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ABSTRACT The nonlinearity of the switching process in DC–DC converters can result in the inaccuracy
and invalidation of traditional stability criterion based on linear modeling, which is very harmful in practice,
especially for the DC-DC converters with high stability requirements. In this paper, the describing function
method is adopted for the modeling of switching process, namely, pulse width modulation (PWM), in DC–
DC converters, and the describing function of the PWM is derived in detail. Considering the nonlinear items
in the obtained describing function of PWM, the selection of the parameters in these nonlinear items are first
provided and proved in this paper. With the obtained describing function, the stability of the PWM DC–DC
converter can be analyzed exactly. Taken a PWM boost converter as an example, the nonlinear model based
on describing function and the linear model are established, respectively; furthermore, the stability analysis
based on these two kinds of models are carried out. Comparing with the traditional linear stability criterion,
the simulation and experimental results validate the effectiveness and accuracy of the stability analysis based
on describing function method. Furthermore, the transition interval of the PWM DC–DC converter from a
stable region to an unstable region can be determined exactly by the proposed stability analysis method,
which is helpful to determine the stability margin in real engineering applications. Therefore, this paper
provides a practical stability analysis method for PWM DC–DC converters.

INDEX TERMS DC-DC converter, describing function, nonlinear modeling, stability analysis.

I. INTRODUCTION
As the most common and practical topology of the power
converters, DC-DC converters have the advantages on simple
structure, low cost and high conversion efficiency. DC-DC
converters have been widely used in household appliances,
electrical industries, aerospace and other fields [1]–[5].
Today, pulse width modulation (PWM) is widely adopted
in DC-DC converters. In addition, the traditional linear
modeling and stability analysis methods are usually used
for DC-DC converters, such as the average state space
method [6]. But as the rapid development of power elec-
tronic technologies, the requirements of power electronic
systems or equipment on stability, reliability and electrical
performance have become stricter and stricter. The traditional
linear modeling and analysis methods more and more cannot

satisfy these requirements due to the nonlinearity of power
converters [7]. In recent decades, the nonlinear behaviors of
the power converters have been gradually revealed [8], [9].
The application of nonlinear theories in the field of power
electronics has become a hot topic and received wide
attention both at home and abroad [10]–[14]. At present,
the common nonlinear analysis methods include analyti-
cal method [15], [16], phase plane method [17], switch
signal flow graph method [18], [19], describing function
method [20], [21], etc. The analytical method solves the
state-space averaged equations directly, which is suitable for
the one or second-order system. But, the analytical method is
very complicated for the high order systems [22]. The phase
plane method is a graphic analysis method, and it trans-
forms the movement of the first or second order system
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to a trajectory about position and velocity in phase plane,
which is intuitive but also disabled for the high order sys-
tems [23]. The switch signal flow graphmethod is a nonlinear
graphical modeling method, by which, the switching process
can be equivalent as two linear branches in turn-on or turn-
off periods [18], [19]. But the dedicated graphic computer
simulation software is needed for the analysis. The three
methods mentioned above all use the concept of averaging
for system modeling and analysis, which can neither reflect
the frequency characteristic of the nonlinear link nor be used
in high order system.

Fortunately, Professor P. J. Daniel proposed describing
function method in 1940, which is not only suitable for
high order systems, but also can reflect the fundamental fre-
quency characteristic of the nonlinear link. Therefore, it has
been mainly used to analyze the stability of the systems
with nonlinear link and self-oscillation problems in control
domain. In recent years, the describing function method has
been found and applied into electrical engineering [24]–[29].
In [24]–[26], the describing function method has been men-
tioned for modeling the whole system of power converter
under frequency modulation. In [27], a two-rules fuzzy con-
troller is modeled by describing function. In [28] and [29],
the transfer functions of PWM link were deduced by describ-
ing function method, but only a few frequency components
are considered. Until now, the describing function in power
converters is mainly used for obtaining an improved transfer
function under the traditional Nyquist criterion, and is not
used for stability analysis directly yet. The describing func-
tion and its deducing method for the nonlinear switching link
in power converters are still not mature.

In this paper, a PWM boost converter is taken as an exam-
ple, and the describing function of the switching process in
DC-DC converters is firstly deduced. Its traditional linear
model and the nonlinear model based on describing function
method are established, respectively. Finally, the simulation
and experimental results are given to validate the correctness
and effectiveness of nonlinear stability analysis based on
describing function.

