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ABSTRACT With the development of deep learning and artificial intelligence, deep neural networks
are increasingly being applied for natural language processing tasks. However, the majority of research
on natural language processing focuses on alphabetic languages. Few studies have paid attention to the
characteristics of ideographic languages, such as the Chinese language. In addition, the existing Chinese
processing algorithms typically regard Chinese words or Chinese characters as the basic units while ignoring
the information contained within the deeper architecture of Chinese characters. In the Chinese language,
each Chinese character can be split into several components, or strokes. This means that strokes are the basic
units of a Chinese character, in a manner similar to the letters of an English word. Inspired by the success
of character-level neural networks, we delve deeper into Chinese writing at the stroke level for Chinese
language processing. We extract the basic features of strokes by considering similar Chinese characters to
learn a continuous representation of Chinese characters. Furthermore, word embeddings trained at different
granularities are not exactly the same. In this paper, we propose an algorithm for combining different
representations of Chinese words within a single neural network to obtain a better word representation.
We develop a Chinese word representation service for several natural language processing tasks, and cloud
computing is introduced to deal with preprocessing challenges and the training of basic representations from
different dimensions.

INDEX TERMS Chinese word representation, stroke-based word representation, multidimensional
word representation, convolutional neural networks, natural language processing, word similarity, text

classification, automatic text summarization.

I. INTRODUCTION

Natural language processing (NLP) refers to techniques that
allow a machine, by analyzing data, to extract information
from context and represent the input information in a different
way [2]. Natural language processing using a Chinese corpus
is usually referred to as Chinese information processing.
Chinese is one of the oldest languages in the world and
has the largest number of users who treat it as their mother
tongue. Chinese characters (known as hanzi) developed from

hieroglyphics and currently comprise the only widely used
ideographic language (the Chinese characters adopted for use
in the Japanese and Korean languages are known as kanji and
hanja, respectively).

There is still a massive gap between the NLP of the
Chinese language and that of alphabetic languages. In a writ-
ten language system, a logogram of an ideographic language
(Chinese) is a written character that represents a word or a
phrase and thus has meaning in itself. By contrast,
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in alphabets and syllabaries, individual written characters
represent sounds rather than concepts. These characters do
not necessarily have meanings in themselves but instead are
combined to construct words and phrases that have meanings.
Moreover, there are many more levels and dimensions in the
Chinese language than alphabetic languages. For instance,
the Chinese language can be divided into sentences, words,
characters, Pinyin (pronunciation of a character or word),
radical components and strokes, while an alphabetic language
can be divided only into sentences, words, pronunciation,
etymons, and characters. In addition, the pronunciation of
a word in an alphabetic language is strongly related to its
spelling. The character is the basic unit in an alphabetic
language; by contrast, each Chinese character is composed
of strokes, which are, in turn, combined into radicals before
they become a character. Furthermore, a combinational stroke
can be further split into basic strokes.

We simply counted the numbers of characters and words
in English, Russian and Chinese. In addition, we considered
the number of strokes in Chinese. As is widely known, there
are 26 characters (52 characters if the upper- and lower-case
versions of each letter are considered) in the English language
and 33 characters in the Russian language. The number of
words is difficult to count because it changes over time. There
are more than 410,000 words in the first edition of the Oxford
English Dictionary and approximately 616,500 entries in
the Merriam-Webster Collegiate Dictionary. According to
the Wikipedia entry on the Explanatory Dictionary of the
Living Great Russian Language, which is a major explanatory
dictionary for the Russian language, this dictionary contains
approximately 200,000 words and 300,000 proverbs. In addi-
tion, we referred to the Kangxi Dictionary, which contains
more than 49,000 Chinese characters, and the thesaurus
compiled by Beijing Guoan Information Equipment Co.,
Ltd., which collects more than 91,000 Chinese characters.
However, only 8,105 Chinese characters are included in the
Table of General Standard Chinese Characters, which is
typically sufficient for daily use. Similarly, there are more
than 374,000 Chinese words in the Sogou Chinese thesaurus
and more than 326,000 Chinese words in the Google Chinese
thesaurus. We take the number of Chinese words in The
Chinese Dictionary, which contains entries for 384,897
Chinese words, as the number of Chinese words. As shown
in table 1, although a Chinese character is called a character,
it is not a ‘character’ in the same sense of quantity and
meaning as in alphabetic languages. There are 5 basic strokes
in the Chinese language and 31 strokes in total in simplified
Chinese. The logarithm of the number of each element in each

TABLE 1. Numbers of characters and words in English, Russian and
Chinese and number of strokes in Chinese.

Number of | English | Russian | Chinese
Strokes / / 31
Characters 26 33 91,251
Words 616,500 | 500,000 | 384,897
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English, Russian and Chinese in different granularity

Log()Number

Strokes Characters Words

English Russian Chinese

FIGURE 1. Logarithms of the numbers of each element in English,
Russian and Chinese.

language is shown in Figure 1, from which we can see that
the number of Chinese characters is not of the same order of
magnitude as the number of English characters or Russian
characters. Instead, the number of Chinese strokes is much
more similar to the numbers of English characters and Rus-
sian characters.

In some works on Chinese language processing (such as
those of Chen e al. [3], Zhang et al. [4] and Kang e al. [5]),
Chinese words and Chinese characters have been taken as
inputs to learn a representation of Chinese words. From
Figure 1, we can easily see that the characters of English
represent a fine-grained level of division, whereas the char-
acter level is a coarse-grained level of division in Chinese.
Consequently, Chinese language processing at either the
word level or the character level still suffers from data sparsity
and challenges related to rare words. The existing datasets
are far from sufficient to cover all characters, let alone all
words. In addition, they are blind to character component
information and ignore the relations between the characters
themselves.

