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ABSTRACT Human activity recognition is a key technology for ICT-based (infomation and communica-
tion technologies) assistive applications. The most successful activity recognition systems for intelligent
environments in terms of performance rely on supervised learning techniques. However, those techniques
demand large labelled data sets for specific sensor deployments and monitored person. Such requirements
make supervised learning techniques not to scale well to real world deployments, where different sensor
infrastructures may be used to monitor different users. In this paper, we present a novel activity recognition
system, based on a combination of unsupervised learning techniques and knowledge-based activity models.
First, we use a domain-specific data mining algorithm previously developed by Cook et al. to extract the
most frequent action sequences executed by a person. Second, we insert knowledge-based activity models
in a novel matching algorithm with the aim of inferring what activities are being performed in a given action
sequence. The approach results on a scalable activity recognition system, which has been tested on three real
data sets. The obtained performance is comparable to supervised learning techniques.

INDEX TERMS Intelligent environments, activity recognition, knowledge-based models, unlabelled
datasets, unsupervised learning.

I. INTRODUCTION
One of the objectives of public administrations is to promote
active and healthy ageing, due to the positive consequences
derived for the society and socio-sanitary services. In that
sense, prevention has been identified as a key concept under
the healthy ageing paradigm. The early detection of risks
relating to a specific health condition improves the chances of
planning suitable interventions that can stop or at least delay
the condition itself, with beneficial effects on both patients’
quality of life and costs of treatment [1].

Recent important technology developments may offer new
ways to achieve a systematic health monitoring and early
health risk detection approach. A good example is the
City4Age project,1 where MCI and frailty risks of elderly
citizens want to be mitigated using unobtrusive technologies.
The core idea of the project is to use urban infrastructures
to monitor people’s activity and behaviour and correlate
their evolution with MCI and frailty, in order to plan suit-
able ICT-enabled interventions to minimise the consequences
of those risks. Hence, automatic human activity recogni-
tion (AR) becomes a key enabler of the project.

1http://www.city4ageproject.eu/

Nowadays the most successful AR systems are based
on supervised learning techniques (see Related Work
in Section II). Those learning techniques rely on large
annotated datasets of sensor information. However, as
Chen et al. [2] noted, such approaches are not scalable. Notice
that in the context of this paper, scalability is defined as the
amount of work needed to deploy an algorithmic solution in
a new environment with a new user. In the case of super-
vised learning, whenever the sensor infrastructure and/or user
changes, a period of data collection and annotation has to be
faced, resulting in poor scalability, according to the adopted
definition.

In this paper we present a scalable and hybrid AR system
called HARS (Hybrid Activity Recognition System), which
has been developed inside the City4Age project. We call
the AR system scalable because it avoids data collection
and annotation phases, requiring only some initial activity
modelling effort. We call the AR system hybrid because it
combines data- and knowledge-driven approaches, which are
reviewed in Section II. In a previous work we have already
used this combination of both paradigms to solve other prob-
lems, for example, the creation of the models that describe
activities [3]. In this paper, we focus on activity recognition,
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presenting novel insights, algorithms and experiments. The
key idea is to use data-mining techniques to find the most fre-
quent action patterns in the unlabelled dataset produced after
monitoring a person’s activity in an intelligent environment.
Those patterns reflect specific executions of activities.

In order to know what activities are being performed in a
given action pattern, we use Expert Activity Models (EAM).
EAMs are simple knowledge-based computational models
where the previous knowledge about target activities is rep-
resented. The spirit of EAMs is not to have a detailed activity
model for a given person, but rather to represent a generic
activity with minimum knowledge (Section III-B). One of the
main advantages of EAMs is their simplicity, which allows
any domain expert to model them easily. Furthermore, sim-
plicity also makes EAMs flexible enough to be applied to
varying activity executions. In the context of our research,
the activities to be monitored are known beforehand by the
domain experts. For example, Gold shows in [4] the rela-
tionship of Lawnton Instrumental Activities of Daily Liv-
ing (IADL) with MCI assessment and its value in predicting
cognitive decline. Some examples of those activities are using
the telephone, preparing food or housekeeping. We assume
that a domain expert will provide the activities to be detected
as well as the EAMs that roughly describe how those activi-
ties are performed by monitored users.

With the purpose of discovering the activities for a given
action pattern and a set of EAMs, we have developed a
pattern-model matching algorithm. This algorithm is posed as
a maximization problem, where the objective is to find the set
of EAMs that better explains the given action pattern. We use
actions, locations, duration and starting time to address the
maximisation problem (Section III).

We tested the proposed approach on three real activity
datasets collected in different intelligent environments
obtaining comparable results to supervised learning tech-
niques, such as Hidden Markov Models and Naive
Bayes (Section IV and V).

As a result of the research pursued, there are two main
scientific contributions in this paper:

1) A novel way to combine unsupervised learning tech-
niques with knowledge-based models for AR systems,
which solves the scalability problems of supervised
learning techniques with comparable performance.

2) An algorithm to match action patterns with expert
provided knowledge-based activity models in order to
infer the activities being performed in such patterns.

II. RELATED WORK
There are two main monitoring approaches for human AR;
namely, vision-based and sensor-based monitoring. For a
review of vision-based approaches, Weinland et al. [5] can
be consulted. When human AR is targeted in intelligent
environments, sensor-based AR is the most used solution [2],
since vision-based approaches tend to generate privacy con-
cerns among the users [6]. Sensor-based approaches are based
on the use of emerging sensor network technologies for

activity monitoring. The generated sensor data from sensor-
based monitoring are mainly time series of state changes
and/or various parameter values that are usually processed
through data fusion, probabilistic or statistical analysis meth-
ods and formal knowledge technologies for AR. There are
two main approaches for sensor-based AR in the literature:
data-driven and knowledge-driven approaches. In the last
years, a third approach has emerged, namely the hybrid
approaches. Our work belongs to that third category.

A. DATA-DRIVEN APPROACHES
The idea behind data-driven approaches is to use data mining
and machine learning techniques to learn activity models.
It is usually presented as a supervised learning approach,
where different techniques have been used to learn activi-
ties from collected sensor data. Data-driven approaches need
big datasets of labelled activities to train different kinds
of classifiers. The learning techniques used in the liter-
ature are broad, going from simple Naive Bayes classi-
fiers [7]–[12] to Hidden Markov Models [13]–[15], Dynamic
Bayesian Networks [16], [17], Support VectorMachines [18],
online (or incremental) classifiers [19] and dictionaries of
patterns [20].

Although supervised learning reports excellent perfor-
mance, the need of large-scale labelled datasets produces
scalability problems for practical deployments. It seems
unfeasible to obtain enough labelled data for real world sce-
narios, since the involved users and activities may be too
numerous.

However, there are some efforts in the community directed
to solve this problem through unsupervised learning tech-
niques. For example, for smartphone-based AR, examples
like [21] can be found. For intelligent environments, where
the work of this paper is situated, a few unsupervisedmethods
have been proposed to tackle the data annotation problem,
such as the frequent sensor mining method [22], simultane-
ous frequent-periodic pattern mining method [23], episode
discovery [24], activity modelling based on low dimensional
Eigenspaces [25], probabilistic models [26], [27] and retriev-
ing activity definitions using Web mining [28]. Although
these methods address the data annotation problem, they
consider a simplified version of the problem by ignoring the
real world nature of data such as its sequential form, possible
disruptions (a phone call while cooking), or variation of the
same pattern.