II. MODELING AND STABILITY CRITERION FOR THE
DC-DC CONVERTERS
It is well known that boost converter is a basic topology
of DC-DC converters, which has gained wide application
in photovoltaic inverters, wind power generations in recent
years. In this paper, a boost converter is taken as an example
for modeling and stability analysis.

The boost converter with its closed-loop control is shown
in Fig. 1(a), where, its control is a voltage closed-loop includ-
ing a PI controller.

A. THE LINEAR MODEL OF THE BOOST CONVERTER AND
ITS STABILITY CRITERION
The small signal modeling method is adopted in the boost
converter for linear modeling. The small signal diagram of
the boost converter [30] is shown in Fig. 1(b), which can be

FIGURE 1. The structure diagram of boost converter. (a) The closed-loop
circuit of boost converter with PI controller. (b) The block diagram of the
boost converter. (c) The simplified diagram of the boost converter.

further simplified as shown in Fig. 1(c) [31]. The transfer
function of each link in Fig. 1 can be expressed in (1).

K = Gm(s) =
1
Vm

G(s) = Gc(s)Gvd (s)

= [
Kp(1+ Tis)

Tis
][
Vi
D′2

1− s L
D′2R

1+ s L
D′2R
+ s2 LC

D′2
]

H (s) = 1.

(1)

In Fig. 1(c), K represents the switching process of S in the
boost converter, which is a nonlinear link. But in the linear
model, the switching process is averaged and is expressed
by 1

Vm
.

In traditional Nyquist stability analysis method, when the
transfer functions of a system are obtained, the Nyquist plot
can be drawn out to determine the stability of the system [32].
For the boost converter system shown in Fig. 1(c), its closed
loop transfer function can be expressed as (2).

v̂o(s)
v̂ref (s)

=
KG(s)

1+ KG(s)
. (2)

The characteristic equation of (2) is 1+ KG(s) = 0, or

G(s) = −
1
K
+ j0. (3)
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Therefore, the stability of the boost converter can be judged
by the position relationship between the Nyquist plot of G(s)
and the point of (− 1

K , j0).

B. THE NONLINEAR MODEL BASED ON DESCRIBING
FUNCTION OF THE BOOST CONVERTER AND ITS
STABILITY CRITERION
The basic idea of the describing function (DF) method is to
replace each nonlinear link with a describing function, which
is a ratio of the first harmonic of the nonlinear link output
and a sinusoidal signal input [33]. According to the obtained
describing function, the fundamental frequency characteristic
of the nonlinear link can be derived.

Giving a sinusoidal input signal Asin to the nonlinear link,
the Fourier transform of the nonlinear link output y can be
expressed as:

y(t) = A0 +
∞∑
n=1

(An cos nωt + Bn sin nωt)

= A0 +
∞∑
n=1

Yn sin(nωt + ϕn). (4)

When the A0 = 0 and n > 1, Yn are usually very
small, the sinusoidal response of the nonlinear element can
be approximately replaced by the first harmonic:

y(t) = A1 cosωt + B1 sinωt = Y1 sin(ωt + ϕ1). (5)

According to [21], the describing function can be defined
as the plural ratio of the first harmonic of nonlinear link
output and the sinusoidal input signal:

N (A) = |N (A)| ej
6 N (A)

=
Y1
A
ejϕ1 =

B1 + jA1
A

, (6)

where, A is the amplitude of the sinusoidal input signal.
Fig. 1(c) shows the linear model of the boost converter.

To get the nonlinear model based on DF method, N (A),
the describing function of the switching process, is used to
replace the K in Fig. 1(c), and the nonlinear model is shown
in Fig. 2.

FIGURE 2. The nonlinear model of the boost converter.

Similar to the linear system, the closed loop transfer func-
tion of the model can be derived as (7).

v̂o(jω)
v̂ref (jω)

=
N (A)G(jω)

1+ N (A)G(jω)
. (7)

According to (7), its characteristic equation can be
expressed as 1+ N (A)G(jω) = 0, or:

G(jω) = −
1

N (A)
. (8)

Then, the Nyquist plot of G(jω) and − 1
N (A) can be drawn

in complex plane. So, the stability of the converter can be
determined by observing the positional relationship of these
two curves. As shown in Fig. 3, if the G(jω) curve separates
from the − 1

N (A) curve, the system is stable; if the G(jω)
curve surrounds the − 1

N (A) curve, the system is unstable;
and if the two curves intersect, the system is critical sta-
ble [31], [34], [35].