As an example, consider the financial news headline shown
in Figure 2. The top row presents a headline from a financial
newspaper, whose English translation is given at the bottom
of the example. The second row shows the pronunciation of

Chinese 20114E /& & /iH /o8&

Pinyin 2011 nian ji jin wéi b6 yuan nian

Pinyin* 2011 nia2n jil jiln weli bo2 yua2n nia2n

Stroke 2011-) —— [ —[-— ] [ ——— ) \—
| — ) N——=I1~)—) ) I ILI—
J o)== l—T——1 =]~
AU B

English The year of 2011 is the first year that the Fund
companies began to use MicroBlog platform
FIGURE 2. Illustration of the Chinese language: A headline of a financial

newspaper from a dataset for text classification tasks. The Chinese
words, characters, Pinyin, strokes and English translation are listed.
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the sentence, called Pinyin, which is the official Romaniza-
tion system for Standard Chinese. The third row is another
format of Pinyin in which numbers are used to represent the
tones. This format can be more easily processed and stored
by a computer. The fourth row is the stroke sequence of
the Chinese sentence comprising the news headline. The red
dots divide the stroke sequence into segments that belong
to different Chinese characters. Each square-dimensioned
symbol in the first row is a distinct Chinese character glyph.
Unlike in English, there is no obvious division between
words in Chinese. Therefore, a Chinese sentence needs to be
segmented into words. The techniques for grouping adjacent
characters into words are called Chinese Word Segmenta-
tion (CWS) techniques.

To our knowledge, Zhang textitet al. [6] were the first to
use Pinyin in combination with a neural network. Although
Pinyin represents only the pronunciation of Chinese charac-
ters, these authors applied Pinyin in analogy to the English
character model for text classification and achieved some
progress. However, they were predominantly concerned with
the commonalities among different languages [7]. On the
other hand, there are too many Chinese characters or words
that are pronounced in the same way. As shown in Figure 3,
there are 165 Chinese characters with the same Pinyin yi when
the tone is ignored. All those characters are included in the
Modern Chinese Dictionary, which is an official and widely
used dictionary. Even more characters with the Pinyin yi can
be found in the Kangxi Dictionary. The Pinyin system con-
sists of five tones, including the neutral tone, for each Pinyin.
In this example, 90 of these Chinese characters have the same
Pinyin yi at the fourth tone, which is known as the falling tone.
All of the homonyms shown in Figure 4, which were selected
from among the 165 characters with the same Pinyin yi, have
different meanings from each other. The main meaning of
each Chinese character is listed to its right. This is a common
phenomenon in Chinese linguistics. Thus, Pinyin can provide
only a partial representation of Chinese characters. If Pinyin
is taken as the only input, homonyms with different meaning
such as the words shown in Figure 4 will be easily confused
and difficult or impossible to distinguish.

— | R B R BE R R IR R 8
B8 % B R T R RE | {8 % i
|6 |38 |46 16 | B | 3R ME R G | 58| ¥ | BR
Joe | B || BB | B |8 | | M| BE B 2 |
2|2 |0 UWAE B|R|E |18 |5 R
fo | B | | || S | B (e | | XA | E
W2 | 32| f2 || e | 75 | R | 7| 30 |34 | 4K | rE
B R Pk | 3% |45 | 5 0%\ 8RR | K5 | 1 | R
B | 4 MK BR R |28 5% % | B R HB
NE | 25 R NR AR\ 3R | W 3| B B | R
B BE B RN 4R B\ 05 A B EE R 1B
Y| 4|68 | B |68 |58 08|78 | IS e | 65k | B | 3K
A 55 B | | R (ARG E |

FIGURE 3. One hundred sixty-five Chinese characters with the same
pronunciation yi (ignoring the tone) in the Modern Chinese Dictionary.
Of these characters, 90 have exactly the same pronunciation, yi with a
falling tone.

41930

Chinese Ch English M Chinese Ch English M
:f one ﬁ_ lose
% clothes B’ doubt
LE medical [N already
% chair Bl ant
['3 depend R'g righteousness
I suitable 2 discuss
f, shift _ﬁ- different
" aunt 2 benefit

FIGURE 4. Selected Chinese characters with the same pronunciation yi
but completely divergent meanings.

Unlike English characters, Chinese characters are
logograms, of which over 80% represent phonosemantic
compounds, with the semantic component conferring a broad
spectrum of meaning and the phonetic component suggesting
the sound. This is probably the reason why the approach
based on Pinyin works. In addition, most Chinese character
glyphs can represent the pronunciation themselves. Further-
more, there are no two Chinese characters with the exact
same glyph. Therefore, the use of Chinese character glyphs is
much better than the use of only the pronunciation of Chinese
characters. Moreover, we can delve deeper by decomposing
each character at a more granular level. In Chinese linguistics,
most Chinese characters can be decomposed into several
character components, and each character component can be
further decomposed into several strokes. The right part of
the first example in Figure 5 illustrates the decomposition

Oracle Bone Script
ca. 1200-1050 BCE

0%
:

Bronze Script
€a.800 BCE

—
‘% Character
~+ B X

Small Seal Script

¢a.220 BCE Character component

i g Sos 0

Clerical Script .
ca.50 BCE Y\f O W Pictogram
Regular Script — I — A stroke
ca.200 CE I 1 J
Oracle Bone Script
ca. 1200-1050 BCE
Bronze Script
¢a.800 BCE Character

Small Seal Script
ca.220 BCE

* Character component
X Pictogram

ENNEN stroke

Clerical Script
ca.50 BCE

e S
FIGURE 5. Decomposition of the Chinese characters Mo and Xiu. There
are five scripts of the character listed on the left with name and
formation time of each script. The regular script of that character is split

into character components and strokes. The corresponding pictograms of
each component are listed below.
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of a Chinese character glyph. The left part of shows the
same Chinese character, whose original meaning is “‘dusk”,
in different fonts. This character can be decomposed into
3 Chinese character components and consists of 10 strokes
in total. As depicted by the pictograms on the right, the first
character component means ‘“‘grass’’, and the second char-
acter component means ‘‘sun’. The third component is a
deformed version of the first character component and also
means ‘“‘grass’. These three character components together
convey the meaning that “‘the sun falls into the bushes™,
whose meaning is exactly “dusk”. Similarly, a second exam-
ple is shown for the character whose meaning is “rest”.
This Chinese character can be decomposed into 2 Chinese
character components, which represent “man’ and “‘tree”.
The two character components together represent a man
resting against a tree.

