynomial

ĝ(2)(S) =
∑

i1,i2≤l f
(1)
i1
◦f (1)i2 satisfies ĝ(2)(S) = g(2)(S). F1 =

{p(1)1 , · · · ,p
(1)
|F1|
} is denoted as a non-vanishing polynomial

set of degree 1, where |F1| denotes the number of elements
included in the set F1. Any polynomial of degree 1 that
generated from F1 can be expressed as

f (1)i1 =
∑
j1

α
(1)
i1,j1

p(1)j1 , f (1)i2 =
∑
j2

α
(1)
i2,j2

p(1)j2 , (15)

where α(1)i1,j1 and α
(1)
i2,j2

denote the coefficients that make f (1)i1 ◦

f (1)i2 6= 0T×1 for all i1, i2 ≤ l. Then F2 can be generated from

the span of f (1)i1 and f (1)i2 for i1, i2 ≤ l as

ĝ(2)(S) =
∑
i1,i2≤l

f (1)i1 ◦ f
(1)
i2

=

∑
j1,j2

[(
p(1)j1 ◦ p

(1)
j2

)( ∑
i1,i2≤l

α
(1)
i1,j1

α
(1)
i2,j2

)]
. (16)

The operator ◦ denotes the Hadamard product, namely

the vector f (1)i1 ◦ f
(1)
i2
= [f (1)i1,1

f (1)i2,1
, · · · , f (1)i1,T

f (1)i2,T
]>, where

the degree of f (1)i1 = [f (1)i1,1
, · · · , f (1)i1,T

]> and f (1)i2 =

[f (1)i2,1
, · · · , f (1)i2,T

]> are at most 1. �
Theorem 2 is proved in the Appendix A. It follows that

ĝ(2)(S) can be constructed from the span of F1×F1 and thus
to construct F2 and V2, which suffices to find the null space
and range on the set of candidate polynomials from F1 × F1.
Formally, let us redefine C2 to be the set

C2 =

{
ρi1,i2≤l(S) = p(1)j1 ◦ p

(1)
j2
| p(1)j1 ,p

(1)
j2
∈ F1

}
. (17)

We will construct F2 and V2 by continuing a similar process
with a polynomial of degree 1 on the candidate vectors of C2.
Note that, due to the particular structure of vanishing poly-
nomials, as proposed in Theorem 2, g(2)(S) can be generated
from the span of F1 × F1, i.e., from the polynomials with
i1, i2 ≤ l rather than the whole candidate vectors. Therefore,
the remainder of ρi1,i2≤l ∈ C2 after projecting it on the
current set F2 is the polynomial g(2)(S) defined by

g(2)(S) = ρi1,i2≤l(S)−
∑

p(1)∈F2

〈ρi1,i2≤l(S),p
(1)(S)〉p(1)(S).

(18)

It requires |F1|× |F1| times to evaluate all the polynomials
in the candidate polynomial set C2. Before we evaluate the
polynomials of degree 2, we initialize F2 and V2 as F2 = F1
and V2 = V1. Then if |g(2)(S)| ≤ ε, we have g(2)(S) van-
ishes on S. So we update V2 ← V2

⋃
{g(2)(S)}. Otherwise,

we update F2← F2
⋃
{g(2)(S)/‖g(2)(S)‖}. At the end of this

process, F2 contains a set of polynomials of degree 1 and
degree 2 that are non-vanishing on S. In contrast, V2 contains
a set of polynomials of degree 1 and degree 2 that vanish onS.

3) POLYNOMIALS WITH A HIGHER DEGREE
The above progress continues to a higher degree. For any
polynomial of degree t , we prefer to construct the set of non-
vanishing polynomials Ft only from the span of Ft−1 × F1.
At iteration t , the candidate polynomial set Ct is given in the
form

Ct =
{
ρi1,i2,··· ,it≤l(S) = p(t−1)j ◦ p(1)jt

}
, (19)

where p(t−1)j = p(1)j1 ◦ p
(1)
j2
· · · ◦ p(1)jt−1 ∈ Ft−1 and p(1)jt ∈ F1.