FIGURE 3. Stability analysis for describing function method.

Comparing the linear model with the nonlinear model
based on the describing function method, it can be found that
the transfer function of the linear links are the same, namely,
G(jω) = G(s). Therefore, G(jω), the point (− 1

K , j0) and the
−

1
N (A) can be plotted in the same complex plane. By observ-

ing the positional relationship of G(jω), (− 1
K , j0) and the

−
1

N (A) , the stability can be determined by the traditional
linear method and describing function method, respectively.

III. THE DESCRIBING FUNCTION DERIVATION OF THE
SWITCHING PROCESS
In the linear model of boost converter, the switching process
is averaged. But because the switching process is nonlinear
in essence, the averaged model cannot fully express the char-
acteristics of the switching process. Therefore, a nonlinear
model based on describing function is constructed in this
paper.

According to the definition of the describing function,
assuming that the input of the switching link is sinusoidal
signal: vin = A cos y, where, y = ω0t , as shown in Fig. 4.
In addition, the peak-to-peak value of the triangle carrier used
in PWM is Vm and the frequency of the triangular carrier is
ωc. Finally, the output waveform of the PWM link is a square
wave with amplitudes of±Vd , which can be further expanded

to a Fourier series: vp(t) =
a0
2 +

∞∑
m=1

(am cosmx + bm sinmx),

where, x = ωct , as shown in Fig. 4.
There is no direct component in vp(t), so a0 = 0. After

calculation, vp(t) can be expressed as [36]:

vp(t) =
2VdA cos y

Vm

+
4Vd
π

∞∑
m=1

1
m
J0

(
mπ

A
Vm

)
sinm

π

2
cosmx

+
4Vd
π

∞∑
m=1

∞∑
n=1

1
m
Jn

(
mπ

A
Vm

)
sin
[
(m+ n)

π

2

]
· [cos(mx + ny)+ cos(mx − ny)] . (9)
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FIGURE 4. Triangular carrier compared with low frequency signal to
generate the PWM waveforms.

Because carrier frequency ωc is normally much greater
than the modulation waveform frequency ω0, let x =

ωcy
ω0
=

ky, and k � 1. After substitution, the (9) can be expressed
as (10):

vp(t) =
2VdA cos y

Vm
...................................item1

+
4Vd
π

∞∑
m=1

[
1
mJ0

(
mπ A

Vm

)
· sinmπ

2 cos(kmy)

]
...item2

+
4Vd
π

∞∑
m=1

∞∑
n=1

 1
mJn

(
mπ A

Vm

)
· sin

(
[m+ n]π2

)
· cos(kmy+ ny)

...item3
+

4Vd
π

∞∑
m=1

∞∑
n=1

 1
mJn

(
mπ A

Vm

)
· sin

(
[m+ n]π2

)
· cos(kmy− ny)

...item4. (10)

In order to get the fundamental components in (10),
item1-item4 should be considered separately. For item1, it is
a fundamental component obviously. For item2 and item3,
no fundamental component is included in these two items
because it is impossible to make cos kmy = cos y and
cos(kmy + ny) = cos y, since m and n are positive integers
and k � 1. For item4, it has fundamental component when
cos(kmy−ny) = cos y, that is when km−n = 1. Then, the fun-
damental components of the output vp(t) can be expressed
as (11) by substituting km− n = 1 into item4 of (10).

vp(t) =
2VdA cos y

Vm

+
4Vd
π

∞∑
m=1


1
mJkm−1

(
mπ A

Vm

)
· sin

(
[(k + 1)m− 1]π2

)
· cos y

. (11)

According to the practical application, Vd can be set to be
0.5. Then, the describing function of the nonlinear link is the

ratio between vp(t) and the input signalA cos y, namely,N (A).

N (A) =
vp(t)
vin

=
1
Vm

+
2
πA

∞∑
m=1

{
1
mJkm−1

(
mπ A

Vm

)
·

sin
(
[(k + 1)m− 1]π2

) }. (12)

In (12), A is the amplitude of the modulation waveform,
Jkm−1

(
mπ A

Vm

)
is the first kind Bessel function.

