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ABSTRACT This paper illustrates the most recent results regarding the criticality ranking decision support
classifier for an individual business function. The validated classifier is part of the business continuity points
approach which estimates the recovery complexity of an individual business function and is based on the
use case points method for estimating the software complexity. The business continuity points method is
utilized in order to estimate specific recovery complexity parameters of a given business function. A part of
the approach concerns the business function criticality ranking which is based on the recovery complexity
parameters. In this paper, we measure the accuracy in the criticality ranking classifier by comparing results
between the speedy and the detailed criticality ranking of a business function. The measurement is performed
via the R-Studio software and the confusion matrix technique. The results are based on a learning data set
prepared in MS Excel which includes the empirical calculations for constructing the specific classifier.

INDEX TERMS Business continuity points, business function, criticality ranking, classifier, R-Studio.

I. INTRODUCTION
One successful definition regarding business continuity man-
agement has been provided by domain experts, stating that
“business Continuity is the management of a sustainable
process that identifies the critical functions of an organization
and develops strategies to continue these functions without
interruption or to minimize the effects of an outage or a
loss of service provided by these functions” [1]. However,
apart from its identification, a criticality ranking of any single
business function for determining its recovery priority should
also be implemented. This task is currently executed based on
the experience of managers. Neither a standard mathematical
method for classifying an individual business function as
critical/non-critical, nor a software tool which supports such
a solution have been proposed so far. In order to fill this
gap, a standard mathematical method for classifying indi-
vidual business functions, entitled business continuity testing
points (or simply business continuity points) [2] has been
recently developed.

The method involves the execution of the two following
tasks: firstly, the estimation of the recovery complexity as

well as the recovery time effort for an individual interrupted
business function, and secondly, the proposal of the appropri-
ate recovery exercise category. The first aforementioned task
includes the calculation of various complexity parameters,
similar to the use case points [3] method, such as actors,
processes, technical and environmental factors and estimates
the unadjusted points, the adjusted points and the recov-
ery time effort for an individual given function. Moreover,
for the estimation of the recovery time, different types of
recovery scenarios, namely simple, average and complex are
considered.

The Business Continuity Points method, hereinafter
BCPTs, is based on the concept that the recovery complexity
of any function is inversely proportional to its recovery time.
Due to the fact that the restoration time is strongly related to
the criticality ranking of a business function or an interrupted
information system Fasolis et al. [4], Gibson [5] constructed a
data set to be utilized as a classifier for the criticality ranking
of an individual business function.

Every newly proposed classifier, according to the data
mining theory, has to be validated with the help of the best
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possible data mining techniques, theoretical methods and
widely tested software tools. Decision trees and rule based
data mining techniques have been successfully applied for
decision making against unexpected disruptions that can sig-
nificantly affect critical business activities as the supply chain
management [19] and the industrial safety management [27].
Disaster information management experts claim that “data
mining and information retrieval techniques help impacted
communities better understand the current disaster situation
and how the community is recovering.” [28]. “A decision
tree is a classifier expressed as a recursive partition of the
instance space. The decision tree consists of nodes that form
a rooted tree, meaning it is a directed tree with a node called
root that has no incoming edges. All other nodes have exactly
one incoming edge. A node with outgoing edges is called an
internal or test node. All other nodes are called leaves (also
known as terminal nodes or decision nodes)” [20].

A dual business function criticality classification approach
had been proposed after implementing the necessary empir-
ical calculations regarding the Unadjusted Points and the
Recovery Time Effort. The first classification path is based
on the Unadjusted Points and is entitled speedy classification
while the second is entitled detailed classificationand stems
from the Recovery Time as well as the Adjusted Points
values.

Another characteristic of the BCPTs approach is the neces-
sity of testing various different recovery scenarios. The ini-
tial calculations led us to the proposal of the representative
recovery scenario(see Table 3) in order to derive approximate
classification results. Moreover, two different subcategories
of recovery scenarios are included namely the default recov-
ery scenario and the alternative recovery scenario. Detailed
explanation of these terms is provided in section C.