For simple expression, the candidate polynomial set is written
as Ct =

{
q1(S), · · · , ql(S)

}
. Then the above orthogonal

processing can be given as

g(t)i (S)=qi(S)−
∑

p(t−1)(S)∈Ft

〈qi(S),p(t−1)(S)〉p(t−1)(S). (20)
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The above processing procedure performs like a consecu-
tive processing procedure that each time one polynomial is
added to the vanishing polynomial set Vt or non-vanishing
polynomial set Ft . Actually, we can operate more polynomi-
als simultaneously with singular value decomposition (SVD).
Before that, let us first introduce a property similar to
Theorem 2.
Theorem 3: Let g(t)(S) be a set of polynomials of degree t .

It can be constructed as ĝ(t)(S) =
∑

i1,i2,··· ,it≤l f
(1)
i1
◦ f (1)i2 ◦

· · · ◦ f (1)it . Assume that for i1, i2, · · · , it ≤ l, we have that

f (1)i1 , f
(1)
i2
, · · · , f (1)it are non-vanishing on S. Denoting Ft−1 =

{p(t−1)1 , · · · ,p(t−1)
|Ft−1|
} and F1 = {p

(1)
1 , · · · ,p

(1)
|F1|
} as a non-

vanishing polynomial set of degree t − 1 and 1, respectively.
Then any polynomials ĝ(t)(S) can be formulated as

ĝ(t)(S) =
∑

i1,i2,··· ,it≤l

f (1)i1 ◦ f
(1)
i2
◦ · · · ◦ f (1)it

=

∑
j,jt

[(
p(t−1)j ◦ p(1)jt

)(∑
it≤l

α
(t−1)
j α

(1)
it ,jt

)]
, (21)

where α(t−1)j and α(1)it ,jt denotes the coefficients that make

p(t−1)j ◦ p(1)jt 6= 0T×1 for all j, jt . �
The theoretical proof is shown in the Appendix B. Then

Ft can be generated from the span of Ft−1 × F1. The
matrix At can be formed as At = [g(t)1 (S), · · · , g(t)

|Ft |(S)].
By using SVD, the matrix At can be decomposed as
At = LDU>. Using a simple matrix operation, we then
obtain

AtU =
[
g(t)1 (S), · · · , g(t)

|Ft |(S)
]
U = LD, (22)

where L = [l1, · · · , lT ] and l i ∈ RT for i = 1, · · · ,T . The
above equation can be written as

η
(t)
i (S) =

|Ft |∑
j=1

Uj,ig
(t)
j (S) =

T∑
j=1

Dj,il j = Di,il i, (23)

where i = 1, · · · , |Ft |. If Di,i < ε, we denote the
polynomial η(t)i (S) vanishes, where ε is the tolerate value
used to evaluate the polynomials how close to zero. Thus,
we update Vt ← Vt

⋃
{η

(t)
i (S)}. Otherwise we update

Ft ← Ft
⋃
{η

(t)
i (S)/‖η(t)i (S)‖}.

B. APPROXIMATE SIMULTANEOUS DIAGONALIZATION
After we obtain a set of polynomials that projected data in the
feature space, we consider the blind source separation with
temporal structure employed as the separation criterion. Thus,
the nonlinear separation problem can be changed to a general-
ized joint diagonalization problem. An alternative technique
proposed in [36] can achieve the process by implementing
two steps: 1. whitening and 2. Constructing several Jacobi
rotations to achieve an approximate simultaneous diagonal-
ization of the correlation matrix set. In step 1, we find a linear
transform, which can be determined by taking the inverse

square root of the covariance matrix as

2φ = 6
−

1
2

φ(x(t)) =
(
E
[
φ(x(t))φ(x(t))>

])− 1
2
, (24)

where φ(x(t)) = [g1(x(t)), · · · , gk (x(t))]> and k is total
number of vanishing polynomials. The transform 2φ gives
a representation of the signals φ(x(t)) in a new basis and
the transformed signals are denoted by z(t) = 2φφ(x(t)) =

6
−

1
2

φ(x(t))φ(x(t)). We defined a time-lagged correlation matrix
of z(t) as

6z(τ ) = E
[
z(t)z(t + τ )>

]
= 6

−
1
2

φ(x(t))E
[
φ(x(t))φ(x(t + τ )>

](
6
−

1
2

φ(x(t))

)>
= 2φ6φ(τ )2

>

φ . (25)

With different time lag, we can have different correlation
matrix as 6z(τ1),6z(τ2), · · · ,6z(τN ), where N is the number
of time lags. After the pre-whitening step, any time delayed
correlation matrix can be transformed to a diagonal matrix by
a rotation matrix Q as

6z(τ1) = Q3z(τ1)Q
>,

6z(τ2) = Q3z(τ2)Q
>,

...