Rashidi and Cook [29] tried to overcome the enumer-
ated problems. They use an unlabelled dataset, where they
extract activity clusters using unsupervised learning tech-
niques. Those clusters are used to train a boosted Hidden
MarkovModel, which is shown to be able to recognise several
activities. However, there are three fundamental downsides
in this approach: (i) the modelled and recognised activities
do not have any semantic meaning which makes harder for
humans to understand what a user is actually doing, (ii) activ-
ity granularity, since the clusters found may refer to chaining
activities such as washing dishes after having lunch, as only
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one activity, and (iii) the performance of current systems are
still far from supervised learning approaches.

B. KNOWLEDGE-DRIVEN APPROACHES
In order to maintain the scalability of unsupervised learning
approaches, but overcome the downsides mentioned, we take
ideas from knowledge-driven AR approaches. Knowledge-
driven AR is based on real world observations that the list
of objects and functionalities to perform an activity are
always very similar. For example, to prepare coffee, a liquid
container is needed alongside with some coffee and sugar.
Although different people may use different coffee brands,
some may add milk and some may prefer white sugar to
brown sugar, there are some essential concepts that are always
present for every activity. The idea is to use this prior knowl-
edge to create rough activity models. The implicit relation-
ships between activities, related temporal and spatial context
and the entities involved (objects and people) provide a diver-
sity of hints and heuristics for inferring activities.

The first step for knowledge-driven systems is to acquire
the needed contextual knowledge. This is usually achieved
using standard knowledge engineering approaches. Depend-
ing on the nature of the acquired knowledge, different
approaches can be distinguished. Some researchers use logic-
based approaches for AR, as Chen and Nugent [30]. Others
adopt ontology-based approaches which allow a commonly
agreed explicit representation of activity definitions inde-
pendent of algorithmic choices, thus facilitating portability,
interoperability and reusability. Good examples can be found
in [31] and [32]. In a very recent work, Noor et al. [33] use
Dempster-Shafer theory to combine uncertainty reasoning
and ontologic reasoning. However, their system has only been
evaluated in controlled laboratory experiments.

C. HYBRID APPROACHES
With the aim of taking advantage of the positive features of
data- and knowledge-driven approaches, hybrid approaches
for AR have emerged recently. Representative methods have
been presented by Riboni et al. [34] and Ye et al. [35]. Both
systems combine data- and knowledge-driven approaches in
a different way. For instance, Riboni et al. [34] produce
very detailed ontologic models based onWeb Ontologic Lan-
guage (OWL2) to later map the knowledge to Markov Logic
Networks (MLN), which allows them to use probabilistic rea-
soning. Their approach requires very detailed activity models
which compromise the generality of the system. Furthermore,
their evaluation is performed on datasets with low number of
activities (8 at most) and they do not address the idle activity,
i.e., time segments where no activities occur even though
sensor events appear.

On the other hand, Ye et al. [35] present an AR sys-
tem called USMART. They segment sensor events using
the semantic similarity between the fired sensors. Based on
previously modelled ontologic activity models they define
the sufficient conditions for a sensor sequence to be mapped

to an activity. Those activity models are very similar to the
EAMs we use. However, contrary to HARS, their approach
also requires knowledge-based models for the target environ-
ments and sensors in order to work properly. Once sensor seg-
ments are extracted, they use semantic reasoning to recognise
activities. This imposes some burdens in their recognition
capacities. As authors admit, they need at least a sensor event
that uniquely describes an activity, in order to distinguish it
from others. The evaluation they present does not consider
the idle activity, whereas our approach does.

The AR system we present in this paper is another exam-
ple of a hybrid approach and can address the enumer-
ated problems for the two similar approaches explained
before [34] and [35]. First of all, in contrast with Ye et al. [35],
we do not segment sensors depending on their seman-
tic similarity, but depending on the most frequent patterns
executed by the monitored person, following the work of
Cook et al. [36]. This has three advantages: (i) we avoid
the detailed sensor modelling process, (ii) the approach can
generalise better to other scenarios, and (iii) we can handle
idle activities and sensor noise better. Second, we do not
use semantic or probabilistic reasoning, but a novel matching
algorithm which can handle interleaved activities naturally,
can detect idle activities and offers a flexible framework
where two activities composed by the same sensor events can
be distinguished. Third, our approach demands very simple
activity models, improving the generality and scalability of
the system.

III. DESIGN AND DEVELOPMENT OF THE HYBRID
ACTIVITY RECOGNITION SYSTEM (HARS)
A. SCOPE OF THE APPROACH
The AR system presented in this paper, called HARS,
is designed to work in dense sensing-based monitoring sce-
narios [2], where activities are inferred bymonitoring human-
object interactions through the usage of multiple multi-modal
miniaturised sensors.

Let us formally define the most important concepts we use
through the paper:
Definition 1 (Sensor Activation): A sensor activation

occurs when a sensor changes its state from the no-interaction
state to interaction state and vice-versa. A sensor activa-
tion (sa) is represented by the sensor name or ID, the times-
tamp and the state: sa = {timestamp, sensor, state}.
Definition 2 (Action): Actions are short-timed conscious

muscular movements and constitute the primitives of activ-
ities. Actions are detected by sensors. Hence, sensor acti-
vations can be directly mapped to actions a = fmap(sa).
An action (a) is represented by its name and timestamp:
a = {timestamp, action_name}.
Definition 3 (Activity): An activity is composed of a

sequence of actions which are executed with a common
purpose in a specific location, at a given time and with a
given duration. An activity (A) is represented by a sequence
of actions ([a]), a starting and end time and a location:
A = {start_time, end_time, [a], location}.
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Definition 4 (Expert Activity Model (EAM)): An EAM is
a simple and rough activity model which encapsulates the
prior knowledge of how an activity is performed in terms of
the executed actions ({a}), typical duration (d), possible start-
ing times ({st}) and locations ({l}): EAM = {{a}, d, {st}, {l}}.

In dense sensing-based activity monitoring an action of a
user interacting with an object is detected through the sensor
attached to the object, as defined in Definition 2. As such,
the activation of a sensor implies that an action has been taken
and hence, sensor activations can bemapped to actions. In this
sense, HARS is best suited for intelligent environments which
use binary sensors. A state change of a binary sensor can be
directly mapped to an action. However, analogous sensors
could also be used with HARS, for example, using some
thresholds to distinguish sensor activations, as suggested by
van Kasteren et al. [37].

FIGURE 1. Sensor-action mappings: several sensor activations can be
mapped to the same action given that they share the same semantics.

Mapping sensor activations to actions allow a higher level
of abstraction andmodelling capabilities, since several sensor
typesmaymap to the same action (see Figure 1). For example,
we might add different sensors to saucepans and casseroles
to monitor their usage. However, the described action for
both sensor types might be ‘use cooking utensil’, since we
are interested on knowing whether a person uses them for
cooking purposes. That is why HARS works in the action
space rather than in the sensor space.

On the other hand, we consider single user - concurrent
activities scenarios, i.e. only one user is being monitored, but
activities can be executed both sequentially and concurrently.
For example, a user might start cooking and meanwhile,
go to the toilet. Another feature to be taken into account is
that HARS is an offline recognition system. We describe its
deployment and usage in Section III-C.