When the expression of N (A) is obtained, as given in (12),
the following question is how to determine the parameters
of N (A) in practice, since N (A) includes k , A and an infinite
series. With these parameters, the output range of N (A) will
thereby be determined and drawn up.

IV. PARAMETER DETERMINATION FOR THE DESCRIBING
FUNCTION OF THE SWITCHING PROCESS
For the N (A), the upper limit ofm should be infinite, k ranges
from kmin to infinite and A ranges from 0 to infinite.
To obtain the effective and practical function describing

function of the switching process, firstly, the limit of the
obtained describing function is proved and calculated in this
paper.

A. DETERMINATION FOR THE RANGE OF m
1) THE PROOF OF CONVERGENCE FOR THE
DESCRIBING FUNCTION
For any determined k and A, the 1

Vm
and 2

πA do not affect
the convergence of N (A), so the convergence of series

Nm =
∞∑
m=1

1
mJkm−1

(
mπ A

Vm

)
sin
(
[(k + 1)m− 1]π2

)
is taken

into consideration.
Assuming that N ′m is the absolute value of Nm:

N ′m = |Nm|

=

∣∣∣∣∣
∞∑
m=1

1
mJkm−1

(
mπ A

Vm

)
· sin

(
[(k + 1)m− 1]π2

) ∣∣∣∣∣ . (13)

According to the theory of Bessel functions [37], [38],
it can be concluded that:

N ′m =

∣∣∣∣∣
∞∑
m=1

1
mJkm−1

(
mπ A

Vm

)
· sin

(
[(k + 1)m− 1]π2

) ∣∣∣∣∣
<

∞∑
m=1

1
m
[Jkm−1 (x)]max = N ′′m, (14)

where, N ′′m and N ′m are both positive series.
For the maximum value of Bessel’s function, there is

[Jα(x)]max <
3
√

1
α
, as shown in Fig. 5.

Thus, N ′′m<
∞∑
m=1

1
m

3
√

1
km−1 , further, N

′′
m<

∞∑
m=1

1
m

3
√

1
(k−1)m =

∞∑
m=1

1

(k−1)
1
3

1

m
4
3
= N ′′′m . Obviously, N ′′′m is a p-series, as k � 1,

and 4
3 > 1, so N ′′′m is convergent.
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FIGURE 5. The changing curves of [Jα(x)]max and 3
√

1
α with the increase

of α.

Theorem 1: If both
∞∑
n=1

un and
∞∑
n=1

vn are series with pos-

itive terms, and un ≤ vn (n = 1, 2, 3, ...). If the
∞∑
n=1

vn is

convergent, then the
∞∑
n=1

un is convergent [39].

According to Theorem 1, N ′′′m is convergent, so N ′′m and N ′m
are convergent.

Theorem 2: If the series
∞∑
n=1

un is absolute convergence,

the series
∞∑
n=1

vn must be convergent [39].

According to Theorem 2, when N ′m is convergent, Nm is
also convergent.

2) COMPARISON OF RATE OF CONVERGENCE
BETWEEN N ′′m AND Nm

Because sinusoidal function does not affect the rate of con-
vergence, so the sinusoidal component is neglected for the
comparison:

lim
m→∞

Nm
N ′′m

rate of
−−−−−−−→
convergence

lim
m→∞

1
mJkm−1(x)

1
mJkm−1(x)max

= lim
m→∞

Jkm−1(x)
Jkm−1(x)max

= r . (15)

Since Jkm−1(x) ≤ Jkm−1(x)max always stands up, so r ≤ 1.
It means that the rate of convergence of Nm is faster or same
with N ′′m. So, the upper limit of m can be determined by N ′′m.

3) DETERMINATION OF THE UPPER LIMIT OF m
Assuming that k = 1, the changing curve of N ′′m with the
increase of the upper limit of m is shown in Fig. 6. The
inflection point of the changing curve of N ′′m is about 800,
so the upper limit of m is taken as 800.

So, the range of m is 1-800.

B. DETERMINATION FOR THE RANGE OF k
In this paper, k = ωc

ω0
, which means the ratio between the

carrier frequency and the frequency of the input sinusoidal

FIGURE 6. The changing curves of N ′′m with the increase of the upper limit
of m.

signal. In practice, k is always a big number, therefore, it can
be thought a number larger than 10, that is kmin = 10.
Constraint relation of k and A: For a certain frequency,

when A increases to Amax , the switching pulse square wave-
forms will be the same for all the A > Amax , as shown in Fig. 7.
So, A should be less than Amax .