6z(τN ) = Q3z(τN )Q
>.

(26)

Concatenating both the whitening matrix2φ and the rotation
matrix Q yields the demixing matrix as

W = Q−12φ = Q−16
−

1
2

φ(x(t)). (27)

Therefore, the signal s̃(t) can be expressed as

s̃(t) =Wφ(x(t)) = Q−16
−

1
2

φ(x(t))φ(x(t)). (28)

Note that the dimensions of s̃(t) and the original
source s(t) are k and n respectively, where k > n.
We need to select n sources from s̃(t), which construct
the estimation of the original sources s(t). Considering all
the projected components, we have the demixed signals
S̃ = Q−12φ8, where 8 = [φ(x(1)), · · · ,φ(x(T ))] and
S̃ = [s̃(1), · · · , s̃(T )]. Since the original sources are mutually
independent, the demixed sources should be also indepen-
dent even if the demixed matrix is applied to the signal
s̃(t) again. Therefore, we can obtain another set of signal
S̃′ = [s̃′(1), · · · , s̃′(T )]. By employing the above temporal
structure on s̃(t), the correlation (corr) between each row in S̃
and each row in S̃′ is calculated by

corr
(
s̃(t), s̃′(t)

)
=

∑T
t=1(s̃i − E[s̃i])(s̃′j − E[s̃′j])√∑T

t=1(s̃i − E[s̃i])2
√∑T

t=1(s̃
′
j − E[s̃′j])2

.

(29)

Then, the rows in S̃ with the maximum n correlations are
denoted as the recovered sources ŝ(t).
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V. COMPUTATIONAL COMPLEXITY
In this section, we analyze the computational complexity of
the algorithm. Recalling our notations, we defined two sets:
V and F are sets of vanishing polynomials and non-vanishing
polynomials, respectively. The subscript of F denotes the
subset of non-vanishing polynomials in the corresponding
degree. For example, we use the notation F1 ⊂ F to denote
the non-vanishing polynomials with degree 1 in RT . F [r]

=⋃
i≤r Fi is defined as the union of the collection Fi up to

degree r . |Fi| denotes the number of polynomials in the non-
vanishing polynomial setFi. In Algorithm 1, the progress will
terminate at round r when the set Fr is empty. On the other
hand, the progress does not stop, then |F [r]

| ≥ r holds for
any F [r]

=
⋃

i≤r Fi, because Fi should contain at least one
polynomial. Since F [r] is a set of orthonormal non-vanishing
polynomials, none of the vector in F [r] can be expressed as
the combination of other polynomials in F [r]. Then the rank
of the matrix with the columns listed as the polynomials from
F [r] is |F [r]

|. Consequently, we have |F [r]
| ≤ T .

Suppose we have the non-vanishing polynomial set
F1, · · · ,Fr−1, the candidate polynomial set Cr is gener-
ated as Cr = Fr−1 × F1. Let us enumerate all the non-
vanishing polynomial according to the order in which they
were inserted into F [r−1], which is listed as F [r−1]

=

{g1(S), · · · , g|F [r−1]|(S)}. Then for any polynomial from the
candidate polynomial set Cr , we have

gi(S) = ρi(S)︸ ︷︷ ︸
O(T )

−

∑
g(S)∈F [r−1]

〈ρi(S), g(S)〉g(S)︸ ︷︷ ︸
O(T×|F [r−1]|)

. (30)

where ρi(S) is the candidate polynomial. Since ρi(S) is the
constant vector, it can be evaluated in time O(T ). There are
|F [r−1]

| vector in the non-vanishing polynomial set F [r−1].
Any polynomial gi(S) can be written as a product of two
polynomials from F1 and Fr−1 minus a linear combination of
g1(S), · · · , g|F [r−1]|(S). Therefore, the process can be evalu-
ated in time O(T × |F [r−1]

|). A similar argument shows that
if we take account into all the polynomials in the candidate
polynomial set Cr , the evaluation of computational cost is
O(T × |F [r−1]

| × |Cr |). Thus, considering the iteration up
to the degree of r , it will take the computational cost as
O(T

∑r
i=1(|F

[i−1]
||Ci|)) = O(T

∑r
i=1(|F

[i−1]
||F1||Fi−1|)).

