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ABSTRACT In recent years, reinforcement learning (RL) has achieved remarkable success due to the
growing adoption of deep learning techniques and the rapid growth of computing power. Nevertheless,
it is well-known that flat reinforcement learning algorithms are often have trouble learning and are even
data-efficient with respect to tasks having hierarchical structures, e.g., those consisting of multiple subtasks.
Hierarchical reinforcement learning is a principled approach that can tackle such challenging tasks. On the
other hand, many real-world tasks usually have only partial observability in which state measurements are
often imperfect and partially observable. The problems of RL in such settings can be formulated as a partially
observableMarkov decision process (POMDP). In this paper, we study hierarchical RL in a POMDP inwhich
the tasks have only partial observability and possess hierarchical properties. We propose a hierarchical deep
reinforcement learning approach for learning in hierarchical POMDP. The deep hierarchical RL algorithm is
proposed for domains to bothMDP and POMDP learning. We evaluate the proposed algorithm using various
challenging hierarchical POMDPs.

INDEX TERMS Hierarchical deep reinforcement learning, partially observableMDP (POMDP), semi-MDP,
partially observable semi-MDP (POSMDP).

I. INTRODUCTION
Reinforcement Learning (RL) [1] is a subfield of machine
learning focused on learning a policy in order to maximize
the total cumulative reward in an unknown environment.
RL has been applied to robotics [2]–[5], economics [6]–[8],
computer games [9]–[11] and other applications [12]–[14].
RL is divided into two approaches: value-based approach and
policy-based approach [15]. A typical value-based approach
tries to obtain an optimal policy by finding optimal value
functions. The value functions are updated using the imme-
diate reward and the discounted value of the next state. Some
methods based on this approach are Q-learning, SARSA,
and TD-learning [1]. In contrast, a policy-based approach
directly learns a parameterized policy that maximizes the
cumulative discounted reward. Some techniques used to
search for optimal parameters of the policy include policy
gradient [16], expectation maximization [17], and evolution-
ary algorithm [18]. In addition, hybrid approaches of value-
based approach and policy-based approach are known as

actor-critic approaches [19]. Recently, RL algorithms inte-
grated with a deep neural network (DNN) [10] have achieved
good performance, even better than human performance at
some tasks such as Atari games [10] and the game Go [11].
However, obtaining good performance on a task consisting of
multiple subtasks, such as Mazebase [20] and Montezuma’s
Revenge [9], is still a major challenge for flat RL algorithms.
Hierarchical reinforcement learning (HRL) [21] was devel-
oped to tackle such problems.

HRL decomposes a RL problem into a hierarchy of sub-
problems (subtasks), each of which can itself be a RL prob-
lem. Identical subtasks can be gathered into one group and
are controlled by the same policy. As a result, hierarchical
decomposition represents the problem in a compact form and
reduces the computational complexity. Various approaches
to decompose the RL problem have been proposed, such
as options [21], HAMs [22], [23], MAXQ [24], Bayesian
HRL [25]–[27] and some other advanced techniques [28].
All approaches commonly consider semi-Markov decision
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process [21] as a base theory. Recently, many studies have
combined HRL with deep neural networks in different ways
to improve the performance on hierarchical tasks [29]–[35].
Bacon et al. [30] proposed an option-critic architecture,
which has a fixed number of intra-options, each followed
by a ‘‘deep’’ policy. At each time step, only one option is
activated and is selected by another policy, which is called
‘‘policy over options’’. DeepMind lab [33] also proposed a
deep hierarchical framework inspired by a classical frame-
work called feudal reinforcement learning [36]. Similarly,
Kulkarni et al. [37] proposed a deep hierarchical framework
of two levels in which the high-level controller produces
a subgoal and the low-level controller performs primitive
actions to obtain the subgoal. This framework is useful to
solve a problem with multiple subgoals such as Montezuma’s
Revenge [9] and games in Mazebase [20]. Other studies have
tried to tackle more challenging problems in HRL such as
discovering subgoals [38] and adaptively finding a number
of options [39].

Though many studies have made great efforts in this topic,
most of them rely on an assumption of full observability,
where a learning agent can observe the environment states
fully. In other words, the environment is represented as a
Markov decision process (MDP). This assumption does not
reflect the nature of real-world applications inwhich the agent
only observes partial information of the environment states.
Therefore, the environment in this case is represented as a
POMDP. In order for the agent to learn in such a POMDP
environment, more advanced techniques are required to
obtain good prediction over environment responses, such as
maintaining a belief distribution over unobservable states;
alternatively using a recurrent neural network (RNN) [40] to
summarize an observable history. Recently, there have been
some studies that use deep RNNs to deal with learning in
POMDP environments [41], [42].

In this paper, we develop a deep HRL algorithm for
POMDP problems inspired by the deep HRL framework [37].
The agent in this framework makes decisions through a hier-
archical policy of two levels. The top policy determines the
subgoal to be achieved, while the lower-level policy performs
primitive actions to achieve the selected subgoal. To learn in
POMDP, we represent all policies using RNNs. The RNN for
lower-level policies constructs an internal state to remember
the whole states observed during the course of interaction
with the environment. The top policy is a RNN to encode
a sequence of observations during execution of a selected
subgoal. We highlight our contributions as follows. First,
we exploit the advantages of RNNs to integrate with hier-
archical RL in order to handle learning for challenging and
complex tasks in POMDP. Second, this integration leads to
a new hierarchical POMDP learning framework that is more
scalable and data-efficient.

The rest of the paper is organized as follows. Section II
reviews the background knowledge such as the semi-Markov
decision process, partially observable Markov decision pro-
cess and deep reinforcement learning. Our contributions are

described in Section III, which consists of two parts. The
deep model part describes all elements in our algorithm and
the learning algorithm part summarizes the algorithm in a
generalized form. The usefulness of the proposed algorithms
is demonstrated through POMDP benchmarks in Section IV.
Finally, the conclusion is given in Section V.

