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ABSTRACT With the development of electric vehicles in recent years, lithium-ion batteries have been
widely used. Accurate state of charge (SOC) estimation plays an important role in the safety of electric
vehicles. Since the temperature has the significant influence on charge and discharge performance of the
battery, it is critical to achieve accurate SOC estimation over the wide temperature range. In this paper,
a polymer ternary lithium-ion battery is focused, and a Thevenin equivalent circuit model with temperature
compensation is established. The validity of the established battery model was verified by the dynamic
stress test. On this basis, the ternary lithium-ion battery SOC was estimated using the unscented Kalman
filter (UKF). The New European Driving Cycle is used to verify the effectiveness of the proposed algorithm.
The simulation and experimental results show that the established Thevenin equivalent circuit model with
temperature compensation can accurately represent the battery dynamics. Based on this model, the SOC was
estimated using the UKF and the maximum errors are within 3%. Therefore, the proposed SOC estimation
method is verified to be effective and robust.

INDEX TERMS Lithium battery, temperature compensation, SOC estimation, unscented Kalman filter.

I. INTRODUCTION
As an energy storage device for electric vehicles (EV),
hybrid electric vehicles (HEV) and fuel cell electric vehi-
cles (FCEV), lithium-ion batteries require effective bat-
tery management methods to prolong the service life
and improve reliability and safety [1]. Battery State of
Charge (SOC) estimation is a hot issue in batterymanagement
research. Accurate estimation of battery SOC can prevent
battery over-charge and over-discharge, reduce damage to the
battery, improve battery performance, and therefore plays an
important role in the battery management system [2], [3].

The existing studies related to battery SOC estimation
mainly focus on battery model construction and the SOC
estimation algorithm [4]. As for the battery model con-
struction, He et al. [5] summarized a variety of equiva-
lent circuit models, including the Rint model, the Thevenin
model, the RC model, the DP model and the Partnership
for a New Generation of Vehicles (PNGV) model. Refer-
ence [5] compared and analyzed the five equivalent circuit

models, providing guidance for the selection and applica-
tion of equivalent circuit models. Xiong et al. [6] used the
electrochemical polarization Nernst model for battery param-
eter identification and estimated SOC of the battery used
in plug-in hybrid vehicles. Tian et al. [7] proposed a new
simpler modified equivalent circuit model to improve the
model accuracy. Li et al. [8] established the third-order RC
equivalent circuit model and Zhang et al. [9] established
the Gaussian-based model of a lithium-ion battery. However,
these two models are relatively complex. The battery model
proposed by Roscher and Sauer [10] considering OCV recov-
ery and hysteresis, and the maximum estimation error of SOC
is within 2%.

As for the SOC estimation algorithms, Zhe et al. [11]
applied SOC estimation with the initial SOC correction
of the coulomb counting method to eliminate the SOC
accumulation error. He et al. [12] compared the adaptive
extended Kalman filter (AEKF) algorithm with the EKF
algorithm to estimate the battery SOC in real-time, the AEKF
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algorithm had a better performance than the EKF algorithm.
Xiong Rui proposed a variety of methods to estimate
battery SOC, which includes the method based on SEI
impedance [13], double-scale particle filter [14], and a novel
method was used to get the OCV-SOC relationship with low
computational cost, which can keep SOC estimation error
within 1% [15]. Yu et al. [16] proposed a joint SOC esti-
mation method, and model parameters of battery are esti-
mated online using the H-infinity filter, the SOC is estimated
using the unscented Kalman filter. Shulin et al. [17] esti-
mated the SOC based on the theory of fractional order model.
In addition, some intelligent algorithms were also used in the
estimation of battery SOC. Chaoui et al. [18] applied input
time-delayed neural networks to estimate the battery SOC
achieving estimated RMSE within 0.0033.