A. COMPUTATIONAL COMPLEXITY
OF TEMPORAL PROCESS
Next, we consider another part of the computational cost of
the temporal structure. For the observed signal x(t) ∈ Rn,

the calculation of the covariance 6
1
2
x = ( 1T xx

>)
1
2 requires

O(n2T + n2). The covariance matrix with time lag τ is
defined by

6τ (x) = E[x(t)x(t + τ )>]. (31)

Assume we need to calculate N time-lagged correlation
matrices 6τ1(x), · · · ,6τN (x), it requires O(N (n2T + n2)).

Simultaneous diagonalization of N matrices is imple-
mented by the Jacobi-like technique [37]. We are going
to search a unitary matrix that makes Q6τ1(x)Q

>, · · · ,

Q6τN (x)Q
> as a collection of diagonal matrices. Consider-

ing a set {Q6τ1(x)Q
>, · · · ,Q6τN (x)Q

>
} of N matrices of

size n × n, the process needs to take the time O(λmn2),
where λ is the number of iterations for the simultaneous
diagonalization.

After we obtain the matrixQ, the demixingmatrix is calcu-

lated asW = (6
1
2
xQ)−1, which needs the timeO(2n3+n2T ).

To summarize the above process, the computational cost of
the temporal process is given by

O(n2T + n2 + N (n2T + n2)+ λNn2 + 2n3 + n2T ). (32)

Since we have T � n, T � λ and T � m, the compu-
tation time of the temporal process can be approximated as
O(Nn2T ). We have |V | vectors in the vanishing polynomial
set. Then the total computational cost can be evaluated in time
O(T

∑r
i=1(|F

[i−1]
||F1||Fi−1|)+ N |V |2T ).

TABLE 1. A comparison of the computational complexity with several
integration methods.

As shown in Table 1, the computational complexity of
TDSEP [21] for the observed signal x(t) ∈ Rn is O(Nn2T ),
where N is the number of time lags of temporal structure.
Using the approximation of multi-kernel space in [22]–[24],
the cost of adding the signal channels from n to the high
dimensional space with d that can be evaluated in O(Nd2T ).
Since KTDSEP method sets the number of kernel spaces
initially, the parameter d is fixed rather than depending on
the data itself. In contrast, the algorithm ViNLisem is not
restricted to any specific mixture or parameter model, but
generate the multi-layer architecture to approximate such
nonlinearity solely based on the data and the degree of van-
ishing polynomials.

VI. EXPERIMENTS WITH REAL-WORLD DATA
In this section, experimental results of the proposed algo-
rithms for three kinds of nonlinear mixtures are shown. The
methods used for comparison and evaluation equation are
presented in Section VI-A. Afterward, the description of
data and experimental settings are shown in Section VI-B.
The results and their performance evaluation are given
in Section VI-C.

A. METHODS AND EVALUATION EQUATION
The separation performance of the proposed nonlinear sepa-
ration method is evaluated with other six approaches on five
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real audio datasets. The following shows the sixmethods used
for comparison.

1. TDSEP [21]: Temporal decorrelation source separation
relies on the estimation of simple time-lagged covariance
matrices (second-order statistics), which emphasize the dif-
ference from the temporally i.i.d. case.

2. KTDSEP3 [24]: Kernel-based TDESP was proposed
by Harmeling et al. that transformed the source signals into
kernel spaces. The approach relies on such kernels that are
assumed to be chosen enough to approximate the nonlinearity
of the observed signals.

3. FICA4 [38]: Fast independent component analysis is a
significant milestone for blind source separation. It recovered
the statistically dependent sources by minimizing the crite-
rion composed of the negative-entropy.

4. KICA5 [39]: Kernel-based ICA is used to show the
necessity of exploiting nonlinear ICA methods for separating
nonlinear mixtures.

5. JADE6 [40]: Joint approximate diagonalization of eigen-
matrix is considered to operate on the high-order statistics of
independence.

6. SOBI7 [36]: Second-order blind identification is a tech-
nique to exploit the coherence of the source signals, which
relies only on stationary second-order statistics.