II. BACKGROUND
In this section, we briefly review all underlying theories that
the content of this paper relies on: Markov decision process,
semi-Markov decision process for hierarchical RL, partially
observable Markov decision process for RL, and deep rein-
forcement learning.

A. MARKOV DECISION PROCESS
A discrete MDP models a sequence of decisions of a learn-
ing agent interacting with an environment at some discrete
time scale, t = 1, 2, . . . . Formally, an MDP consists of a
tuple of five elements {S,A,P, r, γ }, where S is a discrete
state space, A is a discrete action space, P(st+1, st , at ) =
p(st+1|st , at ) is a transition function that measures the proba-
bility of obtaining a next state st+1 given a current state-action
pair (st , at), r (st , at) defines an immediate reward achieved
at each state-action pair, and γ ∈ (0, 1) denotes a discount
factor. MDP relies on the Markov property that the next state
only depends on the current state-action pair:

p(st+1|{s1, a1, s2, a2, . . . , st , at }) = p(st+1|st , at ).

A policy of a RL algorithm is denoted by π , which is the
probability of taking an action a given a state s: π = P(a|s),
and the goal of anRL algorithm is to find an optimal policyπ∗

in order to maximize the expected total discounted reward as
follows:

J (π ) = E
[ ∞∑
t=0

γ tr(st , at )
]
. (1)

B. SEMI-MARKOV DECISION PROCESS FOR
HIERARCHICAL REINFORCEMENT LEARNING
Learning over different levels of policy is the main challenge
for hierarchical tasks. The semi-Markov decision process
(SMDP) [21], which is as an extension of MDP, was devel-
oped to deal with this challenge. In this theory, the concept
of ‘‘options’’ is introduced as a type of temporal abstraction.
An option ξ ∈ 4 is defined by three elements: an option’s
policy π , a termination condition β, and an initiation set
I ⊆ S denoted as the set of states in the option. In addition,
a policy over options µ(ξ |s) is introduced to select options.
An option is executed as follows. First, when an option’s
policy π ξ is taken, the action at is selected based on π ξ . The
environment then transitions to state st+1. The option either
terminates or continues according to a termination probability
βξ (st+1). When the option terminates, the agent can select a
next option based on µ(ξ |st+1). The total discounted reward
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received by executing option ξ is defined as

Rξ
s = E

[ t+k−1∑
i=t

γ i−trξ (si, ai)
]
. (2)

The multi-time state transition model of option ξ [43], which
is initiated in state s and terminates at state s′ after k steps,
has the formula

Pξss′ =
∞∑
k=1

Pξ (s′, k|s, ξ )γ k . (3)

where Pξ (s′, k|s, ξ ) is the joint probability of ending up at
s′ after k steps if taking option ξ at state s. Given this,
we can write the Bellman equation for the value function of
a policy µ over options:

Vµ(s) =
∑
ξ∈4

µ(ξ |s)
[
Rξ
s +

∑
s′

Pξss′V
µ(s′)

]
(4)

and the option-value function:

Qµ(s, ξ ) = Rξ
s +

∑
s′

Pξss′
∑
ξ ′∈4

µ(ξ ′|s′)Qµ(s′, ξ ′). (5)

Similarly, the corresponding optimal Bellman equations are
as follows:

V∗(s) = max
ξ∈4

[
Rξ
s +

∑
s′

Pξss′V
∗(s′)

]
(6)

Q∗(s, ξ ) = Rξ
s +

∑
s′

Pξss′ max
ξ ′∈4

Q∗(s′, ξ ′). (7)

The optimal Bellman equation can be computed using syn-
chronous value iteration (SVI) [21], which iterates the fol-
lowing steps for every state:

V(s) = max
ξ∈4

[
Rξ
s +

∑
s′

Pξss′V(s
′, ξ ′)

]
. (8)

When the option model is unknown, Qt (s, ξ ) can be esti-
mated using a Q-learning algorithm with an estimation for-
mula:

Q(s, ξ ) ← Q(s, ξ )

+α

[
r(s, ξ (s))+ γ k max

ξ ′∈4
Q(s′, ξ ′)−Q(s, ξ )

]
,

(9)

where α denotes the learning rate, k denotes the number
of time steps elapsing between s and s′ and r denotes an
intermediate reward if ξ (s) is a primitive action, otherwise
r is the total reward when executing option ξ (s).

C. PARTIALLY OBSERVABLE MARKOV DECISION PROCESS
IN REINFORCEMENT LEARNING
In many real-world tasks, the agent might not have full
observability over the environment. In principle, those tasks
can be formulated as a POMDP defined as a tuple of six com-
ponents {S,A,P, r, �,Z}, where S,A,P, r are the state
space, action space, transition function and reward function,

respectively, as in a Markov decision process. � and Z are
the observation space and observation model, respectively.
If the POMDP model is known, the optimal approach is to
maintain a hidden state bt called the belief state. The belief
defines the probability of being in state s according to its
history of actions and observations. Given a new action and
observation, belief updates are performed using the Bayes
rule [44] defined as follows:

b′(s′) ∝ Z(s′, a, o)
∑
s∈S

P(s, a, s′)b(s). (10)

However, exact belief updates require a high computational
cost and expensive memory [40]. Another approach is using
a Q-learning agent with function approximation, which uses
Q-learning algorithm for updating the policy. Because updat-
ing the Q-value from an observation can be less accurate than
estimating from a complete state, a better way would be that a
POMDP agent using Q-Learning uses the last k observations
as input to the policy. Nevertheless, the problem with using a
finite number of observations is that key-event observations
far in the past would be neglected in future decisions. For
this reason, an RNN is used to maintain a long-term state,
as in [41]. Our model using RNNs at different levels of
the hierarchical policies is expected to be advantageous in
POMDP environments.