FIGURE 7. Triangular carrier wave and low frequency signal input.

From that Amax sinω0t =
Vmωc
π

t , t = π
2ωc

, the constraint
relation of k and A can be expressed as:

A ≤
Vm

2 sin(π
/
2k)

. (16)

To simplify the calculation, Vm is set as 1 in this paper.
Therefore, for all A ≤ 1

2 sin(π/2k) , there is km − 1 > mπ A
Vm

,

which means 2
mπAJkm−1

(
mπ A

Vm

)
> 0.

1) DETERMINATION FOR THE UPPER LIMIT OF k

Because 2
mπAJkm−1

(
mπ A

Vm

)
> 0 and Vm = 1, there is:

N (A) = 1
Vm
+

∞∑
m=1

{
2

mπAJkm−1
(
mπ A

Vm

)
· sin

(
[(k + 1)m− 1]π2

) }
< 1

Vm
+

∞∑
m=1

2
mπAJkm−1

(
mπ A

Vm

)
Let x = mπA, there is

N (A) < 1+
∞∑
m=1

2
x
Jkm−1 (x)

< 1+
∞∑
m=1

[
2Jkm−1 (x)

x

]
max
. (17)
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Since y(k) =
∞∑
m=1

[
2Jkm−1(x)

x

]
max

is a monotone decreasing

function, the range of N (A) can be approximately determined
by 1+ y(k) and 1− y(k), as shown in Fig. 8.

FIGURE 8. The function curves which are used to determine the range
of N(A). (a) The y (k) function. (b) 1+ y (k) and 1− y (k).

When k is taken from 10 to 42, the actual region of N (A)
is shown in Fig. 9. When k = 42, the N (A) curve intersects
with 1+ y(k) and 1− y(k), which means the region of N (A)
for all the k > 42 will be included in the region of N (A) for
10 ≤ k ≤ 42. So kmax = 42. So, the range of k is 10-42.

FIGURE 9. The curves of 1± y (k) and N(A) with the changing of k .

C. DETERMINATION FOR THE RANGE OF A
As mentioned above: A ≤ Vm

2 sin(π/2k) . Taken Vm = 1 and
k = 42, the maximum value of A can be determined:
Amax = 14.
For the lower limit of A, it can be determined by the

following proof.

lim
A→0

N (A) =
1
Vm

+ lim
A→0

{
∞∑
m=1

[ 2
mπA · Jkm−1(mπ

A
Vm

)
· sin

(
[(k + 1)m− 1] · π2

) ]}.
(18)

In (18), the first kind Bessel function Jkm−1(mπ A
Vm

) can be
expanded to Taylor series, as shown in (19),

Jkm−1(mπ
A
Vm

)=
∞∑
a=0

(
(−1)a

a!0(a+km)
·(mπA2Vm

)2a+km−1

)
. (19)

Then,

lim
A→0

{
∞∑
m=1

[ 2
mπA · Jkm−1(mπ

A
Vm

)
· sin

(
[(k + 1)m− 1] · π2

) ]}

= lim
A→0


∞∑
m=1


2

mπA

·

∞∑
a=0

(
(−1)a

a!0(a+km)
·(mπA2Vm

)2a+km−1

)
· sin

(
[(k + 1)m− 1] · π2

)



= lim
A→0


∞∑
m=1

 2 ·
∞∑
a=0

 (−1)a
a!0(a+km)
·( 1
2Vm

)2a+km−1

·(mπA)2a+km−2


· sin

(
[(k + 1)m− 1] · π2

)

 . (20)

In (20),

lim
A→0

2 ·
∞∑
a=0

 (−1)a
a!0(a+km)
·( 1
2Vm

)2a+km−1

·(mπA)2a+km−2




= lim
A→0

 2·(−1)a
a!0(a+km)
·( 1
2Vm

)2a+km−1

·(mπA)2a+km−2


∣∣∣∣∣∣∣
a=0

+ lim
A→0

2 ·
∞∑
a=1

 (−1)a
a!0(a+km)
·( 1
2Vm

)2a+km−1

·(mπA)2a+km−2


 . (21)