Some researchers [8]-[10] believe that character compo-
nents are the most basic semantic unit of Chinese and that the
character component level is sufficiently deep for learning
a Chinese character representation. However, it would be
difficult to compile all of the possible character components
from the diverse variants of Chinese character radicals and
components. Moreover, the intricate hierarchical relationship
in the Chinese component structure makes it extremely dif-
ficult to accurately split Chinese characters into character
components. By contrast, a stroke is a line or combination
of lines that forms a part of a Chinese character glyph.
Although at first glance, a character may look like it has
5 individual lines, it may in fact consist of only 4 strokes. This
can occur because a stroke, unlike a line, is created without
removing the pen from the paper. A detailed introduction to
this concept was presented in our previous work [11]. We
regard the strokes as the smallest units of Chinese character
glyphs. Character-level distributed word representations are
very useful for capturing implied information and have been
successfully applied in a variety of NLP tasks, especially in
alphabetic languages. Probably because of its peculiarities
and drastic differences from alphabetic languages, Chinese
has not attracted much attention in top NLP research forums.
Inspired by the recent success of deep learning at the charac-
ter level [6], [12], [13], we delve deeper, to the stroke level, for
Chinese language processing. To the best of our knowledge,
our work [1] is the first to treat strokes as the basic units for
Chinese language processing. In a recent previous work [14]
from Alibaba, a Chinese word vector representation based
on simplified strokes has been proposed. Some researchers
[3], [15] have realized that Chinese word embeddings learned
with respect to different dimensions carry different informa-
tion. Chen’s work [3] is limited to words and characters,
while [15] takes character components into consideration.
However, strokes [1] and Pinyin [6] are far different from
words and characters and thus can be further used in the joint
learning of Chinese word embeddings.

In this paper, we learn a Chinese character embedding by
exploiting the deeper information contained in Chinese char-
acters and try to combine the information carried by strokes,
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Pinyin, characters, and words. We propose an algorithm for
combining different features obtained by learning represen-
tations based on different dimensions in order to produce a
better word embedding. The relevant algorithms can be exe-
cuted in parallel at both the algorithm level and the data level.
Furthermore, a series of experiments designed to verify the
effectiveness of the proposed approach are reported. Based on
the proposed method of stroke-level representation learning,
we have developed a service for Chinese text classification
and automatic text summarization. Additionally, we have
published a stroke-enhanced Chinese character embedding
that can be easily applied to other Chinese NLP tasks. An
extended set of ROUGE evaluation criteria based on word
similarity theory that considers semantics has been proposed.
In addition, we are the first to construct a correspondence
table between Chinese characters and stroke sequences and
have developed a method of translating Chinese characters
into stroke sequences.

Il. RELATED WORKS

Word similarity, text classification, and automatic text sum-
marization are all classic tasks in the natural language pro-
cessing community. Word similarity is also known as the
phenomenon of semantically related words (synonyms) and
refers to the prediction of whether two words are semantically
related. This task focus on relationships at the word level.
The goal of text classification is to assign a predefined label
to each document; thus, it is also known as document clas-
sification [16]. In the text classification task, the label of a
document depends on the labels of the sentences that make
up that document. Therefore, we regard text classification as
a sentence-level task. The purpose of automatic text summa-
rization is to extract information from an original text and
compress it to provide users with a concise text description.
A good summarization system should gain an understanding
of the whole text and reorganize the extracted information
to generate a coherent, informative and significantly shorter
summary that conveys the important information about the
original text [17], [18]. Through these three tasks, we can
verify the effectiveness of stroke-based representation learn-
ing and multidimensional representation learning at the word,
sentence, and document levels.

A. CHINESE CHARACTER EMBEDDING

In Zhang and Yanns work [6], Chinese is represented at the
Pinyin level for text classification; thus, Chinese is effectively
treated as an alphabetic language. Although working at the
Pinyin level might be a viable approach, using strokes seems
more reasonable from a linguistic point of view. In particu-
lar, Pinyin represents only pronunciation, which is arguably
further separated from semantic meaning than strokes are.
Suns work [9] and Shis work [8] operate at the radical level,
with the precise meaning approaching the character com-
ponent level. Compared with Chinese characters, character
components represent a more fine-grained division. However,
their granularity is still relatively coarse compared with that
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of strokes. Radicals and character components are similar
to Chinese characters in that they also face the problem of
insufficient datasets. Some previous works have tried to apply
the methods developed for alphabetic languages to Chinese
in order to make the Chinese language more uniform with
other languages. Some of them provide inspiration for a
more fine-grained exploration, but their granularity is still
not fine enough. Thus, we try to make Chinese language
processing more universal by adopting an even more fine-
grained approach.

B. TEXT CLASSIFICATION

Text classification is one of the most classic tasks in natural
language processing. The aim of this task is to assign a
predeiAned label to each document. A common approach to
text classification is to use Bag-of-Words descriptors [19],
N-grams [20], and the term frequency-inverse document fre-
quency (TF-IDF) [21] as features and traditional models
such as SVM [22] and Naive Bayes [23] models as clas-
sifiers. Recently, however, many researchers [6], [12] have
directed their attention to deep learning models, particularly
convolutional neural networks, which have enabled signifi-
cant progress in computer vision [24] and speech recogni-
tion. A convolutional neural network, as originally invented
by LeCun [25] for computer vision, is a model that uses
convolution kernels to extract local features. Analyses have
shown that convolutional neural networks are effective for
NLP tasks [26], [27]. Consequently, a convolutional neural
network is selected as a major component of our model for
text classification.

C. AUTOMATIC TEXT SUMMARIZATION

Depending on the method used, automatic text
summarization can be divided into extractive summarization
and abstractive summarization. Since the frequency of a
certain vocabulary term in a document can reflect its impor-
tance to a certain extent, some works [28], [29] have used
the probability of finding a word in a given sentence as
the score for that word and have summed the probabilities
of all words contained in a sentence as the score for that
sentence. Works such as [30]-[32] have used highly scalable
Bayesian topic models to model the topic relevance prob-
ability of a vocabulary term itself. Some research [33] has
also considered the use of implicit semantic analysis or other
matrix decomposition techniques to obtain low-dimensional
implicit semantic representations. Research has shown that
implicit semantic relationships affect the accuracy of auto-
matic text summarization. Thus, we apply our stroke-based
word embedding for the automatic text summarization task.