Above studies present a comprehensive investigation of
battery SOC estimation methods and model construction,
but the influence of temperature on the SOC estimation is
seldom mentioned. There are significant changes in battery
parameters such as battery capacity and open circuit voltage
at different temperatures [19], [20]. In the literature [21],
a temperature-compensated model was presented for power
Li-ion batteries in EVs, and a dual-particle-filter estimator
was used to estimate SOC. The temperature range considered
by Lee KuanTing is 37◦C to 40◦C and does not extend over
a wider temperature range [22]. Based on the Rint model,
Xing et al. [23] considered the effect of temperature on the
open circuit voltage and the internal resistance of the bat-
tery, but could not fully reflect the effect of temperature on
the polarization effect. In order to make the battery SOC
estimation robust to ambient temperature changes, this paper
establishes the Thevenin equivalent circuit model with tem-
perature compensation. Considering the battery temperature
range from 0◦C to 40◦C, the battery capacity, open circuit
voltage, ohm resistance, polarization resistance and polar-
ization capacitance are tested and identified. The model is
verified under the dynamic stress test (DST). Given that
the coulomb counting method [24] has error accumulation,
the open-circuit voltage method [25] takes a long time to
stand still, the intelligent algorithm [26] requires long train-
ing time, and the estimated accuracy of the extended Kalman
filter algorithm [27] reaches only first-order, the UKF algo-
rithm is used in this paper to estimate the SOC.

II. BATTERY MODEL AND PARAMETER IDENTIFICATION
A. EQUIVALENT CIRCUIT MODEL
Currently, the battery models used in SOC estimation are
mainly divided into several types: electrochemical model,
neural network model and equivalent circuit model and so
on. The equivalent circuit model, which is composed of resis-
tance, capacitance, constant voltage source and other com-
ponents, can simulate the battery dynamics. Among them,
the equivalent circuit model is easier to identify the battery
parameters, which is beneficial to engineering implementa-
tion [28]. The equivalent circuit model mainly includes the

Rint model, the Thevenin model, the PNGV model and the
GNL model and so on. The Thevenin circuit model is a good
option for the equivalent circuit model due to the enough
accuracy and low computational cost. Therefore, in this
paper, the Thevenin circuit model is used [29], as shown
in Fig. 1.

FIGURE 1. Thevenin equivalent circuit model.

In Fig. 1, Uoc is the open circuit voltage (V), R0 is
the ohm resistance, Rp is the polarization resistance, Cp is
the polarization capacitor, Up is the polarization voltage,
ULULis the terminal voltage t, andIL is the load curren. The
parameters in the equivalent circuit are affected by SOC and
temperature (T).

The mathematical model of the circuit is described as(1).
•

Up = −
Up
RpCp

+
IL
Cp

UL = Uoc − Up − ILR0
(1)

B. BATTERY PARAMETER IDENTIFICATION
The ohm resistance, polarization resistance and polarization
capacitance are all affected by SOC and temperature. There-
fore, the capacity and open circuit voltage must be tested and
the battery parameters can be identified through HPPC test
from 0◦C to 40◦C with an interval of 10◦C.
A battery test bench was set up, which consists of battery

test equipment, temperature chamber, temperature sensor and
related software, as shown in Fig. 2.

The selected battery parameters are shown in Table 1.

TABLE 1. Table battery basic parameters.

1) AVAILABLE CAPACITY –T TEST
The battery available capacity test steps are as follows: (1) the
battery is fully discharged with 1/3C current to achieve the
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FIGURE 2. Battery test bench.

discharge cut-off voltage of 2.75V, and has a rest of 1 hour.
Note that the SOC is 0% at this time. (2) the cell is fully
charged with 1/3C current to achieve the charge cut-off volt-
age of 4.2V, then constant voltage charging is conducted.
When the current is less than 0.02C, the charging is com-
pleted, and the cell has a rest of 1 hour. Note that the SOC is
100% at this time. (3) step (1) and step (2) are repeated three
times. Then take the average value of three discharge capaci-
ties as available capacity .If the error between the maximum
discharge capacity value and the average capacity value is less
than 2%, then the available capacity test is stopped and the
average capacity value is considered as the available capac-
ity; however, the battery available capacity test experiment
continues with the above steps if the error exceeds 2% [30].
(4) In order to obtain the available battery capacity at different
temperatures, the above steps are required to be repeated at
0◦C to 40◦C (10◦C intervals). The available capacity of the
battery is related to many factors. Different temperatures,
C-rate and aging correspond to different available capaci-
ties [7]. In this paper, the effect of temperature on avail-
able capacity is considered, then the relationship between
available capacity and temperature (Cap-T) is feasible and
reasonable [22]. The experimental results are shown in Fig. 3.
Fig. 3 shows that the effect of temperature on the battery
available capacity is significant, and the battery available
capacity increases as the temperature increases. At low tem-
peratures, the available capacity significantly reduces. The
available capacity reduces by 19.23% at 0◦C when compared
to the rated battery capacity.