As mentioned above: the range ofm is 1-800, and the range
of k is 10-42, so km ≥ 10, which means 0(km) > 0 and
0(a+ km) > 0 , then (21) can be calculated as

lim
A→0

2 ·
∞∑
a=0

 (−1)a
a!0(a+km)
·( 1
2Vm

)2a+km−1

·(mπA)2a+km−2




=

 2·(−1)0
0!0(0+km)
·( 1
2Vm

)2×0+km−1

·(mπ · 0)2×0+km−2


+

2 ·
∞∑
a=1

 (−1)a
a!0(a+km)
·( 1
2Vm

)2a+km−1

·(mπ · 0)2a+km−2




= 0. (22)

According to (18)-(22), when A = 0, N (A) can be
expressed as:

N (A) =
1
Vm
. (23)

Therefore, the range of A is 0-14.
According to the above mathematical analysis, the regions

of the parameters in N (A) can be determined as follows: the
upper limit of m is determined as 800, the range of k is
determined as 10-42, and A is determined as 0-14.

Fig. 10 gives the plot of − 1
N (A) with different A and k ,

in which The projection of the 3D plot on z axis actually is
the curve of − 1

N (A) .
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FIGURE 10. The plot of − 1
N(A) with different A and k .

Therefore, the describing function of the PWM switching
process can be expressed as:

N (A) =
1
Vm
+

2
πA

800∑
m=1

(
1
mJkm−1

(
mπ A

Vm

)
· sin

(
[(k + 1)m− 1]π2

) ). (24)

It should be noticed that (24) not only can be used for the
boost converter in this paper, but also can be used for other
PWM DC-DC converters.

V. SIMULATION AND EXPERIMENTAL VERIFICATION
In this paper, MATLAB is used to draw the Nyquist curve,
and PSIM is used to simulate the boost circuit. Finally,
the results are validated by experiment. The simulation and
experimental parameters are shown in Table 1, and the
types and parameters of experimental instruments are shown
in Table 2. The experiment platform is shown in Fig. 11.
Under the parameters, the stability of the system can be deter-
mined by determining the positional relationship between the
Nyquist curve of G(s) and − 1

N (A) .

TABLE 1. Simulation and experimental parameters.

TABLE 2. Types and parameters of experimental instruments.

Since the proposed describing function method focuses
on the nonlinear PWM link, and the models for the other

FIGURE 11. The experiment platform of the boost converter.

linear links are all obtained by the traditional linear modeling,
the stability analysis based on describing function method
will be compared with the traditional Nyquist method.

In order to compare the result of the traditional Nyquist
method and the describing function method in the stability
analysis of the boost converter, the PI parameters Kp and Ti
in Gc(s) are modified continuously to make the intersection
point of the Nyquist curve G(s) and real axis move in the
negative direction. And the system state changes from stable
mode to unstable mode, as shown in Fig. 12.

FIGURE 12. The 3 dimension Nyquist plot with the changing Kp.

Four typical cases are listed in Table 3.

TABLE 3. Comparisons of the results obtained by different methods.

Case I (Kp = 0.003, Ti = 0.0005): Fig. 13(a) shows
the Nyquist curve of G(s) and − 1

N (A) , Fig. 13(b) shows the
simulation waveform and Fig. 13(c) shows the experimental
waveform of the output voltage.

Under the Case I, the Nyquist curve of G(s) does not
surround the point (−1, j0) and the − 1

N (A) curve. Due to
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FIGURE 13. The Nyquist plot and waveforms under Case I. (a) The Nyquist
plot in Case I. (b) The simulation waveform of the output voltage. (c) The
experiment waveform of the output voltage.

the traditional Nyquist stability criterion and the method of
describing function criterion, the system is stable.
Case II (Kp = 0.0051, Ti = 0.0005): Fig. 14(a) shows

the Nyquist curve of G(s) and − 1
N (A) , Fig. 14(b) shows the

enlarged drawing of the crossing point. Fig. 14(c) shows the
simulation waveform and Fig. 14(d) shows the experimental
waveform. And the bottom right corners show the enlarged
drawing.