D. CONVOLUTIONAL NEURAL NETWORK

A convolutional neural network, as proposed by LeCun in the
1990s [25], [34], is a hierarchical neural network that extracts
local features by convolving the input with a group of kernel
filters. Convolutional neural networks involve many more
connections than weights. The architecture itself imposes a
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form of regularization. In addition, a convolutional neural
network automatically provides some degree of translation
invariance. This particular kind of neural network assumes
that we wish to learn filters, in a data-driven fashion, as a
means to extract features describing the inputs. The convo-
lutional feature maps thus obtained are then subsampled (in
a process referred to as pooling) and filtered out to the next
layer. In the following, we will briefly introduce the CNN
algorithm.

In a convolution layer, the previous layer’s feature maps
are convolved with trainable kernels and fed through an
activation function to produce the output feature map [35].
Each output map may be generated through convolutions with
multiple input maps. In general, we have

X =fO xi k4 b 1)

ieM;

Here, x! € RM>Mi represents the i feature map in the I
layer, and kllj € RX1<Ki represents the j kernel filter in the [
layer related to the i/ map in the (I — 1)" layer. M; represents
the selection of input maps from the (I — 1)" layer related to
the /" map in the /" layer. The output activation function £ (-)
is commonly chosen to be the logistic (sigmoid) function
f(x) = (1 + e )1 or the hyperbolic tangent function
f(x) = atanh(bx). Each output map is given an additive
bias b; bl denotes the bias for the j map in the /" layer.

A subsampling layer produces downsampled versions of
the input maps. If there are N input maps, then there will
be exactly N output maps, although the output maps will be
smaller. More formally,

xj? =f(,3;d0wn(x;lfl)) + b;) 2

where down(-) represents a subsampling function. Typically,
this function will sum over each distinct n x n block in an input
map; consequently, the output map will be n times smaller in
both spatial dimensions.

Ill. STARTING QUESTIONNAIRES
To verify the rationality of our proposed method, we designed
a questionnaire-based experiment. The questionnaires were
designed based on the existing knowledge base of the partic-
ipating students. The questionnaires were divided into three
main types of questions and two different types of knowledge.
The questions were character spelling examination questions
based on Pinyin, strokes or both. The characters used in the
questions included characters already learned in class and
characters to be learned in the future, which the students may
not have already known during testing. We distributed the
questionnaires to students in grade four and grade six who
represents two stages of Chinese character learning. There are
293 students from grade four and 94 students from grade six.
However, only 373 students participated in all three surveys.
With the assistance of Li Yijing, one of the authors of this
article who is a teacher from elementary school, we con-
ducted three questionnaires for primary school students in
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the same class within two weeks. All the three sets of ques-
tionnaires contain the content and format described above.
Because the students were trained to spell Chinese charac-
ters based on Pinyin in their daily learning, the accuracies
achieved on the Pinyin-based questions in all three question-
naires were similar. However, spelling Chinese characters
based on stroke sequences was a new experience for the
tested elementary school students. Consequently, an accuracy
of only 45% was achieved on the stroke-based questions
in the first questionnaire, which was much lower than the
corresponding accuracies achieved on the other two ques-
tionnaires. Therefore, we discarded all results from the first
questionnaire and took the averaged results from the last
two questionnaires as the final results, which are shown
in Figure 6. Although the students were not very familiar with
spelling words based on stroke sequences, they still achieved
higher accuracies when using the stroke-based method than
when using the method based on Pinyin. When confronted
with untaught words, the students’ accuracy with the Pinyin-
based method dropped by more than 20 percent compared
with that for learned words, while the accuracy achieved
with the multidimensional method dropped by only 2 percent.
Additionally, the accuracy of the stroke-based method was
more than 35% higher than the accuracy of the Pinyin-based
method. From these results, we can conclude that the stroke-
based approach is much more useful when spelling unknown
characters and that it is also effective to combine Pinyin and
strokes.

Accuracy of Chinese Words Spelling

Pinyin-based Stroke-based Multi-dimension
B Accuracy of Chinese Words Spelling with Learned words
Accuracy of Chinese Words Spelling with Unlearning words

FIGURE 6. Accuracy of Chinese character spelling based on two types of
knowledge and three types of questions.Two types of knowledge refer to
learned words and unlearned words. Three types of questions refer to
Pinyin-based spelling, Stroke-based spelling and multi-dimension based
spelling.

IV. DESIGN OF THE STROKE-BASED NATURAL
LANGUAGE PROCESSING SERVICE

In this section, we present our stroke-based model for learn-
ing a Chinese character embedding. Then, we use this stroke-
based character embedding as the foundation for building a
new service for natural language processing tasks.

A. STROKE-BASED CHINESE CHARACTER EMBEDDING
Due to the unique features of Chinese encoding, we need
to translate Chinese characters into stroke sequences.

VOLUME 6, 2018

Then, a stroke embedding will be learned by training a
neural network, thereby introducing more structural fea-
tures of Chinese characters than can be captured by one-
hot vectors. Chinese-character-to-stroke-sequence translation
plays an important role in the stroke-based Chinese character
embedding training process. With the learned stroke vectors,
each character can be represented by a matrix consisting of
stroke vectors. A convolutional neural network was directly
applied to such character matrices to generate a character
embedding. Several activation functions were interspersed
throughout to generate a character embedding with a fixed
length.

There are some differences between character components
and radicals. Although Chinese characters do not consist of
letters, different structural parts may be formed into different
Chinese characters. The most basic unit that has a meaning in
itself is called a Chinese character component. Each Chinese
character consists of one or several components. Radicals
serve as indexing components in a Chinese dictionary; there-
fore, each Chinese character has only one radical. In other
words, a radical is a type of character component. Therefore,
we consider only character components.