To measure the performance of recovered sources, the nor-
malizedmean squared error (NMSE) is employed [41], which
has the following definition

NMSE(si, ŝi) = 10 log10

(
1
n

n∑
i=1

min
δ

‖si − δŝi‖22
‖si‖22

)
, (33)

where ŝi denotes the estimate of the source signal si, and δ is
a scalar reflecting the scalar ambiguity.

B. DATA AND EXPERIMENT SETTING
The experiments are designed on the assumption that the
observed signals are mixed nonlinearly. The sources used
for the following simulations include 5 real-world audio sig-
nals with different temporal properties. They are publicly
available [42]. Each one has its own advantages, depending
on whether one is interested in a variety of environments,
in a number of microphones, or in the overlap. For instance,
the data ‘‘AMI’’ has two kinds of sound from the cable news
and network news. Another data ‘‘Multitrack’’ was mixed
with two anonymous singers. All the sources were sampled
at 8,000 Hz. The length of the samples was varied to assess
how the amount of training data affects the performance
of the algorithm. The general properties of the datasets are
summarized in Table 2.

Three kinds of nonlinear mixture functions were inves-
tigated, including the distorted source (DS) in [6], the

3http://people.kyb.tuebingen.mpg.de/harmeling/code/ktdsep-0.2.tar
4https://research.ics.aalto.fi/ica/fastica/
5http://www.di.ens.fr/ fbach/kernel-ica/index.htm
6http://perso.telecom-paristech.fr/ cardoso/Algo/Jade/jadeR.m
7https://github.com/aludnam/MATLAB/blob/master/sobi/sobi.m

TABLE 2. Descriptions of real-world data [42].

post-nonlinear mixture (PNL) in [15], and the generic non-
linear (GN) in [14] and [43].

1) THE DISTORTED SOURCE (DS)
In the DS mixture function of (34), each observation is a
linear mixture of nonlinear distorted sources. Specifically,
in the experiments the two channel mixtures were generated
according to

x1(t) = a1s1(t)+ 3 tanh(s2(t)/4)+ 0.1s2(t),

x2(t) = a2s2(t)+ 3 tanh(s1(t)/4)+ 0.1s1(t), (34)

where a1 = a2 = 1. Figure 2(a) shows the scatter plot of
the sources si(t) and that of the observations xi(t). To see
the level of nonlinear distortion in the mixing transformation,
we give the scatter plot of the affine transformation of si(t)
in Figure 2(b).

FIGURE 2. (a) The scatter plots of the original sources use the ‘‘AMI’’
dataset8 in Table 2. (b) The mixture signals are generated from distorted
source (DS) function. (a) Source signals. (b) Mixture signals.

2) THE POST-NONLINEAR (PNL)
The post-nonlinear mixtures constitute a particularly interest-
ing example of the theoretical separability characterized by
weak indeterminacy. The sources were the first subject to a
linear mixture z(t) = As(t), whereA is a 2×2 mixing matrix
give by

A =
(
−0.2261 −0.1189
−0.1706 −0.2836

)
. (35)

Then each mixture component is generated from a nonlinear,
invertible transformation, as the form of

x1(t) = (z2(t)+ 3z1(t)+ 6) cos(1.5π )z1(t),

x2(t) = (z2(t)+ 3z1(t)+ 6) sin(1.5π )z1(t). (36)

The sources are plotted in Figure 3(a). The mixture com-
ponents are shown in Figure 3(b), where we can see the
distortions caused by the nonlinearities.
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FIGURE 3. (a) The scatter plots of the original sources use the ‘‘ChiME3’’
dataset9 in Table 2. (b) The mixture signals are generated from
post-nonlinear (PNL) function. (a) Source signals. (b) Mixture signals.

3) THE GENERIC NONLINEAR (GN)
In the following example, at each sample t , the sources are
mixed nonlinearly as[

x1(t)
x2(t)

]
=

[
cosα(s(t)) − sinα(s(t))
sinα(s(t)) cosα(s(t))

] [
s1(t)
s2(t)

]
, (37)

where α(s(t)) is defined by the parameter model

α(s(t)) = α0 + γ ×
√
s21(t)+ s

2
2(t).

In our simulation, the parameter α0 and γ are set to 0 and 1,
respectively.