B. DETAILED DESCRIPTION OF THE APPROACH
As introduced in Section I, HARS is divided into two main
steps:

1) Action Pattern Discovery (APD): the objective of this
module is to extract frequent action sequences which
represent specific executions of activities. Before min-
ing for frequent action sequences, unlabelled sensor
activations are mapped to actions, for which sensor-
action mappings are used as input.

2) Pattern-Model Matching (PMM): using EAMs as
input, this module aims at matching the best set of
EAMs to every action pattern discovered by APD.
It might be the case that an action pattern is composed
by several activities, only one activity or ‘None’ (a label
used for idle activities and unknown activities, i.e. those
activities that do not have any EAM). The output of
PMM is a set of detected activities for every action
pattern.

Figure 2 depicts the system diagram, where the two main
software components of HARS can be seen with the required
input files.

FIGURE 2. The system diagram of HARS.

Action Pattern Discovery:
• Input data: (i) unlabelled dataset of sensor activations for
a given user; (ii) sensor-action mappings.

• Input parameters: the number of iterations for the pattern
mining algorithm (HARS uses the option to repeat until
no new patterns can be found to compress the data).

• Output: a labelled dataset of actions, where every action
is tagged with the pattern number found by the pattern
mining algorithm.

For the first software component, i.e. APD, we use the
software developed and published by Cook et al. [36] in
their web page.2 This approach builds on previous research
on pattern discovery, including methods for mining fre-
quent sequences [38], [39], mining frequent patterns using
regular expressions [26], constraint-based mining [40], min-
ing frequent temporal relationships [41], and frequent-
periodic pattern mining [24]. However, activity discovery for
dense sensing-based monitoring approaches implies certain
requirements which cannot be addressed by those former
algorithms: (i) input data in an intelligent environment is
composed by just a single stream of sensor events with no
clear boundaries between different activities, and (ii) activity
patterns can be discontinuous, varied order, and of arbitrary
length. Thus, for activity discovery a specially designed
pattern mining algorithm is better suited, as proposed by
Cook et al. [36]. They developed an unsupervised learning
algorithm to extract the most frequent sensor patterns from
a dataset. Their idea is to search the space of sensor event
sequences in order to find those sequences that maximise the
compression of the original dataset. For that purpose, they
developed a greedy search approach, with the special feature

2http://ailab.wsu.edu/casas/tools.html
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of using the edit distance to compute the similarity of sensor
sequences. This is motivated by the fact that human activities
are rarely performed the same way. Hence, small variations in
the sequence should be detected as the same pattern or activ-
ity. Their algorithm can be used to find as many patterns as
possible, using as input an unlabelled dataset. Those sensor
events that do not pertain to any pattern are directly tagged
as ‘None’ activities. The logic behind this decision is that if
a sensor sequence is not frequently executed, it may not be a
representation of an activity.

HARS runs the pattern mining algorithm in the action
space, rather than in the sensor space. The result is a new
dataset where actions are annotated with discovered pattern
numbers.
Pattern-Model Matching:
• Input data: (i) a labelled dataset of actions, where every
action is tagged with a pattern number (output of APD);
(ii) a set of EAMs for a given user.

• Input parameters: weights for the cost function (wi ∈ R):
(i) action weight (wa), (ii) duration weight (wd ),
(iii) starting time weight (ws), and (iv) location
weight (wl).

• Output: a labelled dataset of actions, where every action
is tagged with the detected activities.

Once the patterns have been discovered, the PMM algorithm
is applied. PMMuses as inputs an action pattern and the set of
defined EAMs. An EAM is defined as a computational model
of activities which contains:

1) Actions: the minimum number of actions that are usu-
ally executed to perform a given activity.

2) Duration: a rough estimation of the typical duration of
a given activity.

3) Starting Time: approximate time ranges when a given
activity is usually started (multiple time ranges are
supported).

4) Locations: semantic tags for the places where a
given activity is usually performed, for example: bath-
room or bedroom (multiple locations for an activity are
supported).

FIGURE 3. Example of an EAM for hypothetical activity MakeCoffee.

Figure 3 shows an example of an EAM for a hypothetical
activity called MakeCoffee. As can be seen, EAMs are very
simple activity models, which is very important to assure
the scalability of HARS. So simplicity is a virtue from the
scalability point of view, rather than a disadvantage. EAM
simplicity allows domain experts to easily design descrip-
tive models, without the need of using complex techniques
which involve more detailed knowledge, greater effort and
heavier processing requirements. We have to stress that it is

very important to reduce the modelling effort for real world
deployments since the number of users and the variability of
activities may be too high to model manually. Notice also
that EAMs allow modelling diverse combinations of starting
time and locations for an activity, improving the flexibility of
activity models.

We assume that EAMs are provided by domain experts,
based on their knowledge about the users, activities and
monitoring systems. For the experiments carried out in this
paper, we define EAMs manually in a JSON file (JavaScript
Object Notation), which the software of HARS can read at
execution time. However, in the City4Age project, for exam-
ple, we provide domain experts a REST API endpoint where
they can upload the EAMs to a shared database. In that case,
HARS retrieves the EAMs from a relational database. In any
case, to define an EAM experts have to provide a JSON file
following the format shown in Figure 3. Although convenient
applications can be developed to make this process easier for
experts, this is out of the scope of this paper.

To assess the activities that best describe a given action
pattern, PMM poses a maximisation problem. The objective
of the algorithm is to find the set of EAMs that maximises the
cost function of Equation 1.

θ = waA(P,EAM )+ wdD(P,EAM )+ wsS(P,EAM )

+ wlL(P,EAM ) (1)

Equation 1 computes the suitability of EAMs using the
four concepts that are represented in EAMs: actions, dura-
tion, starting time and locations (see Figure 3). We define a
suitability function for each of the concepts, which outputs
a value between [−1, 1], being 1 maximum suitability. For
instance, A(P,EAM ) computes the action suitability, where
P = {a0, a1, . . . an} is the action pattern and EAM =

{EAM0, . . .EAMm} is a set of EAMs. We use several weights
wi to assess the weight of a suitability function in the cost
function. In the following, we describe each of the suitability
functions.

1) ACTION SUITABILITY
A(P,EAM ) is calculated as the number of actions shared
between the set of EAMs and the pattern, relative to the total
number of actions (Equation 2). Shared actions contribute
positively to the score, while actions of EAMs that are not in
the pattern, contribute negatively. A(P,EAM ) = −1 means
that there are no shared actions between the pattern and
the set of EAMs, whereas a value of 1 indicates that the
correspondence between pattern actions and EAMs is perfect.

A(P,EAM ) =
|AEAM ∩ AP|
|AP|

−
|AEAM − (AEAM ∩ AP)|

|AEAM |
(2)

where AEAM refers to the actions in the set of EAMs and AP
to the actions of P.

2) DURATION SUITABILITY
D(P,EAM ) is defined in Equation 3. The idea is that the
result is 1 if the sum of the duration of each EAM of the set
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equals the actual duration of the pattern, decreasing linearly
the score, as both duration values get further. This responds
to the intuition that an action pattern composed by several
activities will have a longer duration than any individual
EAM. Hence, to detect the existence of various activities,
the sum of the estimated duration of every EAM in the set
has to be computed.

D(P,EAM ) = max{−1, 1− k|Duration(P)− DEAM |} (3)

where k is an external parameter to define the slope of the line
andDEAM =

∑
i Duration(EAMi), i.e. the duration of a set of

EAMs is the sum of the duration estimation of its EAMs.