2) THE OCV-SOC-T TEST
This paper refers to the battery open circuit voltage test in [12]
and obtains the OCV-SOC-T data, as shown in Fig. 4.

As shown in Fig.4, the battery OCV is not only
related to the SOC, but also influenced by the tempera-
ture. As shown in literature [31], the OCV increases as
the temperature increases. Fig.5 shows that at the same

FIGURE 3. Battery available capacity at different temperatures.

FIGURE 4. OCV-SOC-T.

FIGURE 5. OCV = 3.6V, comparison of available battery capacity at
different temperatures.

OCV (OCV = 3.60V), different temperatures correspond
to different battery capacities, and the maximum avail-
able battery capacity differs by 0.165 Ah, which indicates
the necessity of establishing a temperature compensation
model.
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2) HPPC test
The data of HPPC test is used to identify the battery

parameters offline. When the ambient temperature is 20◦C,
the HPPC test curve is shown in Fig. 6.

FIGURE 6. HPPC test curves.

In this paper, the Recursive Least Squares (RLS) [32]
with forgetting factor is used to identify the parameters of
Thevenin circuit model, and the battery parameters at differ-
ent temperatures are shown in Fig.7.

Fig.7 shows the battery parameter identification results,
and it can be concluded that the ohm resistance R0 and
the polarization resistance Rp increases as the temperature
decreases, but the polarization capacitance Cp decreases as
the temperature decreases. Considering 20◦C as room tem-
perature [33], [34], the corresponding battery parameters are
used as the parameters of the conventional OCV-SOC model.

C. BATTERY MODEL VALIDATION
The model verification test was performed under DST to ver-
ify the accuracy of the Thevenin equivalent circuit model with
temperature compensation [5]. This paper selects 10 cycles
of DST for verification. The initial battery SOC is 100%.
The DST current is shown in Fig. 8(a). Taking the ambient
temperature 20◦C as an example, the simulation voltage and
the measurement are shown in Fig. 8(b).

Equivalent circuit model verification tests are performed
with DST at five temperatures. The error of the estimated
voltage is shown in Fig. 9. The mean absolute errors are
listed in Table 2. The voltage error (et) and mean absolute
error (MAE) defined in this paper are shown as (2) and (3),

TABLE 2. Table mean absolute error of voltage.

FIGURE 7. Battery parameter identification results: (a) R0-SOC-T.
(b) RP-SOC-T. (c) CP-SOC-T.

respectively.

et =

∣∣Umeasuerd,t − Usimulation,t ∣∣
Umeasuerd,t

× 100% (2)

MAE =
1
n

n∑
t=1

|et | (3)

Fig. 9 and Table 2 show that under different ambient tem-
peratures, the errors between the measured voltage and the
estimated voltage are very small, which are within 1.5%, and
the average absolute errors are within 0.3%, which indicates
that the model accuracy is satisfactory [7]. The simulation
results show that the Thevenin equivalent circuit model can
accurately reflect the battery dynamics.

In order to further verify the adopted battery model,
DST verification is performed at 25◦C, since the battery
capacity, open-circuit voltage, ohm resistance, polarization
resistance, and polarization capacitance are unknown and
spline-interpolated [35] by the parameters at 20◦C and 30◦C.

As shown in Fig. 10, at 25◦C, the error of the volt-
age estimation is very small, which is below 1%, and the
average absolute error is 0.2551%. The accuracy of the
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FIGURE 8. 20◦C, Equivalent Circuit Model Verification Results Under.
DST: (a) DST current. (b) Simulation voltage and the measured voltage.

Thevenin equivalent circuit model with temperature compen-
sation established in this paper is therefore verified. As a
result, the battery SOC can be estimated based on this
model.