The initial measurement regarding the first part of the clas-
sifier’s validation had been recently conducted. The empirical
calculations prompted the Podaras [17] to the creation of
specific business rules which permit standard BF classifica-
tion. The specific rules have been illustrated in the form of
inducted decision trees.

However, the rules which had been initially conducted for
the BCPTs, had been based on primary calculations which
did not permit the thorough rule validation based on all the
dimensions of the approach. Specifically, the initial accu-
racy measurement permitted the rule validation by comparing
exclusively the “speedy criticality ranking with the detailed
criticality ranking for a business function by applying the
default recovery scenario” .

The primary goal of the present article is to extend the
initial rule validation proposal and measure the accuracy of
the early (or speedy criticality classifier) via the comparison
of the speedy classification results with the detailed criticality
ranking by applying the alternative recovery case. Addition-
ally, the proposal of a new classifier which determines the
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selection of the recovery scenario for a given function by
considering the Unadjusted Points value is also included in
the current paper. For the achievement of the aforementioned
goal, the paper has been organized as follows:

1) INITIAL MEASUREMENT OF THE CRITICALITY CLASSIFIER
In this introductory subsection the initial measurement of the
criticality ranking classifier is summarized and the accuracy
rate between the speedy and the detailed default recovery case
are explained.

2) TOOLS AND METHODS SECTION

The specific section reports background information. At first,
the utilized data mining techniques as well as the BCPTs
approach, the core terminologies and the important equa-
tions are delineated for the comprehension of the achieved
results. Additionally, the primary advantages of the method
are explained. Secondly, a brief explanation of the initially
derived measurement based on the default recovery case is
included and the steps followed to validate the initial classi-
fier are analyzed. Finally, the specific part inevitably includes
areference to the most widely utilized and tested data mining
classification approaches along with the explanation towards
the selection of the most appropriate one. Furthermore an
explanation for selecting specific software tools which sup-
port the classification techniques is included at the same
section.

3) RESULTS, DISCUSSION AND CONCLUSIONS SECTIONS
The specific section is devoted to the classification of a
business function when applying the detailed alternative
recovery case as well as the measurement of the accuracy
levels between the detailed default with the detailed alter-
native recovery approaches for the same individual business
function. Moreover the derived measurement is thoroughly
analyzed in the discussion section and a new classifier for
selecting the appropriate recovery scenario based on the
Unadjusted Points value is proposed. The final part of the cur-
rent work summarizes the current achievements and includes
implications for conducting future research for the further
investigation of the BCPTs as well as the conducted criticality
ranking results.

A. INITIAL MEASUREMENT OF THE

CRITICALITY CLASSIFIER

Via the specific measurement the classifier has been proved
to be highly accurate (almost 90% accuracy between the two
different recovery classification approaches). The specific
part of the research has been conducted by importing the
learning data set to the R-Studio [6], [15] software package.
The learning data set has been divided into 2 subsets, namely
the training set and the testing set (70% results rate and 30%
results rate respectively) in order to be validated. The overall
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FIGURE 1. The decision tree for the speedy criticality ranking
(Source: Author).
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FIGURE 2. The decision tree for the detailed criticality
ranking (Default_RS) (Source: [17]).

number of records was 47 different business functions. For
each function only the default recovery case had been applied
for the speedy (see Fig. 1) and the detailed (see Fig. 2)
recovery scenarios.

The inducted decision trees have been based on empirical
calculations of the initial data set and are considered efficient
criticality ranking classifiers for the default recovery case.
The recently published confusion matrix validation check
indicated 89.36% accuracy rate of the speedy criticality rank-
ing classifier [17]. The confusion matrix is a widely utilized
“tool to measure the performance of a classification sys-
tem*‘[7]. It has been characterized by data mining researchers
as, firstly, the “most common descriptor for assessing the
classification accuracy’’[23] and, secondly, a technique that
can even improve the performance of ensemble (combination
of more than one) classifiers [22]. Additionally, the confusion
matrix is highly recommended by scientists who utilize the
R — Studio package for classification along with the Random
Forest approach [24].