3) STARTING TIME SUITABILITY
S(P,EAM ): to compute the suitability of the starting time,
we use Equation 4. The average of the suitability of every
EAM of the set is calculated. As we can handle more than one
activity per detected pattern, we use the average suitability
of each of the EAMs in a given set. This means that incor-
porating an EAM whose starting time is far from the actual
pattern’s starting time, will decrease the suitability value.

S(P,EAM ) =
1
N

N∑
i

sp(P,EAMi) (4)

where sp(P,EAMi) is the function that computes the start-
ing time suitability of an individual EAM relative to a pat-
tern (see Equation 5).

sp(P,EAMi) =


1 if Pstart ∈ [EAMstart ,EAMend ]
max{−1, m

1s(EAMi,P)
− b}

else

(5)

The function 1s (EAMi,P) calculates the time-distance
between the start of the pattern and the starting range of the
EAM. Thus, an individual EAM is suitable for a pattern, if the
starting time of the pattern is inside of one of the starting
ranges of the EAM. As the starting time of the pattern gets
further from the EAM range, the score decreases linearly, for
which parameters m and b have to be defined.

4) LOCATION SUITABILITY
L(P,EAM ): Equation 6 shows the location suitability. It is
defined as the action suitability function, but using locations
instead of actions. In order to know where an action has been
executed, we use the location of the sensor in the environ-
ment, which is well-known at execution time.

L(P,EAM ) =
|LEAM ∩ LP|
|LP|

−
|LEAM − (LEAM ∩ LP)|

|LEAM |
(6)

Those suitability functions are designed to be generic,
trying to capture the knowledge we have about how humans
tend to perform activities. The concepts of actions, locations,
duration and starting time are generic to any AR problem.
Thus the cost function in Equation 1 can be applied to any
scenario and in principle, although suitability functions can

be changed, they are also thought to work in diverse scenar-
ios. Indeed, Section IV shows the generality of these func-
tions, which are used unchanged for three different datasets.
However, suitability functions are used in Equation 1 with
respective weight values (wa,wd ,ws and wl), which have
to be set before running HARS. Notice that weight values
represent the relative importance of the concepts described
in EAMs for activity recognition. Having a labelled dataset
would offer a chance to apply optimisation algorithms to tune
those weight values, for example. But given that HARS is
designed for unlabelled datasets there is no way to set those
values automatically. Hence, they have to be provided by
domain experts, depending on the monitoring approach of the
intelligent environment and the nature of the target activities.
Domain experts have to provide the prior knowledge to assess
the relative importance of actions, duration, starting time and
location for the activities they want to recognise.

Once we have described the suitability functions, let us
explain how we approach the maximisation of Equation 1.
When solving the maximisation problem, actions play a cap-
ital role. Assume the number of defined EAMs for a given
dataset is N . In the beginning of the PMM algorithm, we cal-
culate all the possible combinations of those N EAMs for
k ∈ [0,N ]. So the total number of EAM sets is given by
Equation 7:

|EAM | =
k=N∑
k=0

N !
k!(N − k)!

(7)

The number of EAM combinations grows exponentially,
thus for big numbers of N , checking all the possible com-
binations for maximisation is not feasible. For that reason,
when calculating the value of the cost function we do not
consider the EAM sets that do not share any action with a
given pattern. This heuristic is derived from the fact that even
though all the other parameters of an EAM may fit well in a
given action pattern, if no action is shared, the EAM cannot
explain properly the action pattern. This pruning strategy
reduces the number of combinations considerably, requiring
no more optimisation strategies.

Hence, the maximisation problem computes the score for
all valid sets of EAMs and chooses the set which obtains
the maximum score as the set which better explains a given
pattern. We further refine the obtained results with a filter-
ing heuristic. This heuristic labels as ‘None’ those action
sequences which produce more activities than actions. For
some cases, PMM finds that a sequence of three actions can
be explained with four activities, for instance. Those cases are
clearly the result of trying to explain something that cannot be
explainedwith the current EAMs. Thus, we apply the filtering
heuristic and PMM automatically labels those sequences as
‘None’.

C. HARS DEPLOYMENT AND USAGE EXAMPLE
HARS is designed to be executed periodically offline. The
idea is to recognise activities that are already executed by
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TABLE 1. An extract of the dataset used to describe how HARS works.

TABLE 2. A summary of the EAMs used to illustrate how HARS works.

a given user, once all data has been collected. For exam-
ple, in the City4Age project, we are executing HARS once
per week for every user. Thus, frequent action patterns are
searched for a week-time and afterwards recognised using
the PMM algorithm. This allows us to adapt our recognition
algorithm to changing behaviour, i.e. if a user starts execut-
ing a given activity in a different way, APD will be able
to catch the new action pattern, since past patterns do not
influence current executions. To analyse the needed steps to
make HARS an online algorithm is out of the scope of this
paper.

As such, the deployment of HARS for a given scenario
comprises the following steps:

1) Design and implement sensor activation - action map-
pings. If binary sensors are being used to monitor user
activities, this step becomes straightforward.

2) Identify target activities and design EAMs. We assume
a domain expert will provide the knowledge for those
EAMs.

3) Set the weights for the PMM algorithm (Equation 1).
We assume a domain expert will provide the knowledge
to set those weights appropriately.

4) Set the execution frequency of HARS. We provide
some experiments that show how the quantity of
collected data influences the performance of HARS
(Section IV). Those experiments can be used to set the
frequency in other use cases.

With the objective of understanding how HARS works,
let us describe a real example. This example is taken from
the experiments carried out in Section IV. We start with an
unlabelled dataset, where only timestamps and sensor activa-
tions can be found (columns 1 and 2 of Table 1). In the APD
step, first of all, we map sensor activations to actions. In this
case, we decided to apply a 1:1 mapping (column ‘Action’

in Table 1). Afterwards, the pattern finding algorithm
is applied. Take into account that for this example, we only
provide a small part of thewhole dataset. In the ‘APD’ column
of Table 1 we can observe how APD finds and tags some
patterns. At this step, APD can already distinguish actions
that are not part of any activity (look at the 9:36:43 row
in Table 1). Hence, using a fully unsupervised algorithm,
frequently executed action sequences are extracted. However,
notice how APD could not capture the whole activity
‘PrepareBreakfast’ in a unique pattern. Instead, APD finds
two different patterns, namely Pat32 and Pat94. This is due
to the variability of execution of the activity.

In the second step of HARS, i.e. PMM, the action
sequences found by APD have to be identified with the target
activities. EAMs are used for that purpose. In this case,
we provide a summary of the EAMs used in Table 2. As can
be seen, those EAMs define the common sense knowledge
about the target activities. PMM maximises the cost function
of Equation 1 for all EAM sets that share actions with the
detected pattern, using the suitability functions defined in
Section III-B. For example, in the case of Pat2, the actions
pertaining to the pattern are only used in the EAM of the
‘GoToBed’ activity. Moreover, any additional EAM added to
‘GoToBed’ decreases the value of the cost function. Thus,
the inference problem becomes very simple. However, for
Pat32, two activities can be considered: ‘PrepareBreakfast’
and ‘PrepareDinner’. PMM finds out that the best way to
explain Pat32 is to label it as ‘PrepareBreakfast’. Even though
both activities share many actions and are performed in the
same location, the starting time suitability makes ‘Prepare-
Breakfast’ the best candidate. We show the activity inferred
by HARS in the PMM column of Table 1. Additionally,
we also show the ground truth activity in the last column of
the table.
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TABLE 3. Details of the datasets used for evaluation extracted
from [37] and [10].