FIGURE 4. (a) The scatter plots of the original sources use the
‘‘Nonspeech’’ dataset10 in Table 2. (b) The mixture signals are generated
from generic nonlinear (GN) function. (a) Source signals. (b) Mixture
signals.

Figure 4(a) illustrates the source signals, which is the case
for the audio data of ‘‘Nonspeech’’ collected in Table 2.
By using a mixing function given in (37), the observations
are nonlinearly mixed, which is shown as an anchor-shaped
structure in Figure 4(b). The mixing function (37) is not
symmetric in s1(t) and s2(t). Thus, for every pair of sources,
there are two possible mixtures and we have tested both for
each source pair.

For most blind source separation method based on the
temporal structure, such as TDSEP, KTDSEP and our pro-
posed ViNLisem method, the selection of the optimal time
lags is a tough problem. Clearly, the performance can be
degraded if the improper delay is chosen, whereas a large
number of delays always give a stable solution. Here, we got
some knowledge of practical experiments, which was shown
in Figure 5 that many delays always brings us to the stable
side. Thus, in the following experiments, the time-shift is

FIGURE 5. The performance indexes consider various time shift τ for the
methods with temporal structure, such as TDSEP, KTDSEP, and our
proposed ViNLisem.

FIGURE 6. All the projected components and the original sources. The
horizontal bars indicate the normalized correlation.

set as τTDSEP = 0, · · · , 20, τKTDSEP = 0, · · · , 40 and
τViNLisem = 0, · · · , 7, respectively.

In addition, for the best parameter setting, we could
apply KTDSEP with a polynomial kernel of degree 9,
i.e. K(s1, s2) = (s>1 s2 + 1)9 and the dimensionality of kernel
space set as 20. In practice, the real data are noisy that allow
us to consider a tolerate value ε, so as to the polynomials
almost vanish, i.e. ‖gi(x)‖ ≤ ε. The parameter ε is used to
indicate the distance between the measured polynomials and
the value 0. If a bigger ε is selected, the polynomials will have
a bigger distance from the value 0. However, if a smaller ε is
selected, the degree of the polynomial will be higher to make
the polynomial satisfying the restrict of ε. Then the cost time
will be longer to search such polynomial. Therefore, we set
the parameter ε = 0.001 according to the experiments of
the real datasets. The additive noise is generated to be white
and Gaussian with uncorrelated samples whose variance was
assumed to be uniform. The algorithms are performed under
the signal-to-noise power ratio (SNR) varied from 5 dB to
45 dB by a step of 10 dB. To reduce the randomness effect,
20 times of Monte Carlo simulations are performed to evalu-
ate the performance of the algorithms versus different SNR.
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FIGURE 7. The separation performance comparison for three kinds of mixed functions in which the different dataset in Table 2 are used.
(a) The accuracy for DS mixture on Data 1. (b) The accuracy for PNL mixture on Data 2. (c) The accuracy for GN mixture on Data 3.
(d) The accuracy for GN mixture on Data 4. (e) The accuracy for GN mixture on Data 5.

C. RESULTS
Since our algorithm utilizes a set of polynomials to approx-
imate the nonlinearity of mixture, we thus obtain 9 compo-
nents (projected signals) adaptively for dataset ‘‘AMI’’ as
shown in Figure 6. Then, two components with the maxi-
mum correlation are selected as described in the previous
section. The best matching waveforms with the maximum
correlations are shown as the first and second rows, which are
denoted as the estimation of original signals ŝ1 and ŝ2, respec-
tively. The algorithm automatically chooses two signals that
turn out to reach very high correlation coefficients (cc), such
as cc(s1, ŝ1) = 0.9848 and cc(s2, ŝ2) = 0.9803.
To clarify the separation performance, we use the NMSE

in (33) as the error measure. We evaluate seven BSS
approaches on three kinds of mixed functions with five
different datasets. Figure 7 show parts of the experimental
results. Similar accuracy trends were also observed with other
datasets being used to testify different mixed functions with
different BSS approaches. We can see from Figure 7 that
the ViNLisem achieved a more accurate estimate than the
other methods. In contrast, FICA and KICA optimized their
estimate by having access to all the samples in one space.
In addition, we also verified that for all datasets, the improved
performance of the proposed approach was significant.
Apart from the estimation quality, an important aspect for
ViNLisem method is that the vanishing components are

constructed solely on the input data without any additional
constraints on the mixing functions except for invertibility.