Il. TOOLS AND METHODS

A. DECISION TREES AND R-PACKAGE

Multiple data mining experts have underlined the importance
and the accuracy of decision trees as a supervised learning
classification method. Some of them state that ““decision trees
are an efficient nonparametric method that can be applied
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towards classification or to regression tasks’’ [11], while oth-
ers mention that ““decision trees are one of the most popular
classification algorithms used in data mining and machine
learning to create knowledge structures that guide the deci-
sion making process. The creation of a good knowledge
structure is the main step in the development of a decision
making system” [21].

The core idea behind the induction of a decision tree is the
discovery of the ideal split. “Each split partitions the sample
into two or more parts and each subset of the partition has
one or more classes in it. If there is only one class in a subset,
then it is pure, else it is impure. The purer the partition is,
the better it is”’[35]. The most important splitting measures
regarding the decision tree induction are the following [35]:

Information gain (1):

Gain(S, A) = Entropy(S) — Z (1Sy| — |S])Entropy(S,) (1)

Where v € Values(A), v = Instances of Features A.
Gain Ratio (2),(3):

Gain_Ratio(S, A) = Gain(S, A)/Split_Information(S, A)
2

c
Splitinformation(S, A) =)~ (1Sil/IS]) log, (Sil/1S]) (3)
i=1

Nevertheless, despite their broad acceptance from the data
mining scientists, some researchers have highlighted a num-
ber of drawbacks regarding the decision trees. Some of these
researchers refer to the problem of over-sensitivity of the
training set [20] or their ineffectiveness when changes occur
in the data set [21], while other refer to the problem of the
overfitting, stating that ‘““the decision tree algorithm can pro-
duce more branches and leaves of tree and most of branches
are over-fitting for training data samples so that there are
some bias to predict new data in the application” [26].
Other researchers [29] refer to the dimension problem of
the traditional decision trees which is caused by redundant
features. According to these researchers the most commonly
utilized technique for overcoming the overfitting problems is
known as pruning, while the solution to the problems of high
variance and bias of the training data is defined as ensemble
classifiers for which the term boosting is used [33], [34].
Despite their major importance in deriving accurate results
the pruning and boosting implementation is not a subject of
the current contribution since deep explanation and thorough
analysis is required for the selection of the ideal approach for
the presented classifier. The application of these techniques
to the investigated classifier will be analyzed in a future
publication. A reference to these techniques and their possible
application to the current decision trees is included in the
discussion section..

For the induction of the decision trees the R Package has
been selected. The R package [6] is considered to be an
ideal software tool for the decision tree induction procedure,
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due to the fact that it is a free [24] and it supports various
algorithms [16], i.e. ID3, C4.5 and CART, compared to other
packages.

B. CLASSIFICATION AND REGRESSION TREES
Classification and Regression Tree (CART) [12-14] “has
been found ideal for the current model due to the fact that it
supports classifications for both binary and continuous vari-
ables” [17]. Moreover, experts from the information security
domain, which is strictly bound to the business continuity
management, have proposed CART as the ideal decision
algorithm to be combined with Fuzzy Logic towards the
accuracy of Intrusion Detection Systems [25].

Multiple data mining researchers have thoroughly cited
and analyzed other important decision tree algorithms like
ID3 [20] as proposed by Quinlan [30], and its improved
version namely C4.5 [26]. ID3 algorithm has not been
selected for the induction of the BCPTs decision trees due
to the fact that it cannot handle neither numeric attributes
(i.e. Unadjusted Points in the BCPTs model) nor missing
values. Moreover, the C4.5 algorithm which is a more com-
plete version of ID3, has the disadvantage of producing large
decision trees which may include errors of misclassifica-
tion [31]. Moreover, in many cases where the C4.5 has been
compared to the CART algorithm, the latter demonstrated
better performance regarding the classification accuracy [33].