IV. EXPERIMENTS AND RESULTS
A. MATERIALS AND METHODS
In order to validate the performance of HARS, we use the
activity datasets3 published by van Kasteren et al. [37].
More concretely, we use the datasets from House A and C.
We discarded House B, due to annotation problems, proba-
bly derived from the annotation technique used by authors
(a personal diary). Table 3 contains a summary of the datasets.
Notice that the activity numbers of Table 3 take into account
the ‘None’ activity. Another important detail regardingHouse
C is that we divide the ‘Use Toilet’ activity into ‘Use Toilet
Upstairs’ and ‘Use Toilet Downstairs’, since there are two
different toilets in the house.

House A is the result of monitoring a 26-year-old man
in a three-room apartment where 14 binary sensors were
installed. Those sensors were installed in locations such as
doors, cupboards, refrigerator, freezer or toilet. Sensor data
for 25 days was collected for a total of 2120 sensor events and
245 activity instances. The annotated activities were: ‘Leave
House’, ‘Use Toilet’, ‘Take Shower’, ‘Go To Bed’, ‘Prepare
Breakfast’, ‘Prepare Dinner’ and ‘Get Drink’.

House C presents a different scenario. A 57-year-old man
is monitored in a house of two floors. 21 binary sensors were
installed in the house to monitor 18 activities. As the total
number and detail level of activities is higher than in House
A, having activities such as ‘Brush Teeth’ or ‘Shave’, House
C is a more challenging dataset. For further details about the
datasets refer to [37].

We believe that the combination of both datasets is a good
reference of the potential of HARS, since we combine two
persons with significantly different ages, different environ-
ments and most notably, scenarios with low-grain and fine-
grain activities. However, to show that HARS can be applied
to diverse scenarios, we also show the obtained results in
another dataset, completely unrelated to House A and C.
More concretely, we use the dataset of Tapia et al. [10],4

which we call Tapia dataset. There are two different apart-
ments where binary sensors are deployed to monitor a single
inhabitant.We use the data produced by Subject 1, because up
to 76 sensors are used to monitor 21 activities during 16 days.

As summary, we run all the experiments using the three
datasets described in Table 3: House A, House B and

3https://sites.google.com/site/tim0306/datasets
4http://courses.media.mit.edu/2004fall/mas622j/04.projects/home/

TABLE 4. Statistics of the three datasets: for each of them the maximum,
minimum, average and standard deviation of instances per activity is
depicted.

Tapia dataset. In order to have a deeper view of the three
datasets in terms of activity instances, Table 4 provides some
useful statistics. As it can be seen, all three datasets are very
imbalanced in terms of activity instances.

B. PARAMETER SETTING
To run the experiments with HARS, for every target activity,
we defined an EAM as described in Section III. We defined
EAMs manually, using only the description of the sensors,
activities and environment provided in the corresponding
datasets. This process aims at showing that EAMs can be
defined without a deep knowledge of the monitored person
and the technical details of the intelligent environment. The
simple nature of EAMs is one of the key features for the
scalability of HARS.

Regarding sensor-action mappings, for the considered
datasets, we decided to apply a 1:1 mapping function, since
the semantics of each sensor activation can be considered
unique with respect to the target activities.

Furthermore, HARS needs to configure some parameters,
such as the weights of suitability functions (Equation 1)
as well as some internal parameters of these suitability
functions. For these experiments, we used the following
values:
• wa = 1.3;wd = 0.1;ws = 1.5;wl = 1. Those
values reflect the importance of actions and starting time
respect to the other concepts.

• k = 0.001 to define the slope of the decreasing line for
duration suitability function (Equation 3); m = 1.0 and
b = 0.1 to define the line for starting time suitability
function (Equation 5).

We set weight values exploring House A and C datasets
individually. As the duration of each activity execution is very
irregular for both cases, we set the duration weight to a low
value. On the other hand, starting time plays an important role
to distinguish between activities such as ‘Prepare Breakfast’,
‘Prepare Dinner’ and ‘Get Drink’, since they share a lot of
actions. Their difference comes mainly from when the activ-
ity is performed. Regarding suitability functions’ internal
parameters, we set them at design time, so their configuration
has been kept aside of the dataset. We would like to highlight
that the same configuration values gave the best results for
both datasets, even though the environments, persons and
activities were not the same.

For the experiment with Tapia dataset, which was designed
to show the applicability of HARS, we used the same
parameters too.
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C. ACTIVITY RECOGNITION EXPERIMENTS
a: PERFORMANCE TESTS
Using as inputs the unlabelled datasets for House A and
House C and the defined EAMs, we launched HARS for both
datasets. We compared the obtained results to the respective
ground truths, i.e. the datasets annotated by the monitored
persons themselves. In order to assess the performance of
the system, we use precision, recall and F-Measure in their
macro variant, because the problem we are facing is a multi-
class classification problem. Table 5 shows the obtained
results for House A, whereas Table 6 is for House C (look
at the HARS row in both cases).

TABLE 5. Comparison of the performance of different approaches for
House A. USMART is marked with an asterisk since it does not consider
‘None’ activities.

TABLE 6. Comparison of the performance of different approaches for
House C. USMART is marked with an asterisk since it does not consider
‘None’ activities.

In order to have meaningful performance references for
the same datasets, we also depict the results obtained by
van Kasteren et al. [37] for the corresponding dataset. More
concretely, authors test the usage of four supervised learn-
ing approaches, namely, Naive Bayes (NB), Hidden Markov
Model (HMM), Hidden semi-Markov Model (HSMM) and
Conditional Random Field (CRF). They combine those four
approaches with three different sensor representations, but
we only show the results of the so called change of point
representation which achieves the best F-Measures consis-
tently (Tables 5 and 6). We also depict the results published
for USMART [35]. They do not provide average precision
and recall, only the F-Measure. It is very important to high-
light, though, that USMART does not consider the ‘None’
activity in their experiments. Thus, the provided results can-
not be compared to ours or to Kasteren’s [37] on equal basis.
As USMART authors say [35]: ‘‘We do not consider the null
type of activities in our evaluation simply because they are
time periods with no associated activity annotation in the
ground truth, and thus it is impossible to define necessary
conditions on them.’’

Additionally, we also provide the confusion matrices
obtained with HARS for House A (Table 7) and House C
(Table 8). The numbers depicted in the confusion matrices

TABLE 7. The confusion matrix of HARS for House A. NO: None, GB: Go To
Bed, UT: Use Toilet, PB: Prepare Breakfast, TS: Take Shower, LH: Leave
House, GD: Get Drink, PD: Prepare Dinner.

are percentages. Those confusion matrices allow us to fur-
ther analyse the behaviour of HARS, showing in detail the
performance obtained activity by activity.

Let us now explain some meaningful examples to better
understand how HARS works and add more context to the
obtained results. We will illustrate the capacity of our system
to handle action patterns which describe multiple activities.
In House A, it is quite common to see the monitored per-
son going to the toilet by night just before going to bed.
In consequence, APD discovered that a typical action pattern
is {HallToiletDoor, HallToiletDoor, HallToiletDoor, HallBed-
roomDoor, HallBedroomDoor}. This is the case where a
person performs two chaining activities frequently. Using the
defined EAMs, thematching algorithm of PMMcan infer that
there are two ongoing activities in the action pattern; namely,
‘Use Toilet’ and ‘Go To Bed’. Consulting the ground truth,
we observe the inference is correct.