D. DEEP REINFORCEMENT LEARNING
Recent advances in deep learning [45] are widely applied to
reinforcement learning to form deep reinforcement learning.
A few years ago, reinforcement learning still used ‘‘shallow’’
policies such as tabular, linear, radial basis network, or neu-
ral networks with few layers. The shallow policies contain
many limitations, especially in representing highly complex
behaviors and the computational cost of updating parame-
ters. In contrast, deep neural networks in deep reinforcement
learning can extract more information from the raw inputs
by pushing them through multiple neural layers such as a
multilayer perceptron layer (MLP) or a convolutional layer
(CONV). Multiple layers in DNNs can have a lot of param-
eters, allowing them to represent highly non-linear prob-
lems. Deep Q-Network (DQN) has been proposed recently
by Google Deepmind [10], which opens a new era of deep
reinforcement learning and has influenced most later studies
in deep reinforcement learning. In term of the architecture,
a Q-network parameterized by θ , e.g., Q(s, a |θ ) is built on a
convolutional neural network (CNN) that receives an input of
four images of size 84× 84 and is processed by three hidden
CONV layers. The final hidden layer is a MLP layer with
512 rectifier units. The output layer is aMLP layer, which has
a number of outputs equal to the number of actions. In term
of the learning algorithm, DQN learns Q-value functions iter-
atively by updating the Q-value estimation via the temporal
difference error:

Q(s, a) := Q(s, a)+ α(r+γ max
a′

Q(s′, a′)− Q(s, a)). (11)
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In addition, the stability of DQN also relies on two mech-
anisms. The first mechanism is experience replay memory,
which stores transition data in the form of tuples {s, a, s′, r}.
It allows the agent to uniformly sample from and train on
previous data (off-policy) in batch, thus reducing the variance
of learning updates and breaking the temporal correlation
among data samples. The second mechanism is the target
Q-network, which is parameterized by θ ′, e.g., Q̂(s, a|θ ′), and
is a copy of themainQ-network. The target Q-network is used
to estimate the loss function as follows:

L = E
[
(y− Q(s, a|θ ))2

]
, (12)

where y = r + γ max
a′

Q̂(s′, a′|θ ′). Initially, the parameters of

the target Q-network are the same as in the main Q-network.
However, during the learning iteration, they are only updated
at a specified time step. This update rule causes the tar-
get Q-network to decouple from the main Q-network and
improves the stability of the learning process.

Many other models based on DQNs have been devel-
oped, such as Double DQNs [46], Dueling DQN [47], and
Priority Experiment Replay [48]. On the other hand, deep
neural networks can be integrated into other methods rather
than estimating Q-values, such as representing the policy in
policy search algorithms [5], estimating the advantage func-
tion [49], or a mixed actor network and critic network [50].

Recently, researchers have used RNNs in reinforcement
learning to deal with POMDP domains. RNNs have been
successfully applied to domains, such as natural language
processing and speech recognition, and are expected to be
advantageous in the POMDP domain, which needs to process
a sequence of observations rather than a single input. Our pro-
posed method uses RNNs not only for solving the POMDP
domains but also for solving these domains in a hierarchical
form of reinforcement learning.

III. HIERARCHICAL DEEP RECURRENT Q-LEARNING
IN PARTIALLY OBSERVABLE SEMI-MARKOV
DECISION PROCESS
In this section, we describe the hierarchical recurrent
Q learning algorithm (hDRQN), our proposed framework.
First, we describe the model of hDRQN and explain the
method of learning in this model. Second, we describe some
components of our algorithm such as sampling strategies,
subgoal definition, and extrinsic and intrinsic reward func-
tions. We rely on partially observable semi-Markov decision
process (POSMDP) settings, where the agent follows a hier-
archical policy to solve the POMDP domains. The setting of
POSMDP [26], [43] is described as follows. The domain is
decomposed into multiple subdomains. Each subdomain is
equivalent to an option ξ in the SMDP framework and has a
subgoal g ∈ �, that needs to be achieved before switching to
another option. Within an option, the agent observes a partial
state o ∈ �, takes an action a ∈ A, receives an extrinsic
reward rex ∈ R, and transits to another state s′ (but the
agent only observes a part of the state o′ ∈ �). The agent

executes option ξ until it is terminated (either the subgoal g
is obtained or the termination signal is raised). Afterward,
the agent selects and executes another option. The sequence
of options is repeated until the agent reaches the final goal.
In addition, to achieve subgoal g in each option, an intrinsic
reward function r in ∈ R is maintained. While the objective
of a subdomain is to maximize the cumulative discounted
intrinsic reward, the objective of the whole domain is to
maximize the cumulative discounted extrinsic reward.

Specifically, the belief update given a taken option ξ ,
observation o and current belief b is defined as

b′(s′) ∝
∞∑
k=1

γ k−1
∑
s

P(s′, o, k|s, ξ )b(s),

where P(s′, o, k|s, ξ ) is a joint transition and observa-
tion function of the underlying POSMDP model on the
environment.

We adopt a similar notation from the two frameworks
MAX-Q [24] and Options [21] to describe our problem.
We denoteQM (ot , ξ |θM ) as the Q-value function of the meta-
controller at state ot , θM (in which we use an RNN to encode
the past observation that has been encoded via its weights θM )
and option (macro-action) ξ (assuming ξ has a correspond-
ing subgoal gt ). We note that the pair {ot , θM } represents
the belief or history at time t , bt (we will use them inter-
changeably: QM (b, ξ ) or QM (o, ξ |θM )).
The multi-time observation model of option ξ [43], which

is initiated in belief b and observe o, has the following for-
mula:

P(o|b, ξ ) =
∞∑
k=1

∑
s′

∑
s

γ kP(s′, o, k|s, ξ )b(s). (13)

Using the above formula, we can write the Bellman equation
for the value function of the meta-controller policy π over
options as follows:

VM (b) =
∑
ξ

π (ξ |b)

[
Rξ
b +

∑
o′

P(o′|b, ξ )VM (b′)

]
, (14)

and the option-value function as

QM (b, ξ ) = Rξ
b +

∑
o′

P(o′|b, ξ )
∑
ξ ′∈4

µ(ξ ′|b′)QM (b′, ξ ′).