A Chinese-character-to-stroke-sequence table was built
that contains 20,877 Chinese characters, covering all com-
monly used Chinese characters and the Chinese characters
that appear in the datasets we used. Translation can be eas-
ily performed based on this table, which is the cornerstone
of this work. A one-hot vector is one possible choice for
a stroke vector. However, a one-hot representation cannot
reflect the semantic relations between strokes. To gener-
ate a better stroke representation, Erik Huangs framework,
which is illustrated in Figure 7, was adopted to train the
stroke vectors. Since our goal was to obtain stroke vectors,
a small change was made in the framework to satisfy the
necessary requirements. We replaced each document with a
table of similar character components, which contained pairs
of character components with the same semantic meaning.
The model used the strokes in each character to compute a
score for that character, called Score.. Then, the strokes in
each character component were replaced by the other similar
character component in the corresponding pair to compute
another score, called Score;. The more similar the two com-
ponents are, the smaller the difference between Score, and
Score;s is expected to be. The pretraining model used a back-
propagation algorithm to generate the stroke vectors.

Similar character
components

average

FIGURE 7. Stroke embedding learning considering similar character
components.
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Word

MaxPooling

Convolution

c
0000000

Lookup

-

Character
i1

FIGURE 8. Architecture of the stroke-based Chinese character embedding
learning model.

As illustrated in Figure 8, each C; represents a Chinese
character. The model leverages the Chinese-character-to-
stroke-sequence table as a lookup table to map each Chinese
character to several stroke vectors. The number of stroke vec-
tors depends on the number of strokes the character contains.
All of the stroke vectors in a character form a matrix that
represents that character. Each stroke vector occupies one
column in the matrix.

The main component in our model is the convolutional
model, which simply computes several convolutions between
the input and the convolution operator. Unlike in the convolu-
tion calculations performed in image processing with a fixed
image size, different characters contain different numbers of
strokes. However, all matrices have the same height D, which
is the length of each stroke vector. The character size can
be represented as (D x L). The model also considers several
windows with different widths but the same height D for the
convolution operator. The window size can be represented
as (D x W;). Every filter yields several results in the form
of matrices with only one dimension. The number of results
depends on the width of the window and the width of the char-
acter matrix. Due to the unfixed character width, the model
uses pooling to make the length of the character vectors
uniform. There are several kinds of pooling, such as max
pooling over time, k-max pooling, and chunk-max pooling.
In our model, chunk-max pooling is used in the pooling layer.
Suppose that the window widths are denoted by w;. The width
of the widest window should be wy,.x = maxwi, ..., wy,
where 7 is the number of filters. C; is the number of chunk
partitions in the filter with a width of w;. Therefore, the size
of the character vector is ) _; C;.

Some special situations arise due to the unfixed character
matrix size. If ] < w;+C;—1, the convolution calculation can-
not be performed with a filter of width w; and C; partitions.
The most common method of addressing this situation is to
fill the necessary dummy elements with zeros. However, zero
is too far away from the real values in this case. Therefore,
a solution is proposed as follows:

(D When w; satisfies w; <l <w; + C; — 1

For one or two windows, if the value [ satisfies w; < [ <
w; + C; — 1, the maximum possible number of partitions is
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(w;j — I — 1). To preserve the fixed character vector length,
C; results are needed. Therefore, we generate (C;+1 —w;+1)
more results to fill this need by cyclically repeating the
results.

@ When w; satisfies | < w; + C; — 1

When too many filters cannot satisfy [ > w; + C; — 1
or any filter of width w; satisfies [ < w;, we need to shrink the
window size. To simplify this problem, we consider a unified
number of partitions, C. The character vector size should now
benxC, whichisequalto ) _; C;. We reselect the top n widths
if / is larger than n. Otherwise, the widths could be 1 to /. We
cyclically reuse the results and then combine the same results
together.

The majority of Chinese words are composed of two char-
acters. However, a Chinese word may also be composed of
only one character or more than two characters. To simplify
the problem of the number of characters per word, we average
the vectors of all characters that form a Chinese word to
obtain the corresponding word embedding vector.

B. CHINESE TEXT CLASSIFICATION SERVICE

To generate a better stroke-based Chinese character embed-
ding, we translated Chinese characters into stroke sequences
and trained stroke vectors using similar character compo-
nents. Thus, we obtained a representation of the correspond-
ing relationships between Chinese characters and strokes in
the form of well-trained stroke vectors. To apply this stroke-
based Chinese character embedding for text classification,
we first translate new raw data into stroke sequences and
then train and use a text classification module composed of a
6-layer convolutional network and a 2-layer fully connected
neural network. Although the purpose is to apply the char-
acter embedding for text classification, the first layer in the
text classification model takes stroke vectors as the input. The
window size for the first layer depends on the average stroke
length of the characters. The model is trained with the stroke
sequence format of the original training data and generates
labels for the newly input data as its output. Meanwhile,
the newly arriving data in stroke sequence format will be
appended to the training dataset. When enough new data have
been appended to the training dataset, this will trigger a new
round of training with the whole dataset. In our experiment,
we set the retraining threshold to 5%, which means that it will
become increasingly more difficult to trigger a new round
of training as new data accumulate; this can reduce the time
consumed for training the model.

As illustrated in Figure 9, we use general news text, which
is always written in the form of Chinese characters, as the
input in this architecture. A translation module is used to
translate the Chinese characters into Chinese strokes. These
strokes are used in the core module and are also appended to
the training dataset. After enough newly arriving news data
have been appended to the training dataset, the core module
of the text classification service will be retrained.
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FIGURE 9. Changes in the state of the data in the architecture of the text
classification service from raw data to the label of input data.

C. CHINESE AUTOMATIC TEXT SUMMARIZATION

Unlike in the text classification task, in automatic text sum-
marization, it is necessary to generate a text that can be
read. Therefore, in the text summarization architecture, we do
not replace all Chinese characters with Chinese strokes. The
decoder part of this architecture remains the same as what it
should be to perform decoding. Before the encoder, the trans-
lation module used in the text classification task is still used to
translate Chinese characters into Chinese strokes. However,
for this task, the stroke vectors of each Chinese character are
connected into a matrix. Three convolutional neural network
layers act on these matrices that represent Chinese characters
to generate the Chinese character embedding. The Chinese
character embedding sequences calculated from the stroke
vectors are fed into a recurrent neural network as input.