The CART algorithm supports the construction of binary
trees which are ideal for the BCPTs classifiers, since the
main target classification of an individual business function is
binary (critical/non-critical) no matter the 4 possible Impact
Value Levels (IVLs). Moreover, the CART algorithm imple-
ments exhaustive search regarding the discovery of the best
splitting attributes by utilizing the impurity measurement for
each attribute. The impurity is calculated with the help of the
Gini (diversity) index (4) [14, 26].

Gini=1-"p()* @

j=1

where, p(j) is the relative frequency of class jin T, and T is
the dataset which contains examples of n classes. “Gini index
is an impurity-based criteria that measures the divergence
between the probability distributions of the target attribute’s
values.” [20]

C. THE BUSINESS CONTINUITY POINTS METHOD

The method is based on the principles the Karner’s [3] use
case points theory which has been proposed as an approach
that determines the complexity of the software development
process. A brief demonstration of the BCPTs method com-
pared with use case points is required for the interpretation
of the way that can be applied to estimate the recovery
complexity of a given business function (see Table 1).
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TABLE 1. comparison between the use case points and the business
continuity points [8].

Use Case Points

Business Continuity Points

Estimated Software Complexity Business Function Recovery

Complexity  Estimation Complexity Estimation

Type

Use Cases Use Cases are Business Functions are

vs Business  classified as Simple, classified as Simple, Average

Functions Average and Complex and Complex (according to
(according to the the number of involved
number of involved processes), utilized to
transactions), utilized estimate Unadjusted Business
to calculate Function Weights (UBFW)
Unadjusted Use Case
Weights

Actors Actors* classification Separate Classification of

Classificati  (Unadjusted Actor Human Level Actors and

on

Weights — UAW)

Application Level Actors
involved in the Process (Total
Unadjusted Actor Weights —
TUAW)

Unadjusted  Unadjusted Use Case Unadjusted Business

Points Points : Function Recovery Points:

Estimation UCP =UAW + UBFRP = TUAW + UBFW
uuCcw

Technical 13 Technical Factors Unlimited Number of

Factors (Limited Number) Technical Recovery Factors

(TRF)

Environme 8 Environmental Unlimited Number of

ntal Factors  Factors (Limited Environmental Recovery
Number) Factors (ERF)

Unexpected  No Unexpected Unlimited Number of

Factors Factors are Considered ~ Unexpected Recovery Factors

(URF)

Method of Based on the Based On Standard
Weight experience of IT Mathematical Approach
Assignment  Project Manager (Rank Order Centroid) [9]
Adjusted Adjusted Use Case Adjusted Business Function
Points Points (UPC) Recovery Points (ABFRP)
Estimation ABFRP=
UBFRP*TRF*ERF*URF
Effort Effort = UCP * Recovery Time Effort (RTE)
Estimation  Hours/UCP = (5000/ABFRP?) - 3

The primary idea has been focusing on implementing criti-
cality ranking of a business function by calculating its recov-
ery time (RTE). However, during the empirical calculations
regarding the business continuity points method the following
conclusions have been inferred:

a) When the Unadjusted Points value is either very
low or very high the corresponding criticality ranking of
a BF can be determined/predicted without calculating its
recovery time. This approach has been named as the speedy
classification of a given business function, and is based on the
representative recovery scenario (see Table 3).

b) The speedy classification cannot be applied with con-
fidence for middle values of the Unadjusted Points. In such
cases the recovery time is calculated and used as a criticality
ranking reference value regarding the specific business func-
tion. Then the detailed criticality ranking is implemented.
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Thus, a dual approach for BF criticality ranking is proposed.
The equations which provide all the recovery complexity are
all included in the summarized comparison between the Use
Case Points and the BCPTs methods (see Table 1).

¢) When different recovery scenarios are applied, different
criticality ranking results can be inferred. Thus, one crucial
issue in order to ensure the validity of the constructed clas-
sifier is to compare the criticality ranking inferred results
between the speedy and detailed classification by applying
the default [17] and the alternative recovery scenario. The
latter validation is implemented in the current paper and
the output is delineated in the results section. In any case,
the classification of any individual business function follows
the standard business continuity criticality ranking as recom-
mended by domain experts.