(15)

Similarly to the MAX-Q framework, the reward term
Rξb is the total reward collected by executing the option
ξ and defined as V ξ (b). Its corresponding Q-value func-
tion is defined as QS (b, a) (the value function for sub-
controllers). In the use of RNN, we also denote QS (b, a) as
QS ({ot , gt }, a|θS ), in which θS is the weights of the sub-
controller network that encodes previous observations, and
{ot , gt } denote the observations input to the sub-controller.

Our hierarchical frameworks are illustrated in Fig. 1.
The framework in Fig. 1a is inspired by a related idea
in [37]. The difference is that our framework is built on
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FIGURE 1. Hierarchical deep recurrent Q-network frameworks.
(a) Framework 1. (b) Framework 2.

two deep recurrent neural policies: a meta-controller and a
sub-controller. The meta-controller is equivalent to a ‘‘pol-
icy over subgoals’’ that receives the current observation ot
and determines the new subgoal gt . The sub-controller is
equivalent to the option’s policy, which directly interacts with
the environment by performing action at . The sub-controller
receives both gt and ot as inputs to the deep neural network.
Each controller contains an arrow (Fig. 1) pointed to itself
that indicates that the controller employs recurrent neural

networks. In addition, an internal component called ‘‘critic’’
is used to determine whether the agent has achieved the
subgoal or not and to produce an intrinsic reward that is
used to learn the sub-controller. In contrast to the framework
in Fig. 1a, the framework in Fig. 1b does not use the current
observation to determine the subgoal in the meta-controller,
but instead uses the last hidden state hSt of the sub-controller.
The last hidden state that is inferred from a sequence of
observations of the sub-controller is expected to contribute to
the meta-controller to correctly determine the next subgoal.

As mentioned in the previous section, RNNs are used in
our framework to enable learning in POMDP. Particularly,
CNNs are used to learn low-dimensional representations for
image inputs, while a RNN is used to capture the temporal
relations among the observation data. Without using a recur-
rent layer as in RNNs, CNNs cannot accurately approximate
the state features from observations in the POMDP domain.
The procedure of the agent is clearly illustrated in Fig. 2. The
meta-controller and sub-controller use the Deep Recurrent
Q Network (DRQN), as described in [41]. Particularly, at step
t , the meta-controller takes an observation ot from the envi-
ronment (framework 1) or the last hidden state of the sub-
controller generated by the previous sequence of observations
(framework 2), extracts state features through some deep

FIGURE 2. Schematic of Hierarchical Deep Recurrent Q Learning (hDRQN); the framework is based on [37]. (a) Framework 1.
(b) Framework 2.
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neural layers, internally constructs a hidden state hMt , and
produces theQ subgoal valuesQM (ot , gt |θM ). TheQ subgoal
values then are used to determine the next subgoal gt+k .
Similarly, the sub-controller receives both observation ot and
subgoal gt , extracts their feature, constructs a hidden state hSt ,
and produces Q action values QS ({ot , gt }, at |θS ), which are
used to determine the next action at+1. Those explanations
are formalized into the following equations:

8M
=

{
f extract (ot ) framework 1
f extract (hS ) framework 2

(16)

hMt ,Q
M (ot , gt |θM ) = f M (8M , hMt−1) (17)

8S
= f extract (ot , gt ) (18)

hSt ,Q
S ({ot , gt }, at |θS ) = f S (8S , hSt−1), (19)

where 8M and 8S are the features after the extraction pro-
cess of the meta-controller and sub-controller, respectively.
f M and f S are the respective recurrent networks of the meta-
controller and sub-controller, which receive the state features
and a hidden state and then provide the next hidden state and
Q value function.

The networks for the controllers are illustrated in Fig. 3.
For framework 1, we use the networks demonstrated
in Fig. 3a for both the meta-controller and sub-controller.
A sequence of four CONV layers and ReLU layers inter-
leaved together is used to extract information from the raw
observations. A RNN layer, especially LSTM, is employed
in front of the feature to memorize the information from
previous observations. The output of the RNN layer is split

FIGURE 3. Network models. (a) The network for framework 1.
(b) Meta-controller network in framework 2.

into Advantage stream A and Value stream V before being
unified with the Q-value. This architecture is inherited from
the Dueling architecture [47], which effectively learns states
without having to learn the effect of an action on that state.
For framework 2, we use the network in Fig. 3a for the
sub-controller and use the network in Fig. 3b for the meta-
controller. The meta-controller in framework 2 uses a state
that is the internal hidden state of the sub-controller. By pass-
ing through four fully connected layers and ReLU layers,
the features of the meta-controller are extracted. The rest of
the network is the same as the network for framework 1.

A. LEARNING MODEL
We use a state-of-the-art Double DQN to learn the parame-
ters of the network. Particularly, the controllers estimate the
following Q value functions:

QM (ôt , gt ) = QM (ôt , gt )

+α(rex + γ k max
gt+k

QM (ôt+k , gt+k )

− QM (ôt , gt )) (20)

and

QS ({ot , gt }, at ) = QS ({ot , gt }, at )

+α(r in + γ max
at+1

QS ({ot+1, gt }, at+1)

− QS ({ot , gt }, at )), (21)

where ô can be a direct observation or an internal hidden state
generated by the sub-controller. Let θM and θS be parame-
ters (weights and bias) of the deep neural networks, which
parameterize the networks QM (ôt , gt ) and QS ({ot , gt }, at ),
correspondingly, e.g. QM (ôt , gt ) = QM (ôt , gt |θM ) and
QS ({ot , gt }, at ) = QS ({ot , gt }, at |θS ). Then, QM and QS are
trained by minimizing the loss function LM and LS , respec-
tively. LM can be formulated as:

LM = E(o,g,o′,g′,rex )∼MM
[
yMi − Q

M (o, g|θM )
]
, (22)

where E denotes the expectation over a batch of data which
is uniformly sampled from an experience replayMM , i is the
iteration number in the batch of samples and

yMi = rex + γQM
′

(o′, argmax
g′

QM (o′, g′|θM )|θM
′

). (23)

Similarly, the formula of LS is

LS = E(o,g,a,r in)∼MS
[
ySi − Q

S ({o, g}, a|θS )
]
, (24)

where

ySi =r
in
+γQS

′

({o′, g}, argmax
a′

QS ({o′, g}, a′|θS )|θS
′

). (25)

MS is the experience replay, which stores the transition data
from the sub-controller, and QS

′

is the target network of QS .
Intuitively, in contrast to DQN, which uses the maximum
operator for both selecting and evaluating an action, Double
DQN separately uses the main Q network to greedily estimate
the next action and the target Q network to estimate the
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value function. This method has been shown to achieve better
performance than DQN regarding Atari games [46].

B. MINIBATCH SAMPLING STRATEGY
For updating RNNs in our model, we need to analyze a
sequence of samples. Particularly, episodes from the expe-
rience replay are uniformly sampled and processed from
the beginning of the episode to the end of the episode.
This strategy, called Bootstrapped Sequential Updates [41],
is an ideal method to update RNNs because their hidden
state can carry all information throughout an entire episode.
However, this strategy is computationally expensive in a
long episode, which can contain many time steps. Another
approach, proposed in [41], has been evaluated to achieve the
same performance as Bootstrapped Sequential Updates while
also reducing the computational complexity. The strategy
is called Bootstrapped Random Updates. This strategy ran-
domly selects a batch of episodes from the experience replay.
Then, for each episode, we begin at a random transition and
select a sequence of n transitions. The value of n, which
affects to the performance of our algorithm, is analyzed in
Section IV. We apply the same procedure of Bootstrapped
Random Updates to our algorithm.

In addition, the mechanism explained in [51] is also
applied. That study discusses a problem when updating
DRQN: using the first observations in a sequence of tran-
sitions to update the Q value function might be inaccurate.
Thus, the solution is to use the last observations to update
DRQN. Particularly, our method uses the last n2 transitions to
update the Q-value.

C. SUBGOAL DEFINITION
Our model is based on the ‘‘option’’ framework. Learning an
option is accomplished via flat deep RL algorithms to achieve
a subgoal of that option. However, discovering subgoals
among existing states in the environment is still a challenge
in hierarchical reinforcement learning. To simplify themodel,
we assume that a set of pre-defined subgoals is provided in
advance. The pre-defined subgoals based on object-oriented
MDPs [52], where entities or objects in the environment are
decoded as subgoals.

D. INTRINSIC AND EXTRINSIC REWARD FUNCTIONS
Traditional RL accumulates all reward and penalty based on a
reward function, which is difficult to learn in a specified task
in a complex domain. In contrast, hierarchical RL introduces
the notions of an intrinsic reward function and an extrinsic
reward function. Initially, intrinsic motivation is based on
psychology, cognitive science, and neuroscience [53] and has
been applied to hierarchical RL [54]–[59]. Our framework
follows the model of intrinsic motivation in [55]. Particu-
larly, within an option (or skill), the agent needs to learn an
option’s policy (sub-controller in our framework) to obtain a
subgoal (a salient event) under reinforcement of an intrinsic
reward while for the overall task, a policy over options (meta-
controller) is learned to generate a sequence of subgoals

FIGURE 4. Example domain for illustrating the notions of intrinsic and
extrinsic motivation.

under reinforcement of an extrinsic reward. Defining ‘‘good’’
intrinsic reward and extrinsic reward functions is still an open
question in reinforcement learning, and it is difficult to find
a reward function model that is generalized to all domains.
To demonstrate some of the notions above, Fig. 4 describes
the domain of multiple goals in four-rooms, which is used to
evaluate our algorithm in Section IV. The four-rooms contain
a number of objects: an agent (in black), two obstacles (in red)
and two goals (in blue and green). These objects are randomly
located on the map. At each time step, the agent has to follow
one of the four actions: top, down, left or right, and has to
move to the goal location in a proper order: the blue goal
first and then the green goal. If the agent obtains all goals
in the right order, it will receive a big reward; otherwise,
it will only receive a small reward. In addition, the agent
has to learn to avoid the obstacles if it does not want to be
penalized. For this example, the salient event is equivalent to
reaching the subgoal or hitting the obstacle. In addition, there
are two skills the agent should learn. One is moving to the
goals while correctly avoiding the obstacles, and the second is
selecting the goal it should reach first. The intrinsic reward for
each skill is generated based on the salient events encounters
while exploring the environment. Particularly, to reach the
goal, the intrinsic reward includes the reward for reaching
the goal successfully and the penalty if the agent encounters
an obstacle. To reach the goals in order, the intrinsic reward
includes a big reward if the agent reaches the goals in the
proper order and a small reward if the agent reaches the goal
in an improper order. A detailed explanation of intrinsic and
extrinsic rewards for this domain is included in Section IV.