The architecture for automatic text summarization is as
shown in Figure 10. When a sentence or document written
in Chinese characters is provided as input, the translation
module translates the Chinese characters into Chinese strokes
as shown in Figure 9. Each stroke is represented by a vector
as learned using the architecture shown in Figure 7, and these
vectors are combined into a character matrix. A convolutional
neural network and max pooling are used to transform the
character matrices into the character embedding as shown
in Figure 8. We adopt two deep architectures. The first one

troke-level input troke-level input 2 Stroke-level input (t-1)  Stroke-level input t

FIGURE 10. Architecture of the automatic text summarization service.
In this figure, there two different architectures using different decoder
frameworks, with and without context.
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does not use local context during the decoding. We use a
recurrent neural network as the encoder and its last hidden
state as the input to the decoder, as shown by the gray blocks
in Figure 10. The other architecture does consider context
during decoding. We use the combination of all hidden states
of the encoder as the input to the decoder, as shown by
the green blocks in Figure 10. For the recurrent neural net-
work, we adopt the gated recurrent units (GRUs) proposed by
Chung et al. [36], which have been proven to be comparable
to LSTM [37]. All parameters of the two architectures are
randomly initialized, and ADADELTA [38] is used to update
the learning rate. After the model is trained, beam search is
used to generate the beset summaries during the decoding
process.

V. MULTIDIMENSIONAL REPRESENTATION

LEARNING ALGORITHM

To learn as many feature dimensions as possible, we designed
a Chinese word representation learning algorithm that can
be executed in parallel. A common Chinese corpus is typ-
ically made up of sequences of Chinese characters and
symbols (T,), which can be regarded as the original dataset.
The original dataset can be transformed into a segmented
dataset (W,) composed of words identified by means of
Chinese word segmentation techniques. The original dataset
can also be transformed into Pinyin form (P,) and stroke
form (Strn)). With these various types of datasets, we can
independently train different word embeddings. In the word
embedding training process for each dimension, the dataset
can be divided into multiple segments for parallel training,
as shown in algorithm 1.

After all embeddings based on the different dimensions
have been trained, the final Chinese word representation is
obtained by combining these embeddings from bottom to top
with regard to their hierarchical levels relative to Chinese
characters. We first combine the embedding based on Pinyin
with the embedding based on strokes, which considered as
the bottom level. The ensemble operation preserves the vector
size of the word embedding. Then, the result of this first step
is combined with the embedding based on Chinese characters
after a convolution operation. Similarly, the embedding based
on Chinese words is finally combined with the intermediate
results.

As shown in Figure 11, the embedding of strokes and
characters of Pinyin are at the bottom of this model. In prac-
tice, another form of Pinyin which use numbers to represent
tones. Whats more, the strokes are also represented by letters.
Thence, for the lowest granularity representation we use a
unified symbol system including characters, numbers and
other symbols. The number of characters of Pinyin for a
single Chinese character is no more than 7 even with the
tones. Therefore, in the experiment of this article, the Pinyin
sequence is connected to the stroke sequence as input to the
convolutional layer. Similar to the stroke-based embedding,
we get a Chinese character embedding based on stroke
sequence and Pinyin sequence of the Chinese character.
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Algorithm 1 Algorithm for the Joint Learning of a

Multidimensional Chinese Word Representation

Input: 7,: Training dataset consisting of sequences of
Chinese characters and symbols; S(x): Chinese word seg-
mentation function that groups suitable characters into
words; P(x): Transformation function that transforms
Chinese characters into Pinyin; Str(x): Transformation
function that transforms Chinese characters into stroke
sequences; V: Vector size;

Output: Ey (V)

1: for each Sample in T,, do

2 S(Sample) to generate W,

3 P(Sample) to generate P,

4: Str(Sample) to generate Str,

5

6

: end for
. for each dataset (T}, W,,, P,,, Str,), train a respective word
representation do
Train E.(V) with T},
: Train E,,(V) with W,
9: Train E,(V) with P,
10: Train Eg, (V) with Str,
11: end for
12: E((V) = Ensemble(Ep, Egy)
13: E,(V) = Ensemble(Conv(Ey), E,)
14: E; (V) = Ensemble(Conv(E,,), E,,)
15: Ep (V) = Conv(E))

® X

FC layer

FC layer

il
A7
Conv layer Conv layer

® O
RO G
(o]’ (ejele)
T H s k & H SG N j i

FIGURE 11. The architecture for multidimensional representation
learning.

The output of the convolutional neural network will be
integrated with the Chinese character embedding trained
using the raw data. The most common method is to take
the average of the two embedding. We try to use a fully
connected layer instead of the average method to handle
low-frequency Chinese characters and similar characters in
glyph or pronunciation. Similarly, a fully connected layer is
used in the word-level ensemble to deal with words out of
vocabulary and the order of characters.

VI. EXPERIMENT
In this section, we report a series of experiments conducted
to verify the effectiveness of the proposed stroke-based
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Chinese word representation and multidimensional Chinese
word representation. In the next section, we introduce an idea
for expanding the ROUGE criteria.

A. DATASETS AND EXPERIMENTAL SETTINGS

1) WORD SIMILARITY

We selected the two standard datasets used in Chen’s
article [3] and one small dataset built based on the same
corpus for the word similarity computation. The corpus of
news articles originates from The Peoples Daily and contains
31 million words. The vocabulary size is 105 thousand words
and 6 thousand characters, which is far smaller than our char-
acter table but covers 96% of the characters in the national
standard GB2312 character set.

2) TEXT CLASSIFICATION

For the text classification task, we chose the public dataset
THUCNews as the basic dataset. THUCNews is based on
Sina News historical data and includes 740,000 news articles
in 14 classes.

As illustrated in table 2, we chose 4 of these classes:
entertainment, sports, finance, and technology. From each
category, 10,000 news articles were chosen for training, and
5,000 news articles were chosen for testing. Compared with
the complete dataset, the selected dataset is not large, but the
amount of data of each category is more balanced.