Among these methods used for comparison, we can distin-
guish two classes. Methods such as JADE and Fast ICA are
based on statistics of order higher than two, which require
at most one source can be Gaussian. This means that their
performance will be poor if more than one source is close
to Gaussian. However, in practice, most of the sources have
distributions deviate markedly from Gaussian (e.g. speech
data are strongly super-Gaussian, while images tend to be
strongly sub-Gaussian). Methods of this class do not exploit
any temporal or spatial structure of the sources. On the other
hand, methods such as TDSEP and SOBI use only second-
order statistics, and can deal with any number of Gaussian
sources. However, they require sources being with temporal
structure. Again, most sources of practical interest (such as
speech, biomedical signals or images) do not have a tempo-
ral or spatial structure that can be used.

Note that unlike KTDSEP, ViNLisem does not assume
the number of approximate functions initially, but adapt to
the nonlinear approximation in the form of a multi-layer
representation. Therefore, the complexity and storage
requirements of the model are proportional to the num-
ber of vanishing components. The complexity of the mod-
els learned by ViNLisem is generally larger than that of
the KTDSEP.
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VII. CONCLUSION
Our work has three main contributions. First, the approach
presents a novel mathematical construction with a multi-
layer architecture. By using the layer-by-layer representation,
we can approximate such nonlinearity of mixing functions.
Similar to the principle of modern deep learning, the layers
are generated one-by-one up to the higher-degree representa-
tions of data. Once such representations are generated, a final
output layer is constructed by solving a convex optimization
problem. Thus, the technique establishes a highly useful iso-
morphism between the projection of the data points and the
multi-layer representations. By projecting a time-invariant
nonlinear BSS to the local linear problem, the nonlinear prob-
lem can be linearly separable. Importantly, the parameters and
forms of polynomials depend solely on the input data, which
guarantees the robustness of the structures. We thus address
the general problem without being restricted to any specific
mixture or parametric model.

Then, the layer-by-layer representation is adaptively gen-
erated solely on the observations. As the number of spanned
spaces goes up, the computational complexity grows expo-
nentially. To overcome this obstacle, relying on the proper-
ties of vanishing polynomials, we provide a feasible way to
reduce the computational cost as shown in Theorem 2 and
Theorem 3. Finally, considering the temporal correlation as
the separation criterion, the approach can be designed by
emphasizing the difference from the temporally i.i.d. data.
Therefore, we can break the nonlinear problem down into
a simpler version of the generalized joint diagonalization
problem in the feature space. However, due to adopting
the nonlinear approximation in the form of a sample rep-
resentation, the complexity and storage requirements of the
model are proportional to the number of vanishing com-
ponents, which is generally larger than that of the TDSEP
and KTDSEP.

Appendix A
PROOF OF THEOREM 2
For instance, considering the polynomials of degree 2, we set
ρi1,i2 (x(t)) = xi1 (t)xi2 (t), for all i1 and i2. Thus, we now
need to consider n2 + n+ 1 columns. As the degree goes up,
the number of columns increases exponentially. To overcome
this obstacle, we propose a method to reduce the computa-
tional cost relying on the underlying structure and the prop-
erty of the vanishing ideal

Proof: Denoting F1 = {p
(1)
1 , · · · ,p

(1)
|F1|
} as a non-

vanishing polynomial set of degree 1, where |F1| denotes the
number of elements included in the set F1. Any polynomial
of degree 1 generated from F1 can be expressed as

f (1)i1 =
∑
j1

α
(1)
i1,j1

p(1)j1 , h(1)i2 =
∑
j2

α
(1)
i2,j2

p(1)j2 , (A.1)

where α(1)i1,j1 and α
(1)
i2,j2

denote the coefficients that make f (1)i1 ◦

h(1)i2 6= 0T×1 for all i1, i2 ≤ l. Then F2 can be generated from

the span of f (1)i1 and h(1)i2 for i1, i2 ≤ l as

ĝ(2)(S) =
∑
i1,i2≤l

f (1)i1 ◦ h
(1)
i2

=

∑
i1,i2≤l

(∑
j1

α
(1)
i1,j1

p(1)j1

)(∑
j2

α
(1)
i2,j2

p(1)j2

)
=

∑
j1,j2

[(
p(1)j1 ◦ p

(1)
j2

)( ∑
i1,i2≤l

α
(1)
i1,j1

α
(1)
i2,j2

)]
, (A.2)