E. LEARNING ALGORITHM
In this section, our contributions are summarized through
pseudo-code Algorithm 1. The algorithm learns four neural
networks: two networks for meta-controller (QM and QM

′

)
and two networks for sub-controller (QS and QS

′

). They are
parameterized by θM , θM

′

, θS and θS
′

. The architectures
of the networks are described in Section III. In addition,
the algorithm separately maintains two experience replay
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Algorithm 1 hDRQN in POMDP
Require:
1: POMDP M = {S,A,P, r, �,Z}
2: Meta-controller with the network QM (main) and QM

′

(target) parameterized by θM and θM
′

, respectively.
3: Sub-controller with the network QS (main) and QS

′

(target) parameterized by θS and θS
′

, respectively.
4: Exploration rate εM for meta-controller and εS for

sub-controller.
5: Experience replay memories MM and MS of

meta-controller and sub-controller, respectively.
6: A pre-defined set of subgoals G.
7: f M and f S are recurrent networks of meta-controller and

sub-controller, respectively.
Ensure:
8: Initialize:

• Experiences replay memories MM and MS

• Randomly initialize θM and θS

• Assign value to the target networks θM
′

← θM and
θS
′

← θS

• εM ← 1.0 and decreasing to 0.1
• εS ← 1.0 and decreasing to 0.1

9: for k = 1, 2, . . .K do
10: Initialize: the environment and get the start observa-

tion o
11: Initialize: hidden states hM ← 0
12: while o is not terminal do
13: Initialize: hidden states hS ← 0
14: Initialize: start observations o0 ← ô where ô can

be observation o or hidden state hS

15: Determine subgoal: g, hM ←
EPS_GREEDY (ô, hM ,G, εM ,QM , f M )

16: while o is not terminal and g is not reached do
17: Determine action: a, hS ←

EPS_GREEDY ({o, g}, hS ,A, εS ,QS , f S )
18: Execute action a, receive reward r , extrinsic

reward rex , intrinsic reward r in, and obtain the
next state s′

19: Store transition {{o, g}, a, r in, {o′, g′}} in MS

20: Update sub-controller
SUB_UPDATE(MS ,QS ,QS

′

)
21: Update meta-controller

META_UPDATE(MM ,QM ,QM
′

)
22: Transition to next observation o← o′

23: end while
24: Store transition {o0, g, rextotal, ô

′
} in MS where ô′

can be observation o′ or the last hidden state hS

25: end while
26: Anneal εM and εS

27: end for

memories MM and MS to store transition data from the
meta-controller and sub-controller, respectively. Before start-
ing the algorithm, the parameters of the main networks are

Algorithm 2 EPS_GREEDY (x, h,B, ε,Q, f )
Require:
1: x: input of the Q network
2: h: internal hidden states
3: B: a set of outputs
4: ε: exploration rate
5: Q network and recurrent function f

Ensure:
6: h← f (x, h)
7: if random() < ε then
8: o← An element from the set of output B
9: else
10: o = argmaxm∈B Q(x,m)
11: end if
12: Return o, h

Algorithm 3 META_UPDATE(MM ,QM ,QM
′

)
Require:
1: MM : experience replay memory of meta-controller

Ensure:
2: Sample a mini-batch of {o, g, rex , o′} from MM as the

strategy explained at III-B
3: Update the network by minimizing the loss function:

LM = E(o,g,o′,g′,rex )∼MM
[
yMi − Q

M (o, g|θM )
]

where

yMi = rex + γQM
′

(o′, argmax
g′

QM (o′, g′|θM )|θM
′

)

4: Update the target network: θM
′

← τθM + (1− τ )θM
′

randomly initialized and are copied to the target networks.
εM and εS are annealed from 1.0 to 0.1, which gradually
increase the control of the controllers. The algorithm loops
through a specified number of episodes (Line 9) and each
episode is executed until the agent reaches the terminal state.
To start an episode, first, a starting observation o0 is obtained
(Line 10). Next, hidden states, which are inputs for the
RNNs, must be initialized with zero values (Line 11 and
Line 13) and are updated during the episode (Line 15 and
Line 17). Each subgoal is determined by passing observation
o or hidden state hS (depending on the framework) to the
meta-controller (Line 15). By following a greedy ε fashion,
a subgoal will be selected from the meta-controller if it is a
random number greater than ε. Otherwise, a random subgoal
will be selected (Algorithm 2). The sub-controller is taught
to reach the subgoal; when the subgoal is reached, a new
subgoal will be selected. The process is repeated until the
final goal is obtained. The intrinsic reward is evaluated by
the critic module and is stored in MS (Line 19) for updating
the sub-controller. Meanwhile, the extrinsic reward is directly
received from the environment and is stored inMM for updat-
ing the meta-controller (Line 24). Updating the controllers at
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Line 20 and 21 is described in Section III-A and is summa-
rized in Algorithm 3 and Algorithm 4.

Algorithm 4 SUB_UPDATE(MS ,QS ,QS
′

)
Require:
1: MS : experience replay memory of meta-controller
2: Sample a mini-batch of {{o, g}, a, r in, {o′, g′}} from MS

as the strategy explained at III-B
3: Update the main network by minimizing the loss func-

tion:

LS = E(o,g,a,r in)∼MS
[
ySi − Q

S ({o, g}, a|θS )
]
,

where

ySi = r in + γQS
′

({o′, g}, argmax
a′

QS ({o′, g}, a′|θS
′

)|θS
′

)

4: Update the target network: θS
′

← τθS + (1− τ )θS
′

IV. EXPERIMENTS
In this section, we evaluate two versions of the hierarchical
deep recurrent network algorithm. hDRQNv1 is the algorithm
formed by framework 1, and hDRQNv2 is the algorithm
formed by framework 2. We compare them with flat algo-
rithms (DQN, DRQN) and the state-of-the-art hierarchical
RL algorithm (hDQN). The comparisons are performed on
three domains. The domain of multiple goals in a gridworld
is used to evaluate many aspects of the proposed algorithms.
Meanwhile, the harder domain, called multiple goals in four-
rooms, is used to benchmark the proposed algorithm. Finally,
one of the most challenging games in ATARI 2600 [9], called
Montezuma’s Revenge, is used to confirm the efficiency of
our proposed framework.