The major advantages of the BCPTs approach are the

following:

o The criticality ranking classifier has been based on
simple calculations that can be easily analyzed to and
rapidly interpreted by business managers.

o The method refers to a broad industrial sphere due to the
fact that recovery time values can be foreseen for highly
critical as well as less important activities.

o The estimated recovery timeframes can be easily com-
pared by standard mathematical tools utilized towards
the uninterrupted operation of critical busisness activi-
ties. A typical tool is the system availabilityprovided by
the following formula (5) [32]:

MTBF

~ MTBF )
T+ MTTR

Where A = Availability of the service, software applica-
tion, network, business function, MTBF = The mean Time
Between Failure and MTTR = Mean Time To Repair. We can
thus, compare the proposed availability rates (%) by the
domain experts, with the availability rates calculated by the
BCPTs when replacing the MTTR with the calculated RTE
value.

D. CONNECTING CRITICALITY RANKING OF BUSINESS
FUNCTIONS WITH RECOVERY TIMEFRAMES
A thorough and practically used classification approach has
been proposed by [5]. The specific approach determines
4 Impact Value Levels (IVLs) where each level includes
the corresponding recovery timeframes, namely the Ratio-
nal Time Objective (RTO) and Maximum Accepted Out-
age (MAO) [10]:
o« IVL L1: Maximum Acceptable Outage (MAO) =
2 hours. Recovery Time Objective (RTO) < 2 hours.
o« IVL L2: Maximum Acceptable Outage (MAO) =
24 hours (1 day). Recovery Time Objective (RTO) <
24 hours.
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o IVL L3: Maximum Acceptable Outage (MAO) =
72 hours (3 days). Recovery Time Objective (RTO) <
72 hours.
o« IVL L4: Maximum Acceptable Outage (MAO) =
168 hours (1 week). Recovery Time Objective (RTO) <
168 hours.
The above levels are used for classifying a business function
as Critical (L1, L2) and Non-Critical (L3, L4). Similar criti-
cality ranking methods have been also proposed[4].

E. CORE CALCULATIONS - DATASET PREPARATION

The recovery time effort (RTE) has been derived with the help
of a created by the author initial data set. The initial data set
assumed recovery parameters for 47 different business func-
tions. The dataset was prepared in Microsoft Excel 2013 and
the implemented calculations have been the following [2]:

UBFRP Value, derived from calculations with the
equations described in the first table (see Table 1).

RTE Value is derived from calculations with the help of the
equations included in the above mentioned table (see Table 1).

The most representative recovery scenario, regarding the
involved human and application level actors as well as
the number of the involved business activities is below
depicted (see Table 3). The scenarios indicate their level of
severity (difficulties during the recovery process, i.e. non-
skilled workers, many distributed systems, network unavail-
ability e.t.c.).

However, during the above delineated procedure, it had
been realized that for specific business functions
(i.e. UBFRP = 8.2 points), even if the predicted criticality
ranking is [IVL=L4 and BF=Non-Critical when applying the
default recovery scenario (simple), a different IVL is inferred
when we apply an alternative recovery scenario (i.e. average,
IVL=L3). This occurs due to the different ABFRP and RTE
for the same business function. The default and the alterna-
tive recovery scenario are comprised of the following cases
(see Table 2):

TABLE 2. Summarized delineation of the default_RS and the
alternative_RS.

Recovry Selected

Case  UBFRP  TRF,ERF,  Approach  Sciccted Approach
(Points) URF (Default (Altema't 1ve
. Scenario)
Scenario)

Case 1 <=9 0.85 SIMPLE AVERAGE
points

Case 2 >9 and AVERAGE COMPLEX/
<=21 1 SIMPLE

Case 3 >21 1.15 COMPLEX AVERAGE

F. VALIDATION OF THE LEARNING DATASET

WITH DATA MINING TOOLS

The constructed learning data set has been prepared by imple-
menting the calculations of the business continuity points
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TABLE 3. The representative recovery scenario [2].