III. BATTERY SOC ESTIMATION
The standard Kalman Filter is a digital filtering algorithm
based on the minimum mean square variance, which is
applicable to the linear systems, where the error conforms
to the Gaussian distribution system. However, in practice,
many systems are nonlinear, and the standard Kalman Filter
algorithm cannot provide satisfactory results. In this case,
a straightforward solution is to linearize the system. The
EKF algorithm [36] is based on the general nonlinear sys-
tem, and the nonlinear function is expanded into the Tay-
lor series around the filter value and omit the items above
second order. The linear model of the nonlinear system is
obtained. Therefore, the EKF can only reach the first-order

FIGURE 9. Simulation voltage and measured voltage error under DST.

Taylor series accuracy. it is difficult to achieve high accuracy
for the system with strong nonlinearities. To improve the
estimation performance, Julie proposed the UKF filtering
method, which first performs U transformation when deal-
ing with the state equation, and then uses the transformed
state variables to reduce the estimation error. Because of
the strong non-linear characteristics of the ternary polymer
lithium-ion battery, the UKF algorithm is used to estimate
the SOC.

A. UKF ALGORITHM
The discrete nonlinear system dynamic equations can be
described as the state equations and the observed equations
given as

xk+1 = f (xk , uk )+ wk (4)

yk = g(xk , uk )+ vk (5)

Where uk is the state variable, uk is the control variable,
yk is the observation variable, f (xk, uk) is the nonlinear state
transfer equation,g(xk, uk) is the nonlinear observation equa-
tion. wk is the noise of system, vk is the noise of observed,
assuming that wkand vk are independent Gaussian white
noise with covariance matrices of Q and R, respectively. Set
a nonlinear transformation

y = f (x) (6)

The U transform is based on the mean x̄ and variance
Px of the current state x and constructs a series of Sigma
points. We calculate its non-linear transformation for the
Sigma point and obtain ȳ and Pz. Usually, the number of
Sigma points is 2n +1, where n is the number of state
variables.

The specific process of U transformation can be described
as follows:
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FIGURE 10. 25◦C, Equivalent circuit model verification results under
DST: (a) Voltage comparison. (b) Voltage error.

1) Construct the Sigma point and the weight value.
2n+ 1 sigma points are constructed and the corresponding

weighting coefficients as
χ0 = x̂, i = 0
χi = x̂ +

(
γ
√
Px
)
(i) , i = 1, 2, . . . , n− 1, n

χi = x̂ −
(
γ
√
Px
)
(i) , i = n+ 1, n+ 2, . . . 2n− 1, 2n

(7)
w(m)
0 =

λ

n+ λ

w(c)
0 =

λ

n+ λ
+
(
1− α2 + β

)
w(m)i = w(c)i =

1
2 (n+ λ)

, i = 1, 2, . . . 2n

(8)

λ = α2 (n+ k)− n (9)

In equations (7) - (10), γ =
√
n+ λ; the coefficient

α determines the distribution of the Sigma point, usually

taking a small positive value; k usually takes 0; β is used
to describe the distribution information of γ (for Gaussian
noise, the optimal value is 2); (γ

√
Px)(i) represents the square

root of the matrix i-th column; w(m)i (i = 0, 1, 2, . . . 2n)
denotes the first-order statistical characteristics of the weight
coefficient;w(c)i (i = 0, 1, 2, . . . 2n) denotes the second-order
statistical characteristics of the weight coefficient.

2) The nonlinear propagation of the Sigma point is given
by (10).

Y (i) = f (χi) , i = 0, 1, 2, .., 2n (10)

3) The mean ȳ and variance Pz are given by (11)-(12).

z =
2n∑
i=0

w(m)i Y (i) (11)

Pz =
2n∑
i=0

w(c)
i

[
Y (i)
− z

] [
Y (i)
− z

]T
(12)

For non-linear systems shown in (4) and (5), the specific
steps for filtering with UKF are as follows:

1) Set the initial value as

x̂(0) = E
[
x(0)

]
, Px(0) =

{[
x(0) − x̂(0)

] [
x(0) − x̂(0)

]T}
(13)

2) Time update.
¬ When k > 1, according to (7), structure 2n + 1 Sigma

points as (14).