TABLE 2. Selected THUCNews dataset.

Class Training Data | Testing Data
Entertainment 10,000 5,000
Sports 10,000 5,000
Finance 10,000 5,000
Technology 10,000 5,000
Sum 40,000 20,000

3) AUTOMATIC TEXT SUMMARIZATION

For the automatic text summarization task, we chose a
large-scale Chinese short text summarization dataset [39]
constructed from the Chinese microblogging website Sina
Weibo. This corpus contains over 2 million real Chinese short
texts, with short summaries provided by the author of each
text and 10,666 tagged short summaries.

4) STROKE SELECTION AND PROCESSING

Generally speaking, there are 32 strokes in modern Chinese,
as shown in Figure 12. There are some similar stroke pairs
that can be represented using the same symbol. For instance,
the fifth stroke in the first row and the last one in the first
row can be regarded as the same stroke by ignoring the little
hook. In this way, we ultimately compressed these 32 strokes
down to 23 for use in our experiment, thereby allowing each
stroke to be represented by a different letter of the English
alphabet. We considered three ways to express strokes, which
differ mainly in how the original English letters are handled.
Through simple verification, we found that ignoring the origi-
nal English letters is the simplest and most effective approach.
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FIGURE 12. The 32 strokes used in modern Chinese, including 5 basic
strokes (the first five with green background) and 26 composite strokes.
All the 32 strokes are encoded with letters. And there are 9 pairs of
strokes with same letter codes totally.
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Chinese Word Similarity
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FIGURE 13. Results for the Chinese word similarity task obtained with
cbow, skip-gram, CWE, and stroke-based embedding.

B. WORD SIMILARITY COMPUTATION

For this task, all models are required to compute the semantic
relatedness of given word pairs. The correlations between
the results of the models and human judgments are reported
as the model performance. For this evaluation, we selected
three datasets: wordsim-240, wordsim-296, and wordsim-36.
In wordsim-240, there are 240 pairs of Chinese words and
human-labeled relatedness scores. Of the 240 word pairs,
233 appear in the training corpus, and the remaining 7 word
pairs consist of new words. In wordsim-296, 280 of the word
pairs appear in the training corpus, and the remaining 16 pairs
consist of new words. The two datasets described above were
also used in Chen’s article [3]. In addition, we built another
dataset, wordsim-36, with 36 selected word pairs and human-
labeled relatedness scores. Of these 36 word pairs, 34 appear
in the training corpus, and the remaining 2 word pairs consist
of new words.

From the evaluation results obtained on the wordsim
datasets, we observe that stroke based embedding(SE) sig-
nificantly outperforms the baseline methods on all three
datasets. The wordsim-36 dataset consists of word pairs
selected by considering similar character components. From
the evaluation results obtained on wordsim-36, we can con-
clude that there is still a great gap that stroke-based Chinese
character embedding can fill.
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C. TEXT CLASSIFICATION
For this task, we used the same news data in different formats
to train different core models. In addition, different transla-
tion models were naturally used. We turned off the trigger
process to eliminate the overhead incurred for retraining, and
we introduced exactly the same news data in exactly the same
order as the input to the service for each different core model.
As shown in Figure 14, we observed that the average length
of a single Chinese character in the stroke format is much
longer than that in the Pinyin format. For the stroke format,
we reset the filter window size for the first two layers of the
core model from 7 to 15 to suit the longer input. However,
we kept the window size of 7 for the Pinyin-format input.

Average Length

Strokes in all characters | R 12 54
Strokes in 3500 characters NS 0.7
Strokes in Componets 471
English 491
Pinyin< [ NG 407
Pinyin 3.08

0 2 4 6 8 10 12 14

FIGURE 14. Average lengths of pinyin characters in two different formats,
average lengths of strokes in Chinese component, first level Chinese
characters and all Chinese characters we collected, and average lengths
of characters in English words.

In our experimental environment, we obtained the results
shown in Figure 15. From the evaluation results obtained for
Chinese text classification, we can observe that the result
for the stroke format is much better than that for the Pinyin
format. We believe that the number of units in each layer and
the size of the filter window strongly influence the results
and that the small change applied to the filter window size
here is still far from the optimal parameter for the model 15.

Accuracy of Text Classification

095 91.87%

09 88.37%
0.85

08 77.08%
0.75

07
0.65

Pinyin-based Stroke-based Multidimensional based

FIGURE 15. The Chinese corpora are translated into Pinyin format and
stroke format and then applied to the text classification model. Also,
multidimensional representation learned with the joint learning
algorithm applied to the text classification task. Finally, we got the
accuracy of text classification using the same dataset.
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Also, the multidimensional representation based text classi-
fication get the best result. Although we obtained a better
result with the stroke format than with the Pinyin format,
the results did not fully meet our expectations. We will need
to further optimize the core model in our future work. For the
multidimensional representation learning, a neural-dynamic
distributed scheme [40], [41] is introduced to guarantee the
superiority, effectiveness and accuracy of our multidimen-
sional representation learning algorithm.

D. AUTOMATIC TEXT SUMMARIZATION

For the automatic text summarization task, we used a quarter
of the main dataset content (approximately 600,000 pairs)
as training data to train a supervised learning model for
summary generation. As shown in Table 3, a higher score
indicates greater relevance between a short text and its cor-
responding summary. Thus, the pairs with scores of 3, 4 and
5 show high relevance in their summaries. These summaries
are highly informative, concise and significantly shorter than
the original text. We adopted these pairs, which constitute
more than 80% of the data in Part II, as the testing dataset.

TABLE 3. Large-scale Chinese short text summarization dataset. The main
contents of LCSTS consist of 2,400,591 short text summary pairs. There are
10,666 pairs with human-labeled scores ranging from 1 to 5 that indicate
the relevance between the short text and the corresponding summary,
where ‘1’ denotes ‘least relevant’ and ‘5’ denotes ‘most relevant’.