Human Application Level Business Activities UBFRP ABFRP RS RTE(Hours)
Actors Actors
3 3 3 9 5.5 S 160
5 5 6 15 15 A 21
7 7 9 21 319 C 1.9
TABLE 4. Part of the constructed learning dataset [2].
BF_ID UBFRPVALUE IVL_ RS RTE(hours) IVL_
(points) UBFRP RTE
1 8.1 L4(NO) S 199.06 L4(NO)
3 8.12 L4(NO) S 198.06 L4(NO)
5 8.15 L4(NO) S 196.59 L4(NO)
33 13 L3(NO) S 75.44 L4(NO)
35 13.29 L3(NO) S 72.05 L4(NO)
39 13.35 L3(NO) S 71.38 L3(NO)
41 13.36 L3(NO) S 71.27 L3(NO)
61 17 L2(YES) A 143 L2(YES)
63 18 L2(YES) A 12.43 L2(YES)
65 19 L2(YES) A 10.85 L2(YES)
84 25 L1(YES) C 0.45 LI(YES)
86 26 LI1(YES) C 0.19 L1(YES)
method in order to estimate the recovery complexity param-
. . UBFRPVALUE>=
eters as well as the corresponding recovery time effort (RTE) 13.65
for every individual business function. The data set has been
imported to the R-Studio software package where it has es \
been divided to the training (70% of the records) and testing
(30% of the records) subset. Part of the learning set is below UBFRPYALUE>=
illustrated (see Table 4). ) :
From the illustrated data set it is realized that for the speedy Yes W
classification, the IVL Classification (predicted value) is
based on the UBFRPVALUE (predictor) which stems from
L3 (NO) L4 (NO)

the representative recovery scenario.

For the detailed classification the predicted value is IVL
based on the RTE predictor. Table 4 illustrates the default
recovery scenario for 47 different business functions.

Ill. RESULTS

A. DECISION TREE - DETAILED CRITICALITY RANKING
(ALTERNATIVE_RS)

The present work includes a further evaluation of the business
continuity points classifier by measuring the accuracy of
the speedy criticality ranking when the Alternative Recovery
Scenario is applied.

It is important to indicate that the speedy classification will
lead again to the same classification results (see Fig.1) due
to the fact that the specific approach to criticality ranking
follows the representative recovery scenario. Thus, the next
step for evaluating the proposed classifier is to compare the
detailed criticality ranking based on the alternative recovery
scenario with the results inferred by the initial classifier
(see Fig. 1).

The inducted decision tree according to the detailed
criticality ranking and the alternative scenario is depicted
in Fig. 3.
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FIGURE 3. Decision tree for the detailed criticality ranking
(Alternative_RS) (Source: Author).

The code in R-Studio for decision tree induction based on
the CART algorithm is the following:

> install.packages ("rpart")
for decision tree using CART

{\#}package

> install.packages ("rpart.plot")
{\#}package for better visualization
> library (rpart)

> library (rpart.plot)

> datafile <- read.csv("C:/Users/
datafile.csv", sep=";")

> View (Casel)

> fitla<-rpart (IVL\_UBFRP~UBFRPVALUE,
Casel)

> plot (fitla,
> text (fitla,
cex=.8)

uniform=TRUE, margin=0.2)
use.n=TRUE, all=TRUE,

By applying the confusion matrix technique to measure the
accuracy rate between the speedy and the detailed criticality
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ranking when the alternative RS is performed, the following
results have been obtained:

Confusion Matrix and Statistics

Reference
Prediction L1 (YES) L2 (YES) L3(NO) L4 (NO)
L1 (YES) 2 1 0 0
L2 (YES) 8 11 3 0
L3 (NO) 0 0 9 9
L4 (NO) 0 0 0 4

Overall Statistics
Accuracy: 0.5532

B. COMPARING THE DETAILED DEFAULT_RS WITH
THE DETAILED ALTERNATIVE_RS
Another important task regarding the measurement of the
accuracy levels of the developed business continuity classi-
fier, is the comparison of the detailed classification results
between the Defaults_RS and the Alternative_RS. This
task is also an extention to the initially published research
results [17].