χ(k−1) = {x̂(k−1), x̂(k−1) +
[
γ
√
Px,(k−1)

]
i
,

× x̂(k−1) −
[
γ
√
Px,(k−1)

]
i
} (i = 1, 2, . . . , n) (14)

 Calculate the prediction of Sigma points as

χi,k = f
[
χi,k−1

]
, (i = 1, 2, . . . , 2n) (15)

® Calculate the mean and variance of the predicted Sigma
point as

x̂(k+1,k) =
2n∑
i=0

w(m)
i χi,(k+1,k) (16)

P−x,k =
2n∑
i=0

w(c)i
[
χi,(k+1,k) − x̂(k+1,k)

]
×
[
χi,(k+1,k) − x̂(k+1,k)

]T
+ Q (k) (17)

3) Measurement update as shown in equations (18) - (20).

x(k+1,k+1) = x(k+1,k) + K
[
zk+1,k − ẑk+1,k

]
(18)

Px,k = P−x,k − KPz,kK
T (19)

K = Pxz,kP
−1
z,k (20)

In the equations

ẑk+1,k =
2n∑
i=0

w(m)
i g

[
χi,k

]
(21)
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FIGURE 11. UKF algorithm flow chart.

FIGURE 12. SOC estimation flow chart.

Pz,k =
2n∑
i=0

w(c)
i

{
g
(
χi,k

)
− ẑk+1,k

} {
g
(
χi,k

)
− ẑk+1,k

}T
+R (k)

(22)

Pxz,k =
2n∑
i=0

w(c)
i

{
g
(
χi,k

)
− x(k+1,k)

} {
g
(
χi,k

)
− ẑk+1,k

}T
(23)

The flowchart of UKF algorithm is depicted in Fig.11.

FIGURE 13. The NEDC current.

FIGURE 14. 20◦C, T-UKF algorithm estimates voltage results: (a) Voltage
comparison. (b) Voltage error.

B. SOC ESTIMATION BASED ON UNSCENTED
KALMAN FILTERING ALGORITHM
The SOC expression is given by (24)[37].

SOC = SOC0 −

∫ t
0 η · Idt

C
(24)
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FIGURE 15. 20◦C, the SOC estimation results of the proposed T-UKF
method: (a) Comparison of reference SOC and estimated SOC with
different initial SOC Initial value. (b) Error of reference SOC and
estimated SOC.

Where η is charge-discharge efficiency, IL is real-time
current(when discharging, IL > 0; when charging, IL < 0),
C is the battery rated capacity.

The equation (24) is discretized using the sampling time
1t to obtain equation (25). In this paper, 1t = 1s.

SOCk = SOCk−1 − η · IL,k1t/C (25)

According to the SOC definition and the circuit equ-ation
of the battery model, we can obtain the discrete space state of
the battery model as shown in (26).

SOCk = SOCk−1 − η · IL,k1t/C

Up,k = Up,k−1 exp
(
−
1t
CpRp

)
+ IL,k−1

·Rp

(
1− exp

(
−
1t
CpRp

)) (26)

In the equation

τ (SOC,T) = Cp(SOC,T) · Rp(SOC,T) (27)

FIGURE 16. 0◦C, SOC estimation results by T-UKF and UKF
algorithms: (a) Comparison of two algorithms estimation results.
(b) Error of two algorithms estimation.

Define the state variable as (28)

xk =
(
SOCk ,Up,k

)T (28)

The observation equation is shown in (29)

UL,k = Uoc (SOCk ,T )− IL,kR0(SOCk ,T )− Up,k (29)

Define the observed variable as

yk = UL,k (30)

In summary, the SOC estimation flow chart is shown as
Fig.12.