Human Score | Part IT | Part III
1 942 165

2 1,039 216

3 2,019 227

4 3,128 301

5 3,538 197
Sum 10,666 1,106

Two approaches were used, as in [39]: a Chinese-
character-based method and a Chinese-word-based method.
We extended both methods to the stroke level, and we con-
structed two deep architectures, with and without contextual
consideration. Ultimately, we tested four methods based on
two architectures, as shown in Table 4.

TABLE 4. The ROUGE-1, ROUGE-2, and ROUGE-L results obtained at the
word level, the character level, the stroke-based word level, and the
stroke-based character level using the two deep architectures with and
without context.

R-1 R-2 R-L

GRU-Word 0.173 | 0.081 | 0.156
GRU-Char 0.211 | 0.087 | 0.182
GRU-StrbasedWord 0.158 | 0.073 | 0.143
GRU-StrbasedChar 0.203 | 0.084 | 0.175
ATTN-Word 0.267 | 0.158 | 0.237
ATTN-Char 0.293 | 0.171 | 0.276
ATTN-StrbasedWord | 0.258 | 0.143 | 0.222
ATTN-StrbasedChar | 0.287 | 0.156 | 0.269

In the character-based method, we took Chinese characters
as the input and reduced the vocabulary size to 4,000 charac-
ters, which covered more than 99.9% of the Chinese charac-
ters appearing in the text. In the word-based method, the text
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was segmented into Chinese words by using jieba [42]. The
vocabulary was limited to 50,000 words, which is much larger
than the number of commonly used Chinese vocabulary
words. To generate summaries after the model was trained,
beam search was used, with the size of the beam set to 10. For
evaluation, we adopted the ROUGE metrics [43], which have
been proven to be strongly correlated with human evaluations
to a certain degree. ROUGE-1, ROUGE-2, and ROUGE-L
were used, as in most text summarization tasks. The results
are listed in Table 4.

From Figure 16, we can see that all three ROUGE results
for the stroke-level-based methods are close to those for
the word- and character-level methods. Still, the stroke-level
performance did not exceed that of the original methods,
as in the other two tasks. First, we used the stroke-level
approach only to generate the embedding of the Chinese
characters or words and then returned to the original method.
This means that only a small part of the task was modified
to consider the stroke level, which is still far from the target
for this task. Second, the input to the encoder was based on
the stroke level, but the output of the decoder was based on
the original character- or word-level natural language model;
consequently, the encoder input and the decoder output were
not well matched with each other. Finally, automatic text sum-
marization is widely regarded as a highly difficult problem.
We can treat the word similarity task as a word-level task and
text classification as a sentence-level task, but automatic text
summarization must be treated as a higher-level task. Thus,
it is more complicated than the other two.

VIl. ROUGE-SN

ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) [43], [44] is an automatic summarization evaluation
method for English summarization systems. We must trans-
late Chinese words and characters into letters and numbers to
use this system. Moreover, the basic ROUGE system relies on
n-grams to evaluate the summaries, which requires absolute
matching, as shown in formula 3.

ZSeRef ZneS Cn(m)
ZSeRef ZneS Cn)

The 7 represents n-gram which also applied in all formulas
below in this section. From the word similarity task, we know
that there are many synonyms and antonyms that can be used
in place of each other to express the same meaning in a
sentence. Take the summarization dataset as an example. The
summaries in pairs with scores of 1 or 2 are highly abstracted
and contain many words that do not appear in the original
text, which means that a human evaluation will not yield a
high ROUGE score. Therefore, we take the word similarity
into consideration. As shown in formula 4, we take every
Chinese word in the reference summaries and find the most
similar word as the matching one. The similarity of exactly
the same word will be 1; consequently, this metric will be the
same as ROUGE-N if the generated summary is same as the
reference one. Obviously, the result for ROUGE — SNy will

ROUGE — N = 3)
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FIGURE 16. ROUGE-1, ROUGE-2 and ROUGE-L results obtained with the four methods using the two deep architectures.

generally be larger than that for ROUGE-N.

ZSeRef ZneS C(n)Ps
ZSeRef Zr]eS C(n)

However, in some cases, an irrelevant word will be identified
as the most similar one. Therefore, a threshold is needed to
remove instances in which we cannot find any words in the
generated summary that are similar to a given word in the
reference summary. Thus, only words with similarities higher
than the selected threshold 7 will be used to calculate the
result. This is shown in formula 5. In short, ROUGE-SN
is an extension of ROUGE-N that considers the word
similarity.

ROUGE — SNy = )

2_SeRref 2-nes Cr=1(M)Ps
2 seRef 2nes C(N)

Finally, we take the average result for each task without
stroke-level learning as the baseline and take the average
result for each task based on stroke-level learning to rep-
resent the performance of our approach to determine the
relative advantage of the latter. From the results, we find
that the stroke-level representation is superior to the original
for the word similarity and text classification task, while the
performance achieved with the stroke-level representation is
almost comparable to the state of the art for automatic text
summarization. When ROUGE-SN is used as the evaluation
standard, the stroke-level approach achieves a higher score
than the original methods.

ROUGE — SN =

&)
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VIIl. CONCLUSION AND FUTURE WORK

We proposed a method of leveraging stroke-level information
for learning a continuous representation of Chinese charac-
ters. To the best of our knowledge, our work [1] is the first to
treat strokes as the basic units of characters for Chinese lan-
guage processing. In this paper, we proposed an algorithm for
combining different features learned from different dimen-
sions of Chinese words. To speed up training, the relevant
algorithms can be executed in parallel at both the algorithm
level and the data level. Our stroke-based model is capable
of capturing the semantic relations between characters from
a fine-grained level of expression. The effectiveness of our
method has been verified on Chinese word similarity assess-
ment, text classification, and automatic text summarization.
The experimental results show that our method outperforms
widely accepted embedding learning algorithms. More work
needs to be done to take full advantage of the proposed
multidimensional Chinese word representation in the future.
Furthermore, we have developed a service based on the
stroke-based word representation that can be easily applied to
other Chinese language processing tasks. Moreover, we have
expanded the ROUGE evaluation system by considering the
influence of similar words on the evaluation of automatic text
summarization results.
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