To see how HARS can also handle idle activities, we have
another example, extracted again from House A. There is an
action pattern composed by {HallBedroomDoor, HallToilet-
Door, HallBedroomDoor}. The ground truth indicates that
the monitored person was not performing any activity at that
moment. The pattern resembles an erratic behaviour, going
from bedroom to toilet and back without any apparent pur-
pose. APD discovered that the action pattern is not frequent,
so it directly tagged it as ‘None’, inferring that the action
sequence is not actually representing any activity.

Another exemplary case shows an unknown activity which
has been correctly labelled as ‘None’. APD discovered a pat-
tern of {Dishwasher, Dishwasher}, which seems to describe
a washing dishes activity. However, there are no annotations
for such an activity in the ground truth, thus, we did not model
any EAM for it. As the actions of the pattern have zero corre-
spondence with the defined EAMs, HARS labels the pattern
as ‘None’. Notice that in this case, HARS actually discovered
an unknown activity, which could be used to model a new
EAM.

We can also see cases where PMM fails at inferring the
ongoing activity. For example, in House C, in the action pat-
tern composed by {Fridge, Freezer, Fridge, Cutlery, Fridge,
Freezer}, PMM infers two activities: ‘Eating’ and ‘Prepare
Breakfast’. Actually, the ground truth shows only an activity:
‘Prepare Breakfast’. In this case, due to the actions modelled
in the EAMs, PMM gives a higher score to the composition
of the two activities, introducing an error.
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TABLE 8. The confusion matrix of HARS for House C. NO: None, LH: Leave House, UTD: Use Toilet Downstairs, GD: Get Drink, RE: Relax, GS: Get Snack,
BT: Brush Teeth, GB: Go To Bed, UTU: Use Toilet Upstairs, GDR: Get Dressed, PB: Prepare Breakfast, EA: Eating, PL: Prepare Lunch, PD: Prepare Dinner,
TM: Take Medication, TS: Take Shower, SH: Shave, CM: Put Clothes in Washing Machine.

TABLE 9. Comparison of the performance of different weight
combinations for both houses, in terms of F-Measure. Line 1 shows the
best performance. Each line shows in bold the weight that has been
modified respect to line 1.

Another typical error is when HARS detects activities
where no activity is happening actually. We can see in
House C an action pattern composed by {Frontdoor, Front-
door, Frontdoor, Couch, Couch}. For that action pattern,
APD actually extracts two patterns: {Frontdoor, Frontdoor,
Frontdoor} and {Couch, Couch}. PMM infers that the first
pattern represents a ‘Leave House’ activity, whereas the sec-
ond is ‘Relax’. However, the ground truth shows that those
actions are not representing any activity. This could possibly
be inferred from the timestamps of the actions (between
11:14 and 11:18), specially discarding the ‘Leave House’
activity. However, HARS fails at distinguishing those subtle
details.

b: PARAMETER CONFIGURATION TESTS
As explained above, weight values do not have a big impact
in the performance of HARS. In order to show that, Table 9
depicts some of the experiments we performed with different
weight values for both House A and C. We changed the
value of a single weight between experiments, to see clearly
the impact of each concept (action, location, duration and
starting time). For visualisation purposes, we depict only the
F-Measure.

c: DATA QUANTITY INFLUENCE TESTS
On the other hand, as we are using a pattern mining algo-
rithm (APD), we wanted to see how the performance of

HARS varies depending on the quantity of available data to
find frequent patterns. That has a big impact when deciding
how often HARS should be executed for a given use case.
For that purpose, we designed another experiment. We use
House A dataset in that new experiment. Specifically, we take
1, 5, 10, 15, 20 and 25 (all) days of the dataset and run
HARS on those reduced datasets. For example, when testing
with 1 day, we only use the first day of the dataset to find
action patterns and recognise the activities. The evaluation of
the results are also provided for that unique day. The same
applies to other number of days. To assess the performance
of HARS, we depict precision, recall and F-Measure. The
obtained results can be seen in Figure 4.

FIGURE 4. Results of the experiment to assess the performance of HARS
depending on the quantity of available data. Several number of days are
shown for House A dataset, with obtained precision, recall and
F-Measure.

d: HARS APPLICABILITY TEST
Finally, to show the applicability of HARS to different sce-
narios, we also show the obtained results in another dataset.
More concretely, we run HARS on Tapia dataset, which has
no relation with House A and C datasets. Thus it is a good
dataset to combine with the previous two and have diverse
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TABLE 10. Comparison of the performance of the Naive Bayes classifier
and HARS on Tapia dataset. As the idle activity is not considered in the
results of Naive Bayes, the comparison has to be used only as a reference.

application scenarios. As a result of this experiment,
we obtained an average precision of 56.33%, recall of 40.47%
and F-Measure of 43.81%. Given the number of activi-
ties, this performance is in line with the results obtained in
House C. Tapia et al. [10] use Naive Bayes classifiers for AR,
but they do not show the results in terms of precision, recall
and F-Measure. They show the accuracy obtained for a given
set of activities; concretely, those activities that have more
than six instances in the dataset. The evaluation methodology
which is closest to ours is the so called percentage of time
activity is detected. However, as they do not consider the idle
activity, both results cannot be compared on equal basis. Any-
way, Table 10 shows a comparison between both approaches,
which should only be used as a reference.

V. DISCUSSION
A. PERFORMANCE
The results obtained in the experiments of Section IV
show that HARS has a performance comparable to super-
vised learning approaches. More concretely, for House A
HARS obtains the best metrics, scoring for F-Measure
almost 5 points more than the best supervised learning
approach (HSMM). However, for House C, HARS is 4 points
below the HSMM, but still ahead of NB and CRF, two
typical supervised learning approaches used for AR (look
at Tables 5 and 6). We can also use the reference of Tapia
dataset, where HARS outperforms the results of a Naive
Bayes classifier, even though considering the idle activity,
which makes the problem harder (Table 10). But due to the
differences in evaluation methodologies, we will not use the
results obtained in Tapia dataset to discuss the performance
of HARS.

It is worth to comment that for a fair comparison of those
results, the specific evaluation methodologies have to be
taken into account. Kasteren et al. use a technique known
as leave one day out, which means that they train the model
using all the available days except one, to test the performance
in that discarded day [37]. Thus, the results they obtain are an
average of applying this technique for all the combinations.
In their paper, Kasteren et al. also show the standard deviation
of their results. For House C, HSMM obtains an F-Measure
of 47.9%, with a standard deviation of 11.3 points.

For HARS there is no training process, hence we test
the performance for the whole dataset. Our results are not

average values. It has to be highlighted that for both houses,
HARS is inside the performance margins of the best super-
vised learning approach. This fact supports our claim of
having a performance comparable to supervised learning
techniques.

Notice the importance of such a result, specially when
considering the useful information for each of the techniques.
Fully unsupervised learning uses only sensor information,
while supervised learning approaches have the activity label
for each sensor event, from where very detailed relations
can be learnt, such as the order in which sensors fire, time
distances between sensors, which sensors are representative
for a given activity and so on. In the case of HARS, the useful
information level is between the other two techniques, but
still very far from the information level of supervised learning
techniques. EAMs are generic and rough representations of
activities, but they are easy to obtain and model. Results
show that such prior knowledge is enough to perform as well
as supervised learning approaches, avoiding any annotation
effort from users or technicians.