IV. SIMULATION AND EXPERIMENTAL
RESULTS ANALYSIS
In order to verify the effectiveness of the proposed method,
the paper uses the NEDC [38] to estimate the SOC of the
battery. The UKF algorithm based on the temperature com-
pensation model is denoted as T-UKF, and the T-UKF algo-
rithm runs according to the flow of Fig.12. The parameter
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FIGURE 17. 40◦C, SOC estimation results by T-UKF and UKF algorithms:
(a) Comparison of two algorithms estimation results. (b) Error of two
algorithms estimation.

initialization of the T-UKF algorithm is given by

x0 =
[
1
0

]
, P0 =

[
0.01 0
0 0.01

]
(31)

In this paper, 25% of the braking energy is considered
to charge the battery [39]. The NEDC current is shown
in Fig. 13.

This paper used the proposed T-UKF algorithm to estimate
the battery SOC. Fig. 14 shows the estimated voltage and the
estimation error under NEDC when the ambient temperature
is 20◦C. Fig. 14(b) shows that the maximum voltage estima-
tion error of T-UKF algorithm is within 3%. According to
the evaluation of [40], the T-UKF estimation algorithm can
accurately reflect the voltage variation of the battery under
various operating conditions.

To test the robustness of the proposed algorithm, various
SOC initial values are set in the T-UKF algorithm. The SOC
initial values are set to 80% and 60%. The actual initial SOC
value of the battery is 100%.

FIGURE 18. 25◦C, the SOC estimation results by the proposed T-UKF
method: (a) Comparison of reference SOC and estimated SOC. (b) Error
reference SOC and of estimated SOC.

As shown in Fig. 15, the proposed method quickly elimi-
nated the initial SOC error and the estimated SOC converged
to the reference SOC value within 100 s, although signif-
icant SOC initial errors exist, the maximum error of SOC
estimation is within 0.02, which reveals a satisfactory SOC
estimation performance. It is proved that T-UKF is robust and
effective to accurately estimate the battery SOC.

To verify the effectiveness of the T-UKF algorithm over a
wide temperature range, the SOC estimation was performed
using the T-UKF and UKF algorithms under NEDC at 0◦C
and 40◦C, respectively. The UKF algorithm based on the
traditional OCV-SOC model uses battery parameters at room
temperature of 20◦C. The SOC estimation results are shown
in Fig.16 and Fig. 17, which show that at 0◦C and 40◦C,
the SOC estimation error is large when the UKF algorithm
is used regardless of the temperature compensation, and the
maximum error exceeds 6%. For the T-UKF algorithm pro-
posed in this paper, SOC estimation can well converge to the
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reference SOC value, and the maximum error is within 3%.
It is illustrated that the T-UKF algorithm proposed in this
paper achieves a dramatic improvement in SOC estimation
under various temperature.

To further verify the adaptability of the proposed T-UKF
algorithm at different temperatures, the test is also performed
at 25◦C, where the battery parameters are unknown and
obtained by spline interpolation based on the parameters at
20◦C and 30◦C. The T-UKF algorithm is used to estimate the
battery SOC under NEDC. The true initial value of SOC is
100%. In the estimation algorithm, the initial value of SOC
was set to 80%, as shown in Fig. 18. The estimated SOC
quickly converges to the reference value when the proposed
algorithm is adopted. The estimation error of battery SOC is
consistently within 3% and the average error is controlled
below 1%. It is demonstrated that accurate SOC estimation
over a wide temperature range can be conducted by the
proposed T-UKF algorithm.

V. CONCLUSION
In order to achieve accurate battery SOC estimation over
a wide temperature range, a Thevenin equivalent circuit
model with temperature compensation is proposed in this
paper. Recursive least square method was used to identify the
parameters of the battery, and the battery model is verified
under DST. On this basis, a T-UKF estimation algorithm is
proposed to achieve accurate SOC estimation considering the
parameters variations under different temperatures. In this
paper, T-UKF was compared with the UKF algorithm under
NEDC in the experiments, and the advantages of the proposed
T-UKF algorithm are mainly reflected in the following:

(1) The battery SOC estimation error caused by the ambi-
ent temperature can be effectively reduced, and the SOC
estimation accuracy under various temperature conditions
is significantly improved when compared with the con-
ventional UKF algorithm, and the SOC estimation error is
reduced by 3%.

(2) When the proposed T-UKF algorithm is adopted,
the SOC estimation value can quickly converge to the ref-
erence value even if the significant initial SOC errors exist,
and the SOC estimation errors are below 3%.
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