Under the Case II, the Nyquist curve of G(s) does not
surround the point (−1, j0) but intersects the − 1

N (A) curve.
The system is stable with the traditional Nyquist stability
criterion, but critical stable with the describing function cri-
terion.
Case III (Kp = 0.0055, Ti = 0.0005): Fig. 15(a) shows

the Nyquist curve of G(s) and − 1
N (A) . Fig. 15(b) shows the

simulation waveform and Fig. 15(c) shows the experimental

FIGURE 14. The Nyquist plot and waveforms under Case II. (a) The
Nyquist plot in Case II. (b) The enlarged drawing of the crossing point.
(c) The simulation waveform of the output voltage. (d) The experiment
waveform of the output voltage.

waveform. And the bottom right corners show the enlarged
drawing.

Under the Case III, the Nyquist curve of G(s) surrounds
the point (−1, j0) and intersects the− 1

N (A) curve. The system
is unstable with the traditional Nyquist stability criterion, but
critical stable with the describing function criterion.
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FIGURE 15. The Nyquist plot and waveforms under Case III. (a) The
Nyquist plot in Case III. (b) The simulation waveform of the output
voltage. (c) The experiment waveform of the output voltage.

Case IV (Kp = 0.0065, Ti = 0.0005): Fig. 16(a) shows
the Nyquist curve of G(s) and − 1

N (A) . Fig. 16(b) shows the
simulation waveform and Fig. 16(c) shows the experimental
waveform.

Under the Case IV, the Nyquist curve of G(s) surrounds
both the point (−1, j0) and the − 1

N (A) curve. The system is
unstable due to the two stability criterion.

In summary, in Case I and IV, the stability analysis
results are same with both the traditional Nyquist analy-
sis and the describing function method, the simulation and
experimental results demonstrate the validity of the analysis.
In Case II and III, according to traditional Nyquist analysis,
the system is in stable state and unstable state, respectively;
but according to the describing function method, the sys-
tem is both in critical stable state. From the simulation and
experimental waveforms, in the two cases, the output voltage

FIGURE 16. The Nyquist plot and waveforms under Case IV. (a) The
Nyquist plot in Case IV. (b) The simulation waveform of the output
voltage. (c) The experiment waveform of the output voltage.

has low frequency oscillation phenomena, but the voltage
waveform is not divergent yet, which confirms that the anal-
ysis of the describing function method is more accurate.
Case II and III are set in the transition interval from stable
region to unstable region, and the stability analysis based
on describing function method can determine the transition
interval while traditional Nyquist stability analysis cannot
determine it.

VI. TRANSITION INTERVAL DETERMINATION
According to the analysis in section V, it is obvious that
finding the transition interval from stable region to unstable
region, namely, the critical stable range, is very important.
Because this critical stable range can be regarded as the
stability margins in the traditional linear stability analysis.

With the obtained describing function N (A) of the switch-
ing process for the boost converter, it can be found that− 1

N (A)
is a line on the real axis, and the range of − 1

N (A) can be
obtained easily, as shown in Fig. 17. According to calculation
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FIGURE 17. The Nyquist plot of the boost converter.

and Fig. 10,
[
−

1
N (A)

]
min
= −1.174 and

[
−

1
N (A)

]
max
=

−0.97 in this paper.
Further, according to the stability criterion in Fig. 3,

if G(jω) and − 1
N (A) intersect, the boost converter is critical

stable. Therefore, the point Q, the intersection point between
the curve ofG(jω) and real axis, should be determined. Obvi-
ously, Im[G(jωQ)] = 0, here, ωQ means the frequency at the
point Q. According to Im[G(jωQ)] = 0, the frequency ωQ
can be calculated, as given in (25).

ωQ =

√
b+
√
b2 + 4a
2a

. (25)

where, a = L2CTi
D′4R

, b = LTi
D′2R
−

LC
D′2
+

L
D′2R

(Ti − L
D′2R

).
Then, substituting the obtained ωQ into G(jω) in (1),

the real part of the point Q can be expressed by a function
of control parameters Kp and Ti, as given in (26).

Re[G(jωQ)] =
KpVi
D′2Ti

· [
−

L
D′2R

(1+ ωQ2 LTi
D′2R

)+ (Ti − L
D′2R

)(1− ωQ2 LTi
D′2R

)

ωQ2( L
D′2R

)
2
+ 1− 2ωQ2 LC

D′2
+ ωQ4( LC

D′2
)
2 ].

(26)

According to Fig. 3 and Fig. 17, when
[
−

1
N (A)

]
min
≤

Re[G(jωQ)] ≤
[
−

1
N (A)

]
max

, this boost converter will be under
critical stable mode. Therefore, the ranges of Kp and Ti in
critical stable mode, i.e. in the transition interval, can be
calculated.