A. IMPLEMENTATION DETAILS
We use Tensorflow [60] to implement our algorithms. The
settings for each domain are different, but they have some
commonalities as follows. For the hDRQNv1 algorithm,
the inputs to the meta-controller and sub-controller are an
image of size 44 × 44 × 3 (a color image). The input image
is resized from an observation, which is observed around the
agent (either 3 × 3 unit or 5 × 5 unit). The image feature
of 256 values extracted through four CNNs and ReLUs is put
into a LSTM layer of 256 states to generate 256 output values,
and an internal hidden state of 256 values is also constructed.
For the hDRQNv2 algorithm, a hidden state of 256 values is
put into the network of themeta-controller. The state is passed
through four fully connected layers and ReLU layers instead
of four CONV layers. The output is a feature of 256 values.
The algorithm uses ADAM [61] for learning the neural net-
work parameters with the learning rate 0.001 for both the
meta-controller network and the sub-controller. To update the
target network, a τ value of 0.001 is applied. The algorithm
uses a discount factor of 0.99. The capacity of MS and MM

is 1E5 and 5E4, respectively.

FIGURE 5. Multiple goals in gridworld. (a) Multiple goals in gridworld.
(b) 3× 3 unit. (c) 5× 5 unit.

B. MULTIPLE GOALS IN A GRIDWORLD
The domain of multiple goals in a gridworld is a simple
form of multiple goals in four-rooms, which is described
in Section III-D. In this domain, a gridworld map of size
11× 11 units is used instead of the four-rooms map. At each
time step, the agent only observes a part of the surrounding
environment, either a 3 × 3 units (Fig. 5b) or 5 × 5 units
(Fig. 5c). The agent is allowed to choose one of four actions
(top, left, right, bottom), which are deterministic. The agent
can not move if the action leads it into the wall. The rewards
for the agent are defined as follows. If the agent hits an
obstacle, it will receive a penalty of minus one. If the agent
reaches two goals in proper order, it will receive a reward
of one for each goal. Otherwise, it only receives 0.01. The
hDRQN algorithms use an intrinsic reward function and an
extrinsic reward function, which are defined as follows:

r in =

{
1 obtain the goal
−1 hit the obstacle

(26)

and

rex =

{
1 reach goals in order
0.01 otherwise

(27)

The first evaluation reported in Fig. 6 is a comparison
of the different lengths of selected transitions discussed in
Section III-B. The agent in this evaluation can observe an
area of 5 × 5. We report the performance through three runs
of 20000 episodes, where each episode has 50 steps. The
number of steps for each episode assures that the agent can
explore any location on the map. In the figures on the left
(hDRQNv1) and in the middle (hDRQNv2), we use a fixed
length of meta-transitions (nM = 1) and compare different
lengths of sub-transitions. Otherwise, the figures on the right
show the performance of the algorithm using a fixed length
of sub-transitions (nS = 8) and compare different lengths
of meta-transitions. With a fixed length of meta-transition,
the algorithm performs well with a long length of sub-
transition (nS = 8 or nS = 12); the performance decreases
when the length of sub-transitions is decreased. Intuitively,
the RNN needs a sequence of transitions that is long enough
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FIGURE 6. Evaluation of different lengths of transitions. In the left-side figures, we use a fixed length of meta-transitions
(nM = 1); the figures on the right use a fixed length of sub-transitions (nS = 8). (a) hDRQNv1: reward. (b) hDRQNv1: intrinsic.
(c) hDRQNv1: extrinsic. (d) hDRQNv1: steps. (e) hDRQNv2: reward. (f) hDRQNv2: intrinsic. (g) hDRQNv2: extrinsic. (h) hDRQNv2:
steps. (i) Reward. (j) Intrinsic. (k) Extrinsic. (l) Steps.

to increase the probability that the agent will reach the sub-
goal within that sequence. Another observation is that with
nS = 8 or nS = 12, there is little difference in performance.
This is reasonable because only eight transitions are needed
for the agent to reach the subgoals. For a fixed length of
sub-transitions (nS = 8), with the hDRQNv1 algorithm,
the setting with nM = 2 has low performance and high
variance compared to the setting with nM = 1. The reason
is that while the sub-controller for the two settings has the
same performance (Fig. 6f), the meta-controller with nM =
1 performs better than the meta-controller with nM = 2.
Meanwhile, with the hDRQNv2 algorithm, the performance
is the same at both settings nM = 1 and nM = 2. This means

that the hidden state from the sub-controller is a better input
to determine the subgoal rather than a raw observation, as it
causes the algorithm to not depend on the length of the meta-
transition. The average number of steps to obtain two goals
in order is around 22.

The next evaluation is a comparison at different levels
of observation. Fig. 7 shows the performance of hDRQN
algorithms with a 3 × 3 observable agent compared with a
5×5 observable agent and a fully observable agent. It is clear
that a fully observable agent has more information around it
than a 5 × 5 observable agent and a 3 × 3 observable agent;
thus, the agent with a larger observation area can quickly
explore and localize the environment completely. As a result,

49098 VOLUME 6, 2018



T. P. Le et al.: Deep Hierarchical RL Algorithm in POMDPs

FIGURE 7. Evaluation on different levels of observation.

the performance of the agent with a larger observation area is
better than the agents with smaller observing abilities. From
the figure, the performance of a 5× 5 observable agent using
hDRQNv2 seems to converge faster than a fully observable
agent. However, the performance of the fully observable
agent surpasses the performance of 5 × 5 observable agent
at the end.

In the last evaluation of this domain, we compare the
performance of the proposed algorithms with the well-known
algorithms DQN, DRQN, and hDQN [37]. All algorithms
assume that the agent only observes an area of 5 × 5 units
around it. The results are shown in Fig. 8. For both domains
with two goals and three goals, the hDRQN algorithms out-

FIGURE 8. Comparing the hDRQN algorithms with some baseline
algorithms. (a) Two goals in gridworld. (b) Three goals in gridworld.

FIGURE 9. Multiple goals in the four-rooms domain. (a) The map of
multiple goals in the four-rooms domain. (b) 3× 3 unit. (c) 5× 5 unit.

perform the other algorithms and hDRQNv2 has the best
performance. The hDQN algorithm, which can operate in a
hierarchical domain, is better than the flat algorithms but not
better than the hDRQN algorithms. This may be because the
hDQN algorithm is only for fully observable domains and has
poor performance in partially observable domains.