The specific process demonstrated a lower level of accu-
racy. Again the confusion matrix technique has been applied:
Confusion Matrix and Statistics

L1 (YES) L2(YES) L3(NO) L4 (NO)
L1 (YES) 2 1 0 0
L2 (YES) 8 11 3 0
L3 (NO) 0 0 4 14
L4 (NO) 0 0 0 4

Overall Statistics
Accuracy: 0.4468

Nevertheless, the derived accuracy results regarding the
performance of the speedy classifier are not that discourag-
ing since they concern a 4-level classification of any indi-
vidual business function. From the discussion section that
follows it will be comprehended that a binary classifica-
tion (Critical_BF/Non-Critical_BF) with the help of the ini-
tial classifier can be highly accurate. The R Code for applying
the confusion matrix technique in order to control the accu-
racy of the predicted versus the actual values is the following:

install.packages ("caret")

library (caret)

require (caret)

install.packages ("el071")

library (el071)

require (el071)

K<-confusionMatrix (Casel$IVL_RTE,
CaselS$SIVL_UBFRP)

vV V. V V V V V

IV. DISCUSSION

The primary critical issue to be analyzed is the consistency
of the constructed data set. The data set has been based on
the comparison of the inferred recovery timeframes with the
proposed by the available literature recovery timeframes for
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critical business functions which ensures reasonably derived
recovery timeframes and criticality ranking for individual
business functions.

The second point which requires further discussion is the
initial validation of the constructed data set. The learning set
was split into a training (70%) and a testing (30%) subsets.
The derived results indicated minor differences. More pre-
cisely [17] “the critical UBFRP Value in the training data
set was 12.65 while in the testing subset was 13.32. The
criticality ranking in the first case was determined as L2
(YES) (critical BF) in the first case when UBFRP>12.65, and
LI(YES) in the second case when UBFRP>13.32"". Despite
the different Impact Value Levels the differences are not of
major importance since both subsets classify a BF as critical
when UBFRP is approximately lower than 13. The study
includes also the proposed decision trees.

Another point to be explained is the low level of accuracy
of the speedy criticality ranking (55.32%) when compared
with the detailed classification based on the alternative recov-
ery scenario. According to the confusion matrix results, even
if in some cases the IVL is different still the given business
function is binary classified in the same way (critical, or non-
critical). Thus, no significant influence regarding its binary
classification as critical/non-critical had been observed. Only
3 out of the 47 tested business functions are classified
differently, which means that the prediction accuracy level
regarding the binary classification is almost 96%. The speedy
classification predicted IVL = L2 (YES - Critical BF) while
the real (Reference) IVL was IVL = L3 (NO — non critical)
which is based on the detailed classification. The speedy
criticality ranking, when compared with the detailed ranking
default recovery scenario, has been proved more accurate in
predicting precise IVL levels (89.36%) than in the case when
the alternative scenario is utilized. Yet, it has been proved
less accurate with respect to the binary classification (5 out
of 47 different results, accuracy level 90%). Furthermore,
no matter the 44.68% similarity rate between the detailed
default and the detailed alternative recovery cases, only
3 out of 47 BFs were differently categorized when the binary
classification is implemented (critical/non-critical).

Another issue to be discussed is the existence of a standard
classifier for determining among the simple, average and
complex recovery scenario. In some cases, when the RTE
value is not calculated, it is quite demanding to determine
the ideal recovery case (Simple, Average or Complex) for
classifying a Business Function. The precise IVL classifi-
cation is hard to be conducted since it varies between dif-
ferent recovery scenarios. The decision tree which has been
inducted according the speedy (default) criticality ranking
and the initial learning data set is the following (Fig. 4):

A final issue to be discussed is the possibility of misclassi-
fication of the presented classifiers. Based on the proposed
recovery timeframes [5], [10], broad intervals permit the
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FIGURE 4. The inducted decision tree for selecting simple,
average or complex recovery case based on the speedy
classifier (Source:Author).

classification of business functions in the same category, i.e.
IVL=L2 for 2 hours < RTO < 72 hours. This means that
misclassification risk is extremely low.