where the polynomials are assumed to be composed of linear
functions that each linear function is described by a coef-
ficient vector α ∈ Rn+1. And α(1)i1,j1 is the coefficient that
corresponds to the i1-th element of the candidate set C1,
which is used to weight the j1-th element p(1)j1 of the non-

vanishing polynomial setF1. Thus, we have ĝ
(2)(S) generated

from the span of F1 × F1 and that can be used to construct
F2 and V2. �

Appendix B
PROOF OF THEOREM 3
A. CONSTRUCTING THE POLYNOMIALS OF DEGREE 3
Considering the polynomials of degree 3, we set ρi1,i2,i3
(x(t)) = xi1 (t)xi2 (t)xi3 (t), for all i1, i2 and i3. Then ĝ

(3)(S)
is generated from the span of F1 × F2.

Proof: Denoting F2 = {p
(2)
1 , · · · ,p

(2)
|F2|
} as a non-

vanishing polynomial set of degree 2, where |F2| denotes the
number of elements included in the set F2. Similarly, any
polynomial of degree 3 can be expressed as

g(3)(S) =
∑
i1,i2,i3

αi1,i2,i3ρi1,i2,i3 (S). (B.1)

The polynomial ĝ(3)(S) =
∑

i1,i2,i3≤l ρi1,i2,i3 satisfies
ĝ(3)(S) = g(3)(S) for i1, i2, i3 ≤ l for assumption. Then,
g(3)(S) can be approximated as

ĝ(3)(S)
=

∑
i1,i2,i3

αi1,i2,i3ρi1,i2,i3

=

∑
i1,i2,i3

(∑
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α
(1)
i1,j1

p(1)j1

)(∑
j2

α
(1)
i2,j2

p(1)j2

)(∑
j3

α
(1)
i3,j3

p(1)j3

)
=

∑
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(∑
j1,j2

(
α
(1)
i1,j1

α
(1)
i2,j2

)
p(1)j1 p(1)j2

)(∑
j3

α
(1)
i3,j3

p(1)j3

)
.

(B.2)

Since
∑

j1,j2

(
α
(1)
i1,j1

α
(1)
i2,j2

)
p(1)j1 p(1)j2 is in the span of F1 × F1,

thus it can be expressed as∑
j1,j2

(
α
(1)
i1,j1

α
(1)
i2,j2

)
p(1)j1 p(1)j2 =

∑
j

α
(2)
j p(2)j . (B.3)

Then (B.2) can be written as

ĝ(3)(S)

=

∑
i1,i2,i3≤l
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j1,j2

(
α
(1)
i1,j1

α
(1)
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)
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ĝ(t)(S) =
∑
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=
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Since
∑
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α
(1)
i2,j2
· · ·α

(1)
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(1)
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is in the span of Ft−2 × F1, thus it can be expressed as∑
j1,j2,··· ,jt−1
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Then (B.6) can be rewritten as
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where the polynomials are assumed to be composed of linear functions that each linear function is described by a coefficient
vector α ∈ Rn+1, and α(1)it ,jt is the coefficient that corresponds to the it -th element of the candidate set C1, and that is used to

weight the j1-th element p(1)j1 of the non-vanishing polynomial set F1. Therefore, we can generate ĝ(t)(S) only in the span of
Ft−1 × F1 rather than considering all the extension space. �

=
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Thus, ĝ(3)(S) is generated from the span of F2 × F1 that can
be used to construct F3 and V3.

B. CONSTRUCTING THE POLYNOMIALS
OF HIGHER DEGREE
Similar to the above processing procedure, any polynomial of
degree t can be expressed as

g(t)(S) =
∑

i1,i2,··· ,it

αi1,i2,··· ,itρi1,i2,··· ,it (S). (B.5)

The polynomial g(t)(S) =
∑

i1,i2,··· ,it ρi1,i2,··· ,it satisfies
ĝ(t)(S) = g(t)(S) for i1, i2, · · · , it ≤ l. Denoting Ft−1 =
{p(t−1)1 , · · · ,p(t−1)

|Ft−1|
}, ĝ(t)(S) can be written as (B.6). �
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