C. MULTIPLE GOALS IN A FOUR-ROOMS DOMAIN
In this domain, we apply the multiple goals domain to a
complex map called four-rooms (Fig. 9). The dynamics of

FIGURE 10. Comparing the hDRQN algorithms with some baseline
algorithms. (a) Two goals in four-rooms. (b) Three goals in four-rooms.
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the environment in this domain is similar to that of the
task in IV-B. The agent in this domain must usually pass
through hallways to obtain goals that are randomly located
in four rooms. Originally, the four-rooms domain was an
environment for testing a hierarchical reinforcement learning
algorithm [21].

The performance shown in Fig. 10a is averaged through
three runs of 50000 episodes and each episode has 50 time
steps. Meanwhile, the performance shown in Fig. 10b is aver-
aged through three runs of 100000 episodes, and each episode
has 100 time steps. As before, the proposed algorithms
outperform other algorithms, especially, the hDRQNv2
algorithm.

D. MONTEZUMA’s REVENGE GAME IN ATARI 2600
Montezuma’s Revenge is one of the hardest games in ATARI
2600, and the DQN algorithm [10] can only achieve a score of
zero. We use OpenAI Gym to simulate this domain [62]. The
game is hard because the agent must execute a long sequence
of actions until a state with non-zero reward (delayed reward)
can be visited. In addition, in order to obtain a state with larger
rewards, the agent needs to reach a special state in advance.
This paper evaluates our proposed algorithms on the first
screen of the game (Fig. 11). Particularly, the agent, which
only observes a part of the environment (Fig. 11b), needs to
pass through doors (the yellow line in the top left and top
right corners of the figure) to explore other screens. However,
to pass through the doors, first, the agent needs to pick up the
key on the left side of the screen. Thus, the agent must learn
to navigate to the key’s location and then navigate back to
the door and transition to the next screen. The agent will earn
100 points after it obtains the key and 300 after it reaches any
door. In total, the agent can receive 400 points for this screen.

The intrinsic reward function is defined to motivate
the agent to explore the whole environment. Particularly,
the agent will receive an intrinsic value of 1 if it could reach
a subgoal from the other subgoals. The set of subgoals is
pre-defined in Fig. 11a (the white rectangles). In contrast to
the intrinsic reward function, the extrinsic reward function is
defined as a reward value of 1 when the agent obtains the
key or opens the doors. Because learning the meta-controller
and the sub-controllers simultaneously is highly complex and
time consuming, we separate the learning process into two
phases. In the first phase, we learn the sub-controllers com-
pletely such that the agent can explore the whole environment
by moving between subgoals. In the second phase, we learn
the meta-controller and sub-controllers altogether. The archi-
tectures of the meta-controller and the sub-controllers are
described in section IV-A. The length of sub-transition and
meta-transition is 8 and 16, respectively. In this domain,
the agent can observe an area of 70 × 70 pixels. Then,
the observation area is resized to 44× 44 to fit the input of a
controller network.

The performance of the proposed algorithms compared to
the baseline algorithms is shown in Fig. 12. DQN reported
a score of zero, which is similar to the result from [10].

FIGURE 11. Montezuma’s Revenge game in ATARI 2600. (a) The first
screen of Montezuma’s Revenge game. (b) Observable area.

FIGURE 12. Comparing the hDRQN algorithms with some baseline
algorithms for the Montezuma’s Revenge game.

FIGURE 13. Success ratio for reaching the goal ‘‘key’’.

DRQN, which can perform well in a partially observable
environment, also achieved a score of zero because of the
highly hierarchical complexity of the domain. Meanwhile,
hDQN can achieve a high score on this domain. However,
it cannot perform well in a partial observability setting. The
performance of hDQN in a full observability setting can
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FIGURE 14. The number of times the agent visits subgoals.

be found in the paper of Kulkarni et al. [37]. Our pro-
posed algorithms can adapt to the partial observability setting
and hierarchical domains as well. The hDRQNv2 algorithm
shows a better performance than hDRQNv1. It seems that the
difference in the architecture of two frameworks (described
in Section III) has affected their performance. Particularly,
using internal states of a sub-controller as the input to the
meta-controller can givemore information for prediction than
using only raw observations. To evaluate the effectiveness of
the two algorithms, we report the success ratio for reaching
the goal ‘‘key’’ in Fig. 13 and the number of time steps the
agent explores each subgoal in Fig. 14. In Fig. 13, the agent
using the hDRQNv2 algorithm almost picks up the ‘‘key’’
at the end of the learning process. Moreover, Fig. 14 shows
that hDRQNv2 tends to explore more often for subgoals that
are on the way to reaching the ‘‘key’’ (E.g. top-right-ladder,
bottom-right-ladder, and bottom-left-ladder), while exploring
less often for other subgoals such as the left door and right
door.

V. CONCLUSION
We introduced a new hierarchical deep reinforcement learn-
ing algorithm that is a learning framework for both full
observability (MDP) and partial observability (POMDP). The
algorithm takes advantage of deep neural networks (DNN,
CNN, LSTM) to produce hierarchical policies that can solve
domains with a highly hierarchical nonlinearity. We showed
that the framework performs well when learning in hierarchi-
cal POMDP environments. Nevertheless, our approach con-
tains some limitations as follows. First, our framework is built
on two levels of a hierarchy, which does not work for domains
with multiple levels of hierarchy. Second, in order to simplify
the learning problem in the hierarchical POMDP, we assumed
that the set of subgoals is predefined and fixed because the
problem of discovering a set of subgoals in POMDP is still
a difficult problem. In the future, we plan to improve our
framework by tackling those problems. In addition, we can

apply DRQN to multi-agent problems where the environment
is partially observable and the task is hierarchical.
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