Following these reasons, it is particularly interesting
to compare HARS with USMART [35], because both
approaches adopt a similar philosophy. Unfortunately, even
though both approaches are tested on the same datasets,
obtained results cannot be fairly compared. If we look at
Tables 5 and 6, we might conclude that HARS and USMART
have very similar performances. However, it has to be noted
that USMART does not consider the ‘None’ activity to cal-
culate the average F-Measure. We believe that is a positive
feature of HARS compared to USMART. We believe that for
an AR system to work in real world scenarios, idle or ‘None’
activities have to be handled, since there are a lot of time
periods where monitored people may not perform any tar-
get activity, even though sensors are reporting activations.
Detecting and recognising idle periods where sensor acti-
vations are registered is a very hard problem. Supervised
learning approaches and HARS can deal with those situ-
ations - with different success rates -, whereas USMART
cannot yet. Looking at the difficulties of detecting ‘None’
activities, which show the worst recognition rates for HARS,
we presume that the results of USMART would degrade
significantly, but we cannot make such a claim without
experimentation.

Focusing on HARS, confusion matrices in Tables 7 and 8
show that themain problem of our approach is related to those
actions that are not part of any activity, i.e. actions tagged as
‘None’. Even though HARS can detect idle activities, this is
the weakest point of the system. Actions tagged as ‘None’
are the main source of false positives and negatives. This
is quite normal though, since the PMM algorithm tries to
explain every action pattern found with a set of activities.
So, if an action pattern is observed, which can be due to
erratic behaviour or even an unknown activity, the algorithm
will try to fit EAMs to it. Furthermore, we observed that due
to the APD algorithm, long activities like ‘Prepare Dinner’
and ‘Prepare Breakfast’ are very difficult to catch in a single
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pattern - here long refers to the number of actions -. It was
quite common to see the same activity split into different pat-
terns, where some intermediate actions were already tagged
as ‘None’ activities by the pattern finder. Hence, the PMM
step is not applied to those actions, because it is interpreted
that they are not part of any activity. Those observations sug-
gest that further work is required in the APD step. We believe
that to improve the detection rates of idle activities, we have
to re-work the APD algorithm rather than the PMM, trying to
assure that the patterns processed by PMM are real activities,
not idle activities.
Let us focus on House C, where HARS obtains poorer

results. We can observe in the confusion matrix (Table 8)
that the worst performance is related to similar activities.
More concretely, it can be seen clearly that HARS has sev-
eral problems when distinguishing among activities ‘Brush
Teeth’, ‘Use Toilet Upstairs’, ‘TakeMedication’ and ‘Shave’.
Those four activities share almost the same actions, they are
performed in the same location and even the starting time and
duration do not differ a lot. Even for a human observer is very
difficult to distinguish among those activities, based on the
deployed sensors and their activations.

Finally, we would like to highlight the impact of annotation
errors in the results. Both House A and C have annotation
errors in the ground truth. Those errors are more notable in
House C. For example, in the confusion matrix of Table 8
we can observe that 11.48% of times, ‘Leave House’ activity
instances have been recognised as ‘Relax’. If we go to the
ground truth, we can see how a Frontdoor action is followed
by a sequence of Couch actions. Those Couch actions are
wrongly annotated as ‘Leave House’. The same happens for
‘Get Drink’ and ‘Use Toilet Upstairs’ (18.8%), ‘Go To Bed’
and ‘TakeMedication’ (10.59%) and ‘Get Dressed’ and ‘Take
Shower’ (12.0%). The number of errors for those pairs of
activities is quite high, but it is difficult to say that they are
solely due to annotation errors. However, we can claim that
the results shown in Section IV are a lower bound of the
performance of HARS. It is also important to highlight that
annotation errors do not affect the same way to supervised
learning techniques and to HARS. In the case of HARS,
every annotation error leads to a recognition error. However,
depending on the nature of those errors, supervised learning
techniques may learn to identify those (erroneous) instances
as they are annotated.

B. PARAMETER CONFIGURATION
HARS has some parameters that have to be externally pro-
vided, as explained in Section III. The most important ones
are the weights of the cost function in Equation 1. A bad
configuration of those weights may lead to bad performance.
However, it is important to note that the configuration pro-
cess does not require any technical knowledge of the PMM
algorithm. In general, with a broad knowledge of the spe-
cific dataset, weights can be configured easily, as shown in
Section IV. We saw during experiments that small variations
of the weights do not change significantly the performance,

thus specifying the relative importance of each concept is
enough to have a good performance.

Table 9 shows some experiments carried out to show
the effect of different weights. As can be seen, the perfor-
mance changes, but the difference between the best and worst
F-Measure values is about 2-2.5 points. Take into account
that the depicted experiments do not consider weight values
that are extremely different from the optimal configuration.
The objective was to show that once the relative difference of
weights is quite clear, varying some of them does not affect
too much the performance.

Additionally, those weights provide a way to adapt the
behaviour of HARS to specific persons. Supervised learning
approaches rely on the training phase to learn personal mod-
els. HARS addresses this problem using the unsupervised
learning step, which captures the frequent action sequences of
a person, and tuning the weights of the cost function. In that
sense, it has been curious to see that for the datasets we
used, the same weights give the best performance. We believe
that this can be explained with the nature of activities and
sensors. In both datasets there are groups of activities that
can be distinguished based on actions. But to distinguish the
activities inside the same group, starting time plays a crucial
role (the difference between ‘Prepare Breakfast’, ‘Prepare
Lunch’ and ‘Prepare Dinner’, for example). That is why
action and starting time weights are the highest for both
datasets.

Due to the offline nature of HARS and its deployment,
there is another key parameter; namely, the execution fre-
quency of the system. As explained in Section III-C, depend-
ing on the execution frequency, HARS will have different
quantities of data both for the action pattern mining (APD)
and the pattern recognition (PMM). In principle, the quantity
of data should affect the pattern mining process, since APD
finds frequent action sequences. In consequence, the recog-
nition performance of HARS should also be dependent on
the quantity of data. To better assess the influence of the
quantity of data in the performance of HARS, Figure 4 shows
the results obtained for the designed experiment on House
A, using several number of days. As can be seen, even with
one day of data, the F-Measure is already around 55%. With
5 days of data, F-Measure increases to around 75%. Adding
more days does not seem to affect much the performance
of HARS. We can observe slight fluctuations of precision,
recall and F-Measure. Looking more carefully at the results,
those fluctuations seem to be more related with the specific
execution of activities registered on those days, rather than
with the quality of the action patterns extracted by APD. This
suggests that APD needs few days (5 in this case) to be able to
extract reliable action patterns. That is why we are currently
running HARS once per week in the City4Age project.