A problem emerges when selecting the alternative recov-
ery case instead of the standard recovery scenario. The
accuracy level in this case of the initial speedy default
classifier is only 55.32% or 44.68% when we follow the
detailed default or the detailed alternative recovery case
respectively. However, the selection of the precise recovery
scenario does not affect the BFs which are highly critical,
i.e. UBFRPVALUE>20.83 points. Additionally, based on the
derived decision trees (Fig.1, Fig.2 and Fig. 3) regarding busi-
ness functions for which the UBFRPVALUE > 14.45 points,
the predicted classification (IVL) is the same no matter the
recovery scenario selected. The question remains for the BFs
for which 13.29<UBFRPVALUE<14.45. In this case the BF
must be classified as critical IVL=L2) in order to mitigate
recovery risks in practice. Yet, the interval remains very short.

Based on these assumptions ensemble classification tech-
niques like boosting which can improve the performance
and the accuracy of the inducted decision trees as well
as resolve the weakness of high variance of decision trees
are currently under investigation. Examined techniques are
the ensemble classifiers like adaptive and gradient boosting
which fit best and have been proved to be valuable for the
CART algorithm [34]. Finally, for resolving overfitting in
the future regression trees the pruning procedure will be
considered for the accurate prediction of RTE values. In this
part of the research the post-pruning algorithm entitled Cost
Complexity Pruning can be applied, due to the fact that “it
has been proposed by Breiman in the development of the
CART system’’[26]. For inducting decision trees that predict
the RTE values again the CART algorithm will be utilized
since ID3 and C4.5 require target attributes with discrete
values [20].

V. CONCLUSIONS
The present article analyses the measurement of the accuracy
of the speedy criticality ranking by comparing the predicted
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impact value levels with those inferred by the detailed criti-
cality ranking - alternative recovery scenario. The classifier,
which is based on the supervised learning [ 18] approach to the
induction of decision trees, is 89.36% accurate when applying
the default recovery scenario according to [17] and 56%
accurate when applying the alternative recovery scenario for
an individual business function. The latter case is an extention
to the initial work, additionally with a) the proposal of the
detailed recovery classification algorithm for a business func-
tion when the alternative recovery case is applied (Fig.3), and
b)the similarity control between the detailed default classifier
and the the detailed alternative recovery classifier, which is
estimated 44,68%. However only 3 out of 47 BFs, according
to the inferred results, are different when the binary classi-
fication is applied, which is also a highly positive remark
regarding the business continuity points classifier.

Additionally, the speedy classifier is 90% accurate, no
matter the recovery scenario when we want to imple-
ment binary criticality ranking for the same business func-
tion (Critical/Non-Critical). Hence, the pruning technique is
not considered a vital task in the currently proposed classi-
fiers due to the short size of the derived decision trees as
well as their high binary classification accuracy. The pruning
technique is proposed for the regression trees which will
predict RTE values based on the Unadjusted Points (UBFRP).

Ensemble classifiers, adaptive and gradient boosting are
currently under investigation. The currently derived accuracy
levels are satisfactory but only if we focus a) on the binary
target values of the critical functions and b) not on middle
values of Unadjusted Points. For these intervals regression
trees have to be inducted and ensemble classifiers will further
improve the prediction of precise IVL Levels.

The core advantage of the criticality ranking classifier can
be used in the early stages of the business impact analy-
sis formulation in the industry. The specific algorithm is a
crucial part of the Business Continuity Points method as it
has been introduced by the author. No matter the success-
ful performance of the speedy criticality ranking classifier,
the detailed classification is strongly recommended due to the
fact that precise recovery timeframes and impact value levels
can be determined ignoring possible weaknesses of unstable
classification based solely on the UBFRPVALUE. Finally,
future research tasks are mainly oriented to the proposal of
an integrated database tool which can perform accurate pre-
dictions. A conceptual model of the specific database solution
is currently designed.
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