In this paper, with Ti = 0.0005, when 0.0050 ≤ Kp ≤
0.0061, this boost converter will be under critical stable
mode; with Kp = 0.003, when 0.000238 ≤ Ti ≤ 0.000289,
this boost converter will be under critical stable mode. For
other situations, the control parameter range can be deter-
mined according the above mentioned method.

VII. FURTHER VERIFICATION
To further verify the accuracy and correctness of the pro-
posed stability analysis based on describing function method,
the bifurcation diagram of the output voltage is also plotted
by iterative equations of the boost converter.

Assuming that X = [ vC iL ]T , the state equations of the
boost converter can be expressed as (27):

Ẋ = A1X
+ B1Vi, (nT , dnT ) switch on

Ẋ = A2X
+ B2Vi, (dnT , (n+ 1)T ) switch off ,

(27)

where, A1 =

[
−

1
RC 0
0 0

]
, A2 =

[
−

1
RC

1
C

−
1
L 0

]
,

B1 = B2 =
[
0
1
L

]
.

So, for a whole period, during the switch on time and
switch off time:

X (dnT ) = eA1dnTX (nT )

+
∫ (n+dn)T
nT eA1((n+dn)T−τ )B1Vidτ

X ((n+ 1)T ) = eA2(1−dn)TX (dnT )

+
∫ (n+1)T
(n+dn)T

eA2((n+1)T−τ )B2Vidτ .

(28)

Then, the relationship of the state variable between nT and
(n+ 1)T can be expressed as:

X (nT + T ) = N2N1X (nT )+ [N2M1 +M2]Vi. (29)

In (29), N1 = eA1dnT , N2 = eA2(1−dn)T , M1 =[
RC(1− e−

dnT
RC ) 0

0 dT

]
B1, M2 = A−12 (eA2(1−dn)T − I )B2.

For the control loop, the duty ratio can be derived by a
switching function:

S(Xn, dn) = vcon − vramp = 0. (30)

vcon is the control signal generated by PI controller, and
vramp is the value of PWM comparator. In (31), UH and UL
are the high and low peak value of the PWM wave.

vcon = Kp(Vref − vC (t))

+
Kp
Ti

∫ (n+dn)T
0 (Vref − vC (t))dt

vramp = UL + (UH − UL)(t mod T ).

(31)

Base on (29) and (31), the bifurcation diagram of the output
voltage is plotted in Fig. 18.

From Fig. 18, it is obvious that the output voltage is stable
when Kp is less than 0.0051. With the gradual increase of Kp,
the oscillation phenomenon will appear in output voltage, and
the region of oscillation is from 0.0051 to 0.006 according to
Fig. 18. This region is basically the same with the simulation
results, the region of oscillation is from 0.0049 to 0.006,
obtained by PSIM. According to the PSIM simulation results
with Kp = 0.0049-0.006, the range about the intersection
point of the Nyquist curve and real axis is [−1.154,−0.942].
Therefore, the transition interval from stable region to

unstable region, i.e. the critical stable range, can be obtained
by simulation, traditional Nyquist analysis and the describing
function method, respectively, as given in Table 4.
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FIGURE 18. The bifurcation diagram of the output voltage with
changing Kp.

TABLE 4. The critical stable range determined by simulation, traditional
Nyquist and describing function.

Traditional Nyquist analysis can only determine the critical
stable state with a demarcation point. And the transition
interval determined by describing function method is close
to the circuit simulation result. So the stability analysis based
on describing function method is more accurate in the tran-
sition interval from stable region to unstable region. And
the obtained transition interval can also be regarded as the
stability margin for the system.

VIII. CONCLUSION
In this paper, the describing function of PWM switching pro-
cess has been derived, comparing with the traditional linear
modeling and stability analysis method, the critical range of
the DC-DC converter system has been extended to a curve,
instead of a point (−1/K , j0). The transition interval from
stable range to unstable range can be determined exactly by
the proposed stability analysis method, which is very helpful
for determining the stability margin in real engineering appli-
cations. The simulation and experimental results validate the
effectiveness and accuracy of the stability analysis based on
describing method. Therefore, this paper gives a new choice
for the stability analysis of PWM DC-DC converters.
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