C. SCALABILITY, ACTIVITY GRANULARITY
AND SEMANTIC MEANING
As noted in Section II, supervised learning approaches do
not suffer from activity granularity and semantic meaning,
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but they are not scalable, i.e. deploying such algorithms in a
new environment with a new user implies a lot of data collec-
tion and annotation time. Unsupervised learning approaches
solve the scalability problem, but suffer from activity gran-
ularity and lack of semantic meaning. However, HARS is
scalable, overcomes the problems of the semantic meaning
of action patterns and partially handles activity granularity,
as shown in the examples of Section IV. Those advantages
come with a performance comparable to supervised learning
approaches, which make HARS a good candidate for real
world deployments. In scenarios and applications where sev-
eral people have to be monitored under varying sensor infras-
tructures, supervised learning approaches do not scale well,
since obtaining labelled datasets for every monitored person
is unfeasible. In contrast, defining a set of EAMs is assum-
able, given that only incomplete knowledge is required about
actions, locations, approximate duration and usual starting
times. As a proof of this scalability, we have presented how
HARS can be used in three different datasets, where three
different persons are monitored in different environments.

In our experience, to deploy a supervised learning AR
system, the following steps have to be completed: (i) collect
enough data to train supervised models, (ii) annotate data
with correct activity labels, and (iii) train the supervised
model. Those steps usually involve several days of effort,
although the exact number of time may vary a lot depending
on the number of activities to be monitored, the number of
sensors deployed and their nature. In contrast, for HARS we
have to follow the steps described in Section III-C, where
modelling EAMs is the most time-consuming step, following
our experience. For example, in this paper we have shown
experiments on three different datasets. We needed roughly
around one hour to model the EAMs for each dataset. After-
wards, we did not need any training or annotation step, since
the systemwas ready to start working. In consequence, we are
comparing two processes that differ in the time scale, based
on our experience: while supervised approaches typically
need deployment times in the order of days, HARS can be
deployed in hours. Take into account that as HARS is an
offline algorithm, the data collection phase is already part
of the functioning system, thus, it is not a required step
for deployment. In our opinion, those considerations make
HARS more scalable than supervised AR systems, following
the definition given in Section I.

The only scalability concern may refer to the number of
activities to be monitored. For every target activity, an EAM
has to be provided. The PMM algorithm checks all the pos-
sible combinations of EAMs (see Equation 7), whose num-
ber grows exponentially on the number of EAMs. However,
typical scenarios do not present more than 15-20 activities.
Given that relatively low number of activities and the pruning
strategies used in PMM (see Section III-B), our experiments
do not show any scalability problem. In terms of comput-
ing resources, the most demanding dataset is Tapia dataset,
which contains 21 activities and 76 sensors. Even with those
numbers, using a laptop equipped with an Intel Core i5 CPU

and 8 GB of RAM - not exclusively dedicated to the task -,
a whole day of sensor activations was processed in average in
around 3 minutes. Furthermore, for those scenarios where the
PMM approach might be intractable due to the high number
of activities, it would be straightforward to incorporate a
genetic algorithm in the matching process. However, for the
current scenarios we handle, it is not necessary to adopt
further optimisation strategies.

Activity granularity and semantic meaning are also han-
dled using EAMs. The APD algorithm frequently extracts
action patterns composed bymore than one activity, but PMM
can deal with those situations and infer the best combina-
tion of activities to explain the action pattern and assign the
suitable semantic labels. This is very important, specially
to provide meaningful information to caregivers or assistive
application developers. However, note that HARS cannot
assign activity labels to each registered action, but to action
patterns. So there is still some ground of improvement from
the granularity point of view (see Section VI).

VI. CONCLUSIONS AND FUTURE WORK
This paper has presented HARS, a novel scalable hybrid
activity recognition system for intelligent environments. Due
to the deployment requirements of the City4Age project, very
close to real world conditions, we cannot use supervised
learning approaches, since they do not scale well. In such
scenarios, if supervised learning techniques want to be used,
the problem of annotating datasets for hundreds of users
under varying sensor deployments has to be faced. This poses
a real challenge in terms of the invested effort. Therefore,
we have adopted a combination of unsupervised learning and
knowledge-driven techniques. The obtained results show that
HARS has a comparable performance to supervised learning
approaches, handling some of the most important problems
of unsupervised learning approaches, such as activity granu-
larity and lack of semantic meaning.

To sum up, HARS possesses the desired features for a real
world AR system:

1) Its performance is comparable to state-of-the-art
supervised learning approaches, which are the most
successful AR systems nowadays.

2) It is scalable. Only EAMs have to be provided to the
system, which are rough and generic activity mod-
els. EAMs can be obtained from everyday common-
sense knowledge and the description of a given sensor
infrastructure.

3) It provides semantic activity labels, making easier the
monitoring step for caregivers and the development of
assistive applications.

4) In contrast to unsupervised learning approaches, it can
handle, at some extent, activity granularity. It can dis-
tinguish user-defined activities in sequences of chain-
ing activities.

It is also important to highlight that HARS is an offline
algorithm. At its current state, it cannot provide AR on
streaming data. However, that is not the objective of the
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designed system, which is not thought for scenarios where
immediate assistance is needed. On the contrary, HARS is
designed to support further analysis techniques to detect
behaviour changes and correlate those changes with MCI and
frailty. In consequence, HARS should not be used in scenarios
that require online AR.

In order to make our results reproducible and contribute
to the scientific community, the software implementation of
HARS, as well as all the files (datasets and EAMs) and scripts
for the experiments performed in this paper, are publicly
available at GitHub.5

In the short-time, we plan to explore some strategies to
deepen in the activity granularity problem. We want to use
the information contained in EAMs to be able to label each
action of an action pattern with the corresponding activity,
whenever is needed. The actions defined in the EAMs could
easily be identified in a given pattern. However, those actions
that are not in any EAMof the recognised activities are harder
to classify. For those cases, we are planning to use location,
time and action similaritymetrics to assess the proper activity.

For the longer time, the careful analysis of the experi-
ments carried out in Section IV has shown that there is still
space for improvements, specially regarding the APD algo-
rithm (Section V). We plan to follow two different strategies
to improve APD. First of all, Rashidi and Cook have already
presented a better mining algorithm called COM [29]. To the
best of our knowledge, COM has not been made available,
so we are planning to implement it and test whether we obtain
better results.

On the other hand, we also consider a very different
approach for APD. More concretely, we are planning to
use neural embeddings to represent sensor events as vectors
in a continuous space where similar sensor events would
appear close to each other [42]. That would allow us to span
those action vectors in the time axis and apply clustering
approacheswith typical vector distancemetrics. Furthermore,
the PMM algorithm would also be different, since the simi-
larity between EAMs and action patterns can be defined in
a totally different way. We believe that the envisioned new
approach will be able to mine activities and address activity
variations better than the current approaches.

Finally, due to some design decisions we took to ensure
the simplicity of EAMs, HARS has limitations regarding the
chronological order of actions. As can be seen in Section III,
neither EAMs nor PMM take into account the order of actions
when recognising activities. People tend to perform activities
in many varying ways. In consequence, the order of actions
varies among people. The modelling effort of incorporating
those order-varying actions in EAMs does not contribute to
make EAMs simple models. However, in some scenarios the
order in which actions are executed can be key to recognise
different activities. That is not the case in the datasets we
used for the experiments (Section IV), but examples of such
cases exist. In the current state of HARS it is not trivial

5https://github.com/aitoralmeida/c4a_activity_recognition

to incorporate the order of actions without making EAMs
complex. We believe the order of actions for an activity is
a personal feature, and as such, it is better suited to be taken
into account in the learning step rather than in the modelling
and matching steps. For that purpose an interesting line of
research could be designing more order-dependent pattern
matching algorithms which can be combined with simple
